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Abstract
Several active–passive damping treatments using viscoelastic and
piezoelectric materials have been studied in the last decade. The main
motivation of such hybrid damping mechanisms is that they combine the
reliability, low cost and robustness of viscoelastic damping treatments with
high-performance, modal selective and adaptive piezoelectric active control.
However, active–passive damping performance is highly dependent on the
relative positions of viscoelastic and piezoelectric materials. This work
presents a geometric and topological optimization of active–passive damping
treatments, consisting of a viscoelastic layer, a constraining layer, a spacer
layer and a set of piezoelectric actuators. The modelling is performed using a
piezoelectric sandwich/multilayer beam finite element model in which the
viscoelastic material’s frequency dependence is accounted for using the
anelastic displacement fields model. The resulting model is then reduced
using a two-step modal reduction and applied to a limited-input optimal
control strategy to evaluate the resulting active–passive modal damping
factors. A genetic algorithm based optimization technique combined with an
aggregated weighted minimum–maximum approach for a multiobjective
optimization is used, aiming for the maximization of active–passive damping
and minimization of weight added to the structure. Results show that a
considerable improvement of damping performance is achievable with a
controlled increase in the mass of the structure.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Several research works published in the last decade have
shown the advantages of combining standard free layer and
constraining layer viscoelastic damping treatments with some
type of distributed active control to reduce structural vibration
amplitudes. The viscoelastic damping treatments offer a
reliable, low-cost and robust solution for vibration damping,
and they are already widely used in several industries. On
the other hand, studies on the application of distributed active
control using piezoelectric actuators for real structures has
seen a considerable growth in recent years. Purely active
control can provide high-performance, modal selective and

adaptive solutions for narrow frequency ranges. Aiming to
improve passive damping performance or reduce the required
weight increase, a number of research groups proposed hybrid
active–passive damping treatment configurations combining
both viscoelastic and piezoelectric materials in the structural
design.

Depending on the relative positions of the passive
damping layers and the active piezoelectric actuators, the
active and passive damping mechanisms can work separately
or simultaneously. The most studied configuration consists
of replacing or augmenting the elastic constraining layer of
a passive constrained layer (PCL) damping treatment by an
active piezoelectric actuator, leading to the so-called active
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constrained layer (ACL) damping treatment [1–3]. Alternative
configurations to the ACL, mainly separating the passive
treatment of the active piezoelectric actuators, were later
proposed [4, 5]. It was shown that, although each configuration
has its advantages, the active damping performance is very
much dependent on the transmissibility between piezoelectric
actuators and the host beam. Hence, ACL design can only
be an interesting design when active and passive damping
treatments are designed to operate complementarily. However,
other design configurations are still to be validated.

Some previous studies focused on the optimization
of active–passive damping treatments. However, most of
them only provided variations of geometrical and material
parameters for a given active–passive damping treatment
configuration. In particular, Baz and Ro [6] considered the
modal damping optimization for an ACL-treated beam through
the variation of thickness and shear modulus of the viscoelastic
layer followed by the optimization of control gains. Later,
Baz [7] also considered the length of the ACL damping
treatment. Huang et al [3] presented the optimization of
sizing, length and thickness of ACL treatments subject to a
total thickness restriction. Badre-Alam et al [8] have studied
an enhanced ACL with varying piezoelectric and viscoelastic
layer thicknesses and derivative controller gains. Ro and
Baz [9] used a modal strain energy approach to search for
the optimal location, size, thickness and viscoelastic material
shear modulus of several ACL treatments bonded on a host
plate. More recently, Kemp and Clark [10] have proposed
an optimization routine based on the independent selection
of active and passive elements to minimize vibratory energy,
weight and control energy, and Hau et al [11] presented the
damping maximization combined with weight and control
voltage minimization for a rotating flexible arm with an ACL
treatment.

The last two works applied optimization methods based
on genetic algorithms (GAs), which are search algorithms
based on the survival of the fittest theory applied for a
structured set of parameters [12]. GA-based optimization
methods have also been used for the design optimization of the
purely active and passive damped structures [13–16]. Unlike
conventional optimization techniques, GA-based ones do not
require continuity or differentiability of the objective function
with respect to design variables and, besides, they evaluate
simultaneously a population of individuals (sets of parameters)
and, hence, the probability of finding a non-global optimum
is reduced. Another advantage of GA-based optimization
techniques is the possibility of considering both float and
binary design parameters, allowing one for instance to account
for different design configurations (topologies) in addition to
material and geometrical parameters.

