Show all work on a separate sheet of paper.

1. For each of the following, y
inversely as x. Write the appro
inverse-variation equation, and
given x.
a) $y=40$ when $x=10 ; x=13$
b) $y=45$ when $x=-10 ; x=-4$
2. Find the domain of each
Identify all asymptotes and
graph of each rational func
a) $f(x)=\frac{x^{2}+2 x+1}{x^{2}-3 x-4}$
b) $f(x)=\frac{x^{2}+4}{4 x^{2}-1}$
c) $f(x)=\frac{x+2}{x^{2}-3 x-10}$
3. Add
a) $\frac{5 x}{x+5}+\frac{x+5}{x-3}$
b) $\frac{4 x}{x^{2}-16}+\frac{6}{x-4}$
c) $\frac{x+1}{x+4}+\frac{x-2}{x-5}$
4. Solve each inequality. Check your solution.
a) $\frac{x+1}{x}>-3$
5. Subtract.
a) $\frac{4 x-2}{10}-\frac{3 x-2}{6}$
6. Solve
b) $\frac{x^{4}+2 x^{3}}{x^{2}+3 x+2} \cdot \frac{x^{2}-1}{5 x-5}$
c) $\frac{x^{12}}{5} \cdot \frac{15}{x^{4}} \cdot \frac{x^{3}}{9}$
c) $\frac{\frac{x^{2}+x-6}{x+5}}{\frac{3 x^{2}-12}{3 x+15}}$
7. Divide
a) $\frac{x^{2}+4 x-5}{18} \cdot \frac{6}{x^{2}-x}$
a) $\frac{x^{4}}{x^{2}+15 x+54} \div \frac{x^{2}}{x+9}$
b) $z=6$ when $x=-6, y=-9$, and $w=3$;
$x=-3, y=6$, and $w=5$
8. Multiply
9. For each of the following, z varies jointly
10. Identify all asymptotes and holes in the as x and y and inversely as w. . Write the graph of each rational function. appropriate combined-variation equation, and find z for the given x, y and w.
a) $z=3$ when $x=-2, y=6$, and $w=12$;
a) $f(x)=\frac{x+7}{x^{2}+4 x-21}$
b) $f(x)=\frac{4 x^{4}-1}{x^{2}+6 x+8}$
b) $\frac{6 x^{2}-24 x+24}{14 x-28} \div \frac{3 x-6}{x+1}$
a) $\frac{x-2}{3 x}=\frac{1}{4}$
b) $\frac{x}{x+7}-\frac{x+4}{x^{3}-3 x^{2}}$
b) $\frac{2}{x}+\frac{1}{x+2}=\frac{1}{4}$
c) $\frac{5}{x^{2}+7 x+10}-\frac{4}{x^{2}-x-6}$
11. Find the domain of each radical function.
a) $f(x)=\sqrt{3 x-1}$
12. Find the inverse of the quadratic function. Then graph the function and its inverse on the same coordinate plane.
b) $f(x)=\sqrt{x^{2}-9}$
a) $y=x^{2}+1$
b) $y=x^{2}-4$
b) $-4>\frac{x}{x-2}$
c) $\frac{1}{2} x<2 x-2$
13. Evaluate each expression. Give exact answers.
a) $\sqrt[3]{\frac{125}{27}}$
b) $\sqrt[3]{\frac{-8}{64}}$
c) $3 \sqrt[4]{81}$
14. Simplify each product or quotient. Assume that the value of each variable is positive.
a) $\sqrt{3 x^{5}} \cdot \sqrt{4 x^{7}}$
b) $\left(\sqrt{5 x^{3} y}\right)^{2}$
15. Solve each radical equation by using
algebra. If the equation has no solution, algebra. If the equation has no solution, write no solution. (Remember to check your answers so you do not have extraneous solutions)
a) $2 \sqrt{x+4}=10$
b) $\sqrt{x+2}=x-6$
16. For the function, describe the transformation applied to $f(x)=\sqrt{x}$. $g(x)=\sqrt{x+3}-2$
17. Simplify. Leave your answers in simplest radical form.
a) $(\sqrt{3}+2)(\sqrt{6}-3)$
b) $(25+5 \sqrt{3})+(13-8 \sqrt{3})$
c) $5 \sqrt{3}(\sqrt{6}-4 \sqrt{8})$
18. Simplify each radical expression by using the Properties of the nth Roots.
a) $\sqrt[4]{32 x^{5} y^{6}}$
b) $\left(-64 x^{9} y^{6}\right)^{\frac{1}{3}}$
19. Rationalize each denominator.
a) $\frac{5}{\sqrt{3}}$
b) $\frac{2}{4+\sqrt{2}}$