This work presents a geometric and topological optimiza-
tion of active–passive damping treatments, consisting of a vis-
coelastic layer, a constraining layer, a spacer layer and a set
of piezoelectric actuators, applied to a cantilever beam. Thus,
most of the previously proposed active–passive damping treat-
ment configurations can be accounted for. The main objective
of the study is to evaluate relevant design variables and obtain
potential operational ranges for each active–passive damping
treatment. The modelling is performed using a piezoelectric
sandwich/multilayer beam finite element model in which the

viscoelastic material’s frequency dependence is accounted for
using the anelastic displacement fields (ADF) model. The re-
sulting model is then reduced using a two-step modal reduction
and applied to a limited-input optimal control strategy to eval-
uate the resulting active–passive modal damping factors. A
GA-based optimization technique [17] combined with an ag-
gregated weighted minimum–maximum approach for a multi-
objective optimization is used, aiming for the maximization of
active–passive damping and minimization of weight added to
the structure.

2. Finite element model

A finite element (FE) model for piezoelectric–viscoelastic
laminate beams, based on a classical sandwich theory with
laminate faces, was developed and validated in a previous
work [18, 19]. Euler–Bernoulli assumptions are considered
for the laminate faces, whereas those of Timoshenko are
retained for the core. The piezoelectric face sub-layers are
supposed transversely poled and subject to transverse electric
fields. Elastic and viscoelastic layers are assumed electrically
insulated and are obtained by annulling the piezoelectric
constants. All layers are assumed to be in a plane stress state
and perfectly bonded, using a non-conductive bonding layer
such that the electric state of each layer can be independent
of its adjacent layers. This means that the same displacement
field is considered for all sub-layers of the laminate faces.
Axial displacements of the upper and lower laminate faces and
central core are assumed to vary in the length direction, vanish
in the width direction and be linear in the thickness direction.
As for the transverse deflections, they are supposed to vary
only in the length direction. Using the displacement continuity
conditions between layers, axial and shear strains of the layers
can be written in terms of the transverse deflection and the
axial displacements of the upper and lower faces. Sandwich
beams with viscoelastic cores can be considered since the core
layer is allowed to deform in shear. The temperature and
frequency dependences of the viscoelastic material properties
are represented using the ADF model [20], which is based on
the inclusion of internal variables to model the relaxation of the
viscoelastic material.

The ADF model is based on a separation of the viscoelas-
tic material strains into an elastic part, instantaneously propor-
tional to stress, and an anelastic (or dissipative) part, repre-
senting material relaxation. This is applied to the FE model
by replacing the mechanical degrees of freedom (dof) vector q
by qe = q − ∑

i qd
i in the strain energy corresponding to the

viscoelastic elements. qe and qd
i represent the dof vectors asso-

ciated with the elastic and anelastic strains, respectively. Then
a series of equations, describing the time-domain evolution of
the dissipative dof vector qd

i , is added to the FE equations of
motion such that [18]

Mq̈ + Dq̇ + (Ke + K∞
v )q − K∞

v

∑

i

qd
i = Fm + Fe (1)

Ci

�i
K∞

v q̇d
i + Ci K∞

v qd
i − K∞

v q = 0 (2)

where M is the mass matrix, D is a viscous damping matrix,
Fm is a mechanical forces vector and Fe is the piezoelectric
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forces vector. K∞
v is the unrelaxed (or instantaneous) stiffness

matrix of the viscoelastic elements and Ke is the stiffness
matrix of the remaining elements in the structure (elastic and
piezoelectric). The mechanical dof vector q is composed
of the nodal generalized displacements, which here consists
of the mean and relative axial displacements of the top and
bottom laminate layers’ midplanes, constant through-thickness
transverse displacement, and bending rotation. For details
of the model, please refer to [18]. K∞

v is assumed to be
proportional to the viscoelastic material’s unrelaxed shear
modulus G∞, such that K∞

v = G∞K̄v. The unrelaxed shear
modulus is written in terms of the static (or relaxed) shear
modulus G0 as G∞ = G0(1 + ∑

i �i ). The ADF parameters
Ci = (1 + ∑

i �i )/�i , G0, �i and �i are evaluated by curve-
fitting of the measurements of the complex shear modulus
G∗(ω), represented as a series of functions in the frequency
domain [20]:

G∗(ω) = G0 + G0

∑

i

�i
ω2 + jω�i

ω2 + �2
i

. (3)

Notice that since the viscoelastic material properties are
also dependent on temperature, the ADF parameters G0, �i

and �i should be evaluated for each temperature of interest.
Equation (3) is well adapted to curve-fit the complex modulus
of viscoelastic materials with strong frequency dependence.
Nevertheless, modern viscoelastic materials tend to be less
frequency dependent so as to maintain a high loss factor over
a wide frequency range of interest, and consequently are more
effective in damping vibrations. For such materials, a larger
number of series terms must be used to provide a satisfactory
curve-fit of the complex modulus frequency dependence. Since
there is one system of equations (2) for each ADF series, this
model can considerably increase the system dimension.

It is also worth noticing that in the case of a
structure partially covered with the viscoelastic treatment, the
viscoelastic stiffness matrix K∞

v will possess a number of
rows and columns of zeros, corresponding to the FE dof of
the non-treated parts of the structure. The singularity of K∞

v
can however be eliminated through a modal decomposition
qd

i = Tdq̂d
i , such that �d = TT

d K∞
v Td, where �d is a diagonal

matrix, with the non-null eigenvalues of K∞
v , and Td is the

matrix of their corresponding eigenvectors. Equations (1)
and (2) can then be rewritten as

Mq̈ + Dq̇ + (Ke + K∞
v )q − Td�d

∑

i

q̂d
i = Fm + Fe (4)

Ci

�i
�d

˙̂qd

i + Ci�dq̂d
i − �dTT

d q = 0. (5)

3. Model reduction

A model reduction of the augmented system of equations (4)
and (5) was recently proposed [21], and it is briefly
reviewed here. It consists in reducing the dissipative system
(equation (5)) through the truncation of the eigenvector matrix
Td. The choice of the retained eigenvectors is done by
evaluating their projection onto an undamped modal basis
Te, such that TT

e MTe = I and TT
e (Ke + K∞

v )Te = �e.
The eigenvectors Td with smaller projections onto Te are

then eliminated as described below. Since there are several
alternatives to evaluate the projection onto a set of retained
undamped modes, here it is chosen to quantify the overall
importance of a dissipative mode by the norm of the projection
onto each retained undamped mode. Hence, a so-called
residual vector r is defined as

r j = ||R jk ||, for k ∈ {Nk} (6)

where
R = �dTT

d Te (7)

such that element R jk represents the weighted residuals
between the eigenvector T j

d and the undamped mode Tk
e .

Supposing that the majority of the structural response energy
is contained in the {Nk} modes in Te, the selection of
eigenvectors that contribute the most to the structural response
may be performed through sorting of the residual vector r.
Notice that each element of r corresponds to a column of Td.
Thus, it is proposed to eliminate the eigenvectors from Td

corresponding to the smallest residuals r j , which are thought
to be those that contribute the least to the structural response.
Therefore, the dissipative dof vector is approximated by qd

i ≈
Tdrq̂dr

i . Thus the reduced matrix Tdr contains only retained
eigenvectors, and q̂dr

i are their corresponding coordinates.
Since the eigenvalue matrix is also reduced to �dr, the residual
matrix becomes Rr = �drTT

drTe.
Using the reduction of dissipative coordinates and the

projection of the structural model, such that q = Teq̂,
equations (4) and (5) can be rewritten as

¨̂q + TT
e DTe

˙̂q + �eq̂ − RT
r

∑

i

q̂dr
i = TT

e Fm + TT
e Fe (8)

Ci

�i
�dr

˙̂qdr

i + Ci �drq̂
dr
i − Rrq̂ = 0. (9)

Notice that the structural model could also be reduced
using its undamped modes Te. However, this is not done
here, although writing the equations in terms of q̂ instead of
q has some computational advantages. Notice that the reduced
dissipative coordinates q̂dr

i now contain only those coordinates
corresponding to selected relaxation modes according to their
residuals and, thus, matrices Rr and �dr have a reduced
dimension. This reduction can be especially significant since
each eliminated relaxation mode leads to a reduction of n
dofs, where n is the number of ADF series terms considered
(generally at least 3).

This model reduction technique was validated in [21]
through comparison between reduced and full order models
and it leads to satisfactory results as long as the vibration
modes are not significantly modified by the viscoelastic
damping.

In order to use this model for control design, equations (8)
and (9) are first rewritten in a state space form. Therefore,
a state vector x is formed by an augmented vector q̄ =
col(q̂, q̂dr

1 , . . . , q̂dr
n ) and the time derivative of the undamped

modal coordinate vector ˙̄q. The time derivatives of the
dissipative coordinates q̂dr

i are not included in the state vector
since these variables are massless. This leads to

ẋ = Ax + Bu + p

y = Cx
(10)
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where the perturbation vector p is the state distribution of
the mechanical loads Fm, B is the control distribution vector,
corresponding to the piezoelectric loads per unit control
voltage F∗

e induced by the piezoelectric actuators, the control
input vector u is composed by the control voltages applied
to each piezoelectric actuator, and the output vector y is
composed of the measured quantities, written in terms of
the state vector x through the output matrix C. The system
dynamics is determined by the square matrix A. The state
space system matrices and vectors are

A =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 I
(�1/C1)TT

drTe −�1I 0 0
...

. . . 0
(�n/Cn)TT

drTe 0 −�nI 0
−�e RT

r · · · RT
r −TT

e DTe

⎤

⎥
⎥
⎥
⎥
⎦

x =
[

q̄
˙̂q
]

; B =
[

0
TT

e F∗
e

]

; p =
[

0
TT

e Fm

]

C = [ CqTe 0 Cq̇Te ]

where Cq and Cq̇ are output matrices relative to the mechanical
dof vector q and its derivatives q̇, respectively. Notice
that, as internal variables, the dissipative coordinates are not
observable.

The state space system (10) can be further reduced,
using any state space reduction technique, in particular to
eliminate the unobservable dissipative coordinates. This is
done here using a truncation of the complex damped modal
basis followed by the construction of an equivalent real-valued
state space system, as briefly explained below.

By neglecting the contributions of viscoelastic relaxation
modes and some elastic modes, related to eigenfrequencies
out of the frequency range considered, a complex-based modal
reduction is applied to the state space system (10). This is done
through a modal decomposition, such that the right and left
eigenvectors of A are evaluated by ATr = �Tr and ATTl =
�Tl with TT

l Tr = I. The state vector is then approximated
as x ≈ TrrT−1

c x̂, where Trr is the matrix of retained right
eigenvectors of A and Tc is the matrix of complex-to-real
state transformation. Hence, the reduced state space system
is rewritten as ˙̂x = Âx̂ + B̂u + p̂

y = Ĉx̂
(11)

where Â = TcTT
lrATrrT−1

c ; p̂ = TcTT
lrp; B̂ = TcTT

lrB; Ĉ =
CTrrT−1

c and, in this form, the new state variables x̂ represent
the modal displacements and velocities [22].

This technique for state space modal reduction was shown
to properly account for the viscoelastic damping [22]. As in
any model reduction technique, however, the results could be
improved by enriching the modal basis with static corrections
and/or with some of the viscoelastic overdamped relaxation
modes.

4. Optimal control design

A linear quadratic regulator (LQR) control design is applied
to the reduced state space system (11). The optimization is

performed using the following cost function:

J = 1
2

∫ ∞

0
(x̂TQx̂ + uTRu) dt, (12)

subjected to equation (11). This leads to a linear state feedback
control system such that u = −Kgx̂, where Kg = R−1B̂TP is
the control gain matrix written in terms of P, the solution of the
following algebraic Riccati equation

ÂTP + PÂ − PB̂R−1B̂TP + Q = 0. (13)

The performance of such a controller is determined by the
proper choice of the weight matrices Q and R. Besides, it
does guarantee that the designed control input u is feasible.
However, the control voltage applied to the piezoelectric
actuators must be limited by a maximum electric field to
avoid depoling of the piezoelectric material. Therefore, it is
proposed to use an iterative algorithm that allows the automatic
adjustment of the input weight matrix R by means of a factor
γ , such that R = γ R̄. The state weight matrix Q and the
factored input weight matrix are set to identity matrices of
proper dimension Q = In×n and R̄ = Im×m , where n is the
dimension of state matrix Â and m is the number of actuators.

5. Geometric and topological optimization

A geometric and topological optimization is proposed in
this section using a genetic algorithm combined with a
multiobjective optimization strategy.

5.1. Problem statement and design variables

A clamped–clamped aluminium beam is considered as the
base beam to be treated. It is proposed to apply to the
beam a hybrid active–passive damping treatment composed
of three active piezoelectric actuators and one constrained
layer viscoelastic damping treatment, as shown in figure 1.
The passive viscoelastic damping treatment is composed of
an aluminium constraining layer, a viscoelastic layer and an
aluminium spacer (or stand-off) layer. The geometrical and
material properties are shown in table 1. The thicknesses
hC, hV and hS of the passive damping treatment layers are
considered as design variables. The viscoelastic material 3M
ISD112 is considered for the damping layer. Its complex
shear modulus as a function of frequency is shown in figure 2
and it is represented here by three series of ADF parameters,
such that G0 = 0.50 MPa, � = [0.7456 3.2647 43.2840],
� = [468.69 4742.36 71 532.49] rad s−1. The piezoelectric
actuators are made of piezoceramic material PZT5H. Only the
first ten bending modes are retained in the modal reduction. A
viscous modal damping factor of 0.1% is also considered to
represent other sources of damping. The maximum voltage
applied to the piezoelectric actuators is set to 200 V for
the control design, leading to a maximum electric field of
400 V mm−1.

Together with the analysis of passive damping treatment
thicknesses, six different active–passive configurations are
considered by changing the relative position of the piezoelec-
tric actuators, as shown in figure 3. This is done by defining
a topology parameter p such that the following configurations
are considered:
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Figure 1. Schematic representation of a clamped–clamped beam with active–passive damping treatment.

Figure 2. Elastic modulus G ′ and loss factor η of 3M ISD112
viscoelastic material evaluated using three series of ADF parameters
(dashed lines) and measured ones (solid lines).

• p = 0—no piezoelectric actuators and therefore without
active control (figure 3(a));

• p = 1—piezoelectric actuators bonded directly to the
bottom surface of the base beam (figure 3(b));

• p = 2—piezoelectric actuators bonded between the base
beam and the spacer layer, thus acting also as an additional
spacer layer (figure 3(c));

• p = 3—piezoelectric actuators bonded between the
spacer layer and the viscoelastic layer, hence acting on the
base beam through the spacer layer (figure 3(d));

• p = 4—piezoelectric actuators bonded between the
viscoelastic layer and the constraining layer, thus
increasing the constraining layer thickness and acting on
the base beam through the viscoelastic and spacer layers
(figure 3(e));

• p = 5—piezoelectric actuators bonded to the external
surface of the constraining layer, hence increasing
the thickness and controlling the constraining layer
(figure 3(f)).

Notice that, since bonding the piezoelectric actuators
directly to the viscoelastic layer is not recommended, a very
thin aluminium layer (thickness 1 mil or 0.0254 mm) is
considered along the free surface of the viscoelastic layer in
cases 3 and 4 (figures 3(d) and (e)). Notice also that in
configurations (a), (b), (d), (e) and (f) of figure 3, the spacer
layer also thickens the host beam.

Table 1. Material and geometrical properties.

Geometrical properties (in mm)

Aluminium host beam
L = 320, hB = 1.5, width 25
Passive constrained layer treatment
hC = [0–2], hV = [0–1], hS = [0–2]
PZT5H piezoelectric actuators
d = 40, a = 70, e = 15, hP = 0.5

Material properties

Aluminium host beam
ρ = 2690 kg m−3, E = 70.3 GPa
ISD112 viscoelastic layer
ρ = 1000 kg m−3, G∗(ω) in figure 2
PZT5H piezoelectric actuators
ρ = 7500 kg m−3, E = 65.5 GPa, e∗

31 = −23.2 C m−2

5.2. Objective function

The proposed objective is to maximize the overall damping
for a given frequency range while minimizing the mass added
to the structure. This is done through the construction of a
global performance index that combines an objective function
Jd, corresponding the damping performance, and a penalty
function Jm, corresponding to the added mass.

Jg = Jd − β Jm; β > 0 (14)

where the weighting factor β is used to establish trade-off
surfaces. In particular, a small β is expected to lead to high
damping performance at the cost of a considerable added mass;
on the other hand, a large β restrains the added mass at the cost
of poor damping performance. Notice that the global index
Jg is defined such that a higher value means a better fit, in
accordance with the basic concept of GA optimization.

The objective function Jd is defined as the arithmetic mean
of the first five bending mode damping factors normalized by
a maximum expected value ζmax. Here, ζmax was adjusted to
20% after some simulations.

Jd = 1

5ζmax

5∑

i=1

ζi . (15)

The penalty function Jm is defined as the relative increase
in the structure mass normalized by a maximum expected value
rmax. Here, rmax is considered to be 285%, which corresponds
to the mass increase with the thicker viscoelastic, spacer and
constraining layers, and the piezoelectric actuators. Notice that
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Figure 3. Schematic representation of the six different topologies considered.

such a mass increase is not an acceptable design and it is just
used for normalization purposes.

Jm = 1

rmax
(mT − mB)/mB (16)

where mT is the total mass of the treated beam and mB is the
mass of the base beam only. Notice that the total mass mT is the
sum of the masses of the base beam, the piezoelectric actuators,
the spacer layer, the viscoelastic layer, and the constraining
layer mT = mB+mP+mS+mV+mC and, thus, is increased by
the presence of the piezoelectric actuators (p = {1, 2, 3, 4, 5})
and by the increase in the spacer, viscoelastic and constraining
layers thicknesses (hS, hV, hC).

5.3. Optimization method

In the present work, a MATLAB implementation of the
GA optimization algorithm, so-called Genetic Algorithm for
Optimization Toolbox (GAOT), developed by Houck et al [17],
is used. The optimization using the GA is an evolutionary
process composed of three main steps: setting up of an
initial population, change of individuals’ parameters through
mutation and crossover (reproduction), and selection of best
individuals.

For the problem presented previously, the design variables
p, hS, hV and hC define the four parameters (or characteristics)
of each individual of the population and, thus, each individual
represents an active–passive damping treatment configuration.
There are several strategies to set up an initial population.
Here, the following strategy was retained: (1) evenly
spaced vectors are constructed for each parameter, [p] =
[0 1 2 3 4 5], [hV] = [1, 2, . . . , 20] mil, [hC] =
[hS] = [0, 0.1, . . . , 2] mm; (2) vectors [p], [hV], [hC] and
[hS] are repeated to form corresponding augmented vectors
with a given dimension Nrp (size of the random population);
(3) each element of the augmented vectors (now with the same
dimensions) is reordered randomly and then combined to form
a matrix with Nrp rows and four columns, where each row
represents an individual with four parameters; (4) a set of Ngs

potentially good solutions is included, so that the size of the
initial population is N = Nrp + Ngs. In the present case,
the random population is formed by Nrp = 180 individuals.
Consequently, any value of p appears in 30 individuals, any
value of hV appears in 9 individuals and most values of hC and
hS appear in 9 individuals, while the others appear in only 8
of them. In addition, Ngs = 11 potentially good solutions,
based on design configurations known to be effective in terms
of damping performance or mass increase, are included in the
initial population. These are meant to represent four main
configurations: the base beam with no treatment (optimal for

β → ∞); a relatively thick constraining layer (hC = 1.5 mm)
combined with a very thin viscoelastic layer (hV = 1 mil)
and a thin spacer layer (hS = 0.5 mm) for the six topologies
(p = {0, 1, 2, 3, 4, 5}); a relatively thick constraining layer
(hC = 1.5 mm) combined with a very thin viscoelastic layer
(hV = 1 mil) and without spacer layer (hS = 0) for three
topologies (p = 0, 1, 5); and the base beam with purely active
control (p = 1, hV = hC = hS = 0), that is without passive
damping treatment. Then, the performance index Jg of each
individual of the initial population is evaluated, for a given β ,
and associated with the corresponding individual.

Along a given number Ng of generations, the population
evolves through a series of operations. First, a non-uniform
mutation of Nm randomly selected individuals is performed, in
which all parameters of one individual are randomly modified,
respecting each parameter boundaries. The performance index
of each individual is compared to that of its corresponding
mutation and, if the mutation has a greater performance
index, it replaces the original individual. Then, an arithmetic
crossover (reproduction) of Nc pairs of randomly selected
individuals is performed. A pair of new individuals (children)
is generated corresponding to the two complementary linear
combinations of each pair of original individuals (parents).
Finally, a selection of the best individuals is retained to the
next generation. The selection is performed using a normalized
geometric ranking for which a probability of being selected is
assigned to each individual based on its performance ranking.
In what follows, the following parameters were used: Ng = 15,
Nm = 4, Nc = 27.

6. Results and discussion

This section presents a series of optimal results obtained for
several values of β and, then, each optimal configuration is
analysed in more detail. First, the weighting factor β for
the added mass penalty function was varied through a wide
range [0.001–1000] to identify ranges of interest. It was
observed that a much narrower range [0.2–4.0] is sufficient
to observe optimal ranges for each type of configuration.
Figure 4 presents the evolution of population parameters, p,
hV, hC and hS, for β = 0.2. This figure was obtained
by plotting a circle around each parameter pair found in
the population, where the size of the circle represents the
number of individuals possessing such parameter pair. These
circles are then plotted for every generation in the same graph.
For instance, the smaller circles in figure 4 represent the
parameter pairs of each individual of the initial population,
while the larger circles represent parameter pairs possessed
by more than one individual. It is also possible to observe
that, through the generations, certain points (parameter pairs)
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Figure 4. Evolution of population parameters for β = 0.2.

Figure 5. Evolution of population parameters for β = 0.5.

start to accumulate individuals, meaning that all individuals
are evolving to a certain set of characteristics. In figure 4,
for instance, it is possible to notice that, while the initial
population is quite evenly distributed along the four design
variables, all individuals converge to very thin viscoelastic
and spacer layers, hV = 0.0254 mm (1 mil) and hS =
0.1 mm, a relatively thick constraining layer hC = 1.7 mm,
and piezoelectric actuators placed between the viscoelastic
and spacer layers (position p = 3). This active–passive
configuration may be called an active–passive stand-off layer
(APSOL) since the passive stand-off layer is incremented
with the active piezoelectric elements. There are some
reasons why this configuration should indeed be optimal for
damping performance: (1) a relatively stiff layer connects
the piezoelectric actuators to the host structure, thus a good
active action transmissibility can be obtained, (2) the distance
between the piezoelectric actuators and the host structure
midplane is increased by the passive stand-off layer, thus
increasing the active bending moment, (3) the stand-off layer
amplifies the normal strains in the viscoelastic layer, thus
providing an extra dissipation mechanism. Notice however

Figure 6. Evolution of population parameters for β = 0.8.

Figure 7. Evolution of population parameters for β = 1.0.

that this design yields a treatment that is thicker than the host
beam. It can be noted in figure 4 that there is also a visible
concentration of individuals around the position p = 5 for a
thinner constraining layer hC = 1.5 mm and without the spacer
layer, a configuration also known as an APCL (active–passive
constraining layer). However, these individuals later evolved
to the optimal configuration.

Figure 5 shows the evolution of population parameters for
β = 0.5. In this case, the optimal solution is obtained for
p = 3, hV = 0.0254 mm, hC = 1.6 mm and hS = 0.1 mm.
Comparing with the previous case, the constraining layer is a
little thinner. This is due to a greater weighting of the added
mass. The same behaviour can be observed for β = 0.8, in
figure 6, where the constraining layer is thinner, hC = 1.4 mm,
and the spacer layer is removed (hS = 0).

A more considerable configuration change is obtained by
increasing β to 1.0. The evolution of population parameters
for this case is shown in figure 7. In this case, the piezoelectric
actuators are bonded directly to the bottom surface of the base
beam (position p = 1) and the passive damping layer is
entirely removed (hV = hC = hS = 0). This configuration
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Figure 8. Evolution of population parameters for β = 2.0.

Figure 9. Evolution of population parameters for β = 2.4.

represents a purely active damping of the base beam through
the piezoelectric actuators and it is maintained as the optimal
solution up to β = 2.0 (figure 8). For greater values of β ,
this solution will still be a good solution, but it is no longer the
optimal solution. Indeed, figure 9 shows that, for β = 2.4, the
optimal configuration consists of purely passive damping, that
is without piezoelectric actuators p = 0, and with very thin
viscoelastic, spacer and constraining layers, hV = 0.0254 mm
and hS = hC = 0.1 mm. The purely passive damping
configuration remains the optimal solution for greater values of
β . However, increasing the weight of the added mass penalty
function, β , increasingly restrains the thickness of the passive
damping treatment, as expected. Hence, for β = 3.4, the
spacer layer is removed (hS = 0), as shown in figure 10, and,
although not shown here, for the sake of brevity, a continuous
increase of β leads to a reduction of the passive damping
treatment until the optimal solution reduces to the base beam
only.

It is also worth noting that the optimal solution presented
previously can be grouped in three main categories: (1) hybrid
active–passive damping treatment (optimal up to β = 0.8);

Figure 10. Evolution of population parameters for β = 3.4.

Figure 11. Variation of damping performance index Jd (solid) and
added mass penalty function 1 − Jm (dashed) for selected values of
β.

(2) purely active damping treatment (optimal from β = 1.0
to 2.0); and (3) purely passive damping treatment (optimal
from β = 2.4 to 140, from where the optimal solution is no
treatment at all). These configurations with their variations
are shown in figure 11 together with the damping performance
index Jd (solid) and the added mass penalty function Jm

(dashed), as functions of the weight β . Since the added mass
is a penalty function, and for the sake of clarity, figure 11
shows 1 − Jm instead of Jm. It can be noticed that for small
values of β , e.g. β = 0.2, the damping performance index is
near 1, meaning an average damping factor of approximately
20% (19.6%, actually), while the added mass penalty function
is Jm = 0.54, leading to a mass increase of 153%. For the
purely active damping configuration (1.0 � β � 2.0), the
damping performance index is Jd = 0.54, meaning an average
damping of 10.9%, while the added mass penalty function is
Jm = 0.21, meaning a mass increase of 61%. For the purely
passive damping configuration (2.4 � β � 3.4), the damping
performance index drops to Jd = 0.29, leading to an average
damping factor of 5.8% for β = 2.4. On the other hand,
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Figure 12. Active, passive and hybrid damping for the first ten
bending modes obtained with selected configurations.

the added mass penalty function is reduced to Jm = 0.037,
meaning a much smaller mass increase of 10%.

In addition to the analysis of average damping perfor-
mance, it is worth analysing separately the damping factor
of the ten first bending modes for each active–passive damp-
ing configuration. This is done here for three configurations,
namely the first active–passive damping treatment of figure 11
(for β = 0.2), the purely active damping treatment (for
β = 1.0) and the passive constrained stand-off layer damp-
ing treatment (first passive damping treatment of figure 11, for
β = 2.4). The ten first damping factors for these selected
configurations are shown in figure 12, where configurations 1,
2 and 3 refer respectively to active–passive damping, active
damping, and passive constrained layer damping. One may
notice that active–passive damping leads to high damping fac-
tors for all modes (minimum of more than 14% for modes 4
and 10). It is worth noticing that an important part of these
damping factors comes from the passive damping treatment
(up to the thin mark in each bar), meaning that even for the
open loop condition, or in the eventuality of control system
malfunction, the structure is well damped. On the other hand,
the purely active damping configuration lacks this open-loop
damping threshold, but in the closed-loop configuration the
piezoelectric actuators are able to effectively damp up to mode
7 (figure 12). However, the active damping factors of modes 8,
9 and 10 are much smaller (2%, 0.3% and 0.9%). This is due
to the low controllability of these modes by the piezoelectric
actuators.

The frequency and time responses of the treated beams
are now compared to that of the base beam in figures 13
and 14. In particular, from figure 13, it can be noticed that
all treatments are capable of greatly reducing the resonance
amplitudes, except for the last three modes of the beam with the
purely active damping treatment. The impulsive time response,
shown in figure 14, confirms that the response is well damped
for all treatments when compared to the base beam. Indeed, the
settling time of the base beam (2.5 s) is considerably reduced
to 0.070, 0.040 and 0.015 s by the active, passive and active–
passive damping treatments, respectively.

Figure 13. Frequency response function for five selected
configurations. - - - -: base beam, — · —: passive, · · · · · ·: active,
——: hybrid.

Figure 14. Impulse response function for five selected
configurations. - - - -: base beam, — · —: passive, · · · · · ·: active,
——: hybrid.

7. Concluding remarks

This work has presented a methodology for the multiobjec-
tive geometric and topological optimization of hybrid active–
passive damping treatments, composed of a passive viscoelas-
tic layer sandwiched between a constraining and a spacer (or
stand-off) layer and an active layer of piezoelectric actua-
tors. The optimization was performed using genetic algorithm
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operators together with an objective function that combines
an average damping factor with the relative mass increase,
weighted by an adjustable factor. The passive damping layer
thickness and the relative position of the piezoelectric actuators
were considered as design variables. Results have shown that a
considerable improvement of damping performance is achiev-
able with a controlled increase in the mass of the structure. In
particular, for higher damping performances, an active–passive
damping treatment, defined here as an active–passive stand-off
layer, was shown to be the most effective, while, for a lower
mass increase, passive damping treatments seem more appro-
priate. In the medium damping/added mass region, a purely
active damping treatment was the most effective. Notice, how-
ever, that additional purely active designs with thinner and
shorter piezoelectric actuators, or less in number, could yield
better performance than purely passive designs with similar
mass increase. In the light of these results, future works are be-
ing directed to the experimental validation of selected active–
passive configurations and their application to more complex
structures.
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