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A refined sandwich beam model is proposed in the present work.
The mechanical model is a refinement of the classical sandwich
theory (CST), where the core is modelled with a third-order shear
deformation theory (TSDT). It is shown that the electromechani-
cal coupling with the higher-order strains requires a third-order
through-thickness model for the electric potential. Using these as-
sumptions, a finite element (FE) model is developed considering,
through the beam length, electrically: constant electric difference of
potentials for the piezoelectric facing and core layers and quadratic
third-order variable of the electric potential in the core, while
mechanically: linear axial displacement and quadratic bending
rotation of the core, and cubic transverse displacement of the
sandwich beam. The proposed FE model is then compared with
analytical and numerical CST, that use a first-order shear defor-
mation theory (FSDT) in the core, and analytical equivalent sin-
gle layer (ESL) models for a continuous piezoceramic core. It is
shown that even when acting as an actuator, there exists a third-
order induced potential in the piezoceramic material which may
yield an overall stiffer structure. A comparison between FSDT and
TSDT FE results for a piezoceramic embedded in an elastic core
is also performed to evaluate the electrical and mechanical model
refinements.

1. INTRODUCTION
Piezoelectric actuators have been widely used for the de-

sign of smart structures over the last two decades. They can
be either surface-mounted or embedded into a host structure.
Surface-mounted actuators are normally poled in the thickness
direction, so that they act as extension actuators. However, this
configuration subjects the actuators to high stresses and possible
contact with foreign objects which are undesired for these brit-
tle piezoceramics. These problems can be alleviated by using
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axially poled piezoceramic actuators sandwiched between two
elastic layers, as proposed by Sun and Zhang [1]. In this case, the
application of an electric field in the thickness direction induces
transverse shear deformation of the actuator thus generating the
desired transverse deflection of the sandwich structure.

After the pioneer works of Sun and Zhang [1, 2], several re-
searchers have been interested in piezoelectric shear actuation.
Through the use of a classical sandwich beam theory, Benjeddou
et al. [3–5] showed that shear actuators induce distributed actu-
ation moments in the structure unlike extension actuators which
induce boundary forces. Therefore, the shear actuation mech-
anism may lead to fewer problems of debonding in actuators
boundaries and to minor dependence of the control performance
on actuators position and length. Aldraihem and Khdeir [6–8]
presented exact solutions for sandwich beams with shear and ex-
tension actuators using equivalent single layer models based on
first-order and third-order shear deformation theories. Trindade
et al. [9] presented a comparison between active control perfor-
mances of shear and extension actuation mechanisms using a
sandwich beam finite element model. They showed that shear
actuators are generally more suitable to control bending vibra-
tions of stiff structures. Raja et al. [10] also studied active damp-
ing performance in composite materials using shear actuators
as compared to that using the widespread extension actuators.
Their results showed that shear actuators have promising fea-
tures for vibration control applications, in particular the shear
actuator was observed to be more effective in velocity feedback
than the extension actuator. In a later work [11], Raja et al. have
presented a finite element static analysis of sandwich beams
actuated simultaneously by shear and extension actuators for
several boundary conditions. Vel and Batra [12] presented an
exact 3D solution for the static cylindrical bending of simply
supported laminated plates with embedded shear piezoelectric
actuators. Their analysis has shown that both longitudinal and
shear stresses within the actuator are significantly smaller for
the shear actuator. Recently, Edery-Azulay and Abramovich
[13] presented closed-form solutions for the static analysis of
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laminate/sandwich beams with embedded extension and shear
actuators. Achievements, trends and perspectives of the use of
shear-mode piezoceramics in smart structures applications have
recently been presented in [14, 15].

Although this so-called shear actuation mechanism seems
quite promising for structural control, its modelling is still an
open issue. Indeed, most of the existing refined models for piezo-
electric laminate/sandwich structures focus on extension actu-
ators, thus leading at most, to higher-order mechanical models
but simple low order electrical models, since extension actua-
tors present a simpler electrical behavior [16]. For shear actuated
piezoelectric sandwich beams, either the classical sandwich the-
ory (CST), with a first-order shear deformation (Timoshenko)
for the core [2, 17], or first and higher-order equivalent single
layer (ESL) theories [8, 18] were used. However, on one hand,
it is very difficult to model the localized core shear deformation
through ESL theories, and, on the other hand, the correct esti-
mation of the core shear deformation is determinant to evaluate
the sandwich beam induced deflection.

Hence, a refined sandwich beam model is proposed in the
present work. The mechanical model is a refinement of CST,
for which the facing layers respect Euler-Bernoulli assumptions
and the core is modelled with the third-order shear deformation
theory (TSDT) proposed by Reddy [19]. It is shown that the elec-
tromechanical coupling with the higher-order strains requires a
third-order through-thickness model for the electric potential.
Using these assumptions, a finite element (FE) model is devel-
oped considering, through the beam length, electrically: constant
electric difference of potentials for the piezoelectric facing and
core layers and quadratic third-order variable of the electric po-
tential in the core, while mechanically: linear axial displacement
and quadratic bending rotation of the core, and cubic transverse
displacement of the sandwich beam. It is shown that, although
more refined models are considered for the mechanical and elec-
trical behaviors of the piezoelectric core, the resulting FE model
has the same number of degrees of freedom (dof) as the pre-
vious CST one [17] due to a two-step static condensation of
the internal dof of the bending rotation and third-order variable
of the electric potential in the core. The proposed FE model is
then compared with analytical and numerical CST [2, 17] and
analytical ESL models [6] for a continuous piezoceramic core.
Finally, a comparison between FSDT and TSDT FE models for
a discontinuous elastic/piezoceramic core is performed to eval-
uate the effects of both electrical and mechanical refinements in
the model.

2. THIRD-ORDER ELECTROMECHANICAL
SANDWICH MODEL
A multilayer beam made of piezoelectric layers is modelled

using a classical sandwich theory. Therefore, the beam is sup-
posed to consist of a core layer sandwiched between top and
bottom laminate face layers. The latter respect Euler-Bernoulli
assumptions and hence are modelled using the classical lami-

nate theory. On the contrary, the core is allowed to present shear
strains, which are modelled using the TSDT proposed by Reddy
[19]. For simplicity, all layers are assumed to be made of or-
thotropic piezoelectric materials, perfectly bonded and in plane
stress state. In addition, the sub-layers of the faces are poled in
the thickness direction while the core is poled in the longitudinal
direction. However, both have electrodes covering completely
their top and bottom skins. The length, width and thickness of
the beam are denoted by L , b and h, respectively. Quantities rel-
ative to the upper, core and lower layers are represented by the
subscripts a j , c and b j , where the subscript j = {1, . . . , (n, m)}
denotes a sub-layer of the laminate faces. n and m are the number
of sub-layers in the faces a and b respectively.

2.1. Displacements and Strains
From the assumptions cited previously, the axial and trans-

verse displacement fields of faces and core may be written in
the following general form (also see Figure 1)

ŭk(x, y, z) = uk(x) + (z − zk)βk(x); k = a, b

ŭc(x, y, z) = uc(x) + (z − zc)βc(x) − 4(z − zc)3

3h2
c (1)× [βc(x) + w(x)′]

w̆i (x, y, z) = w(x); i = a, b, c

Notice that the same displacement fields uk (k = a, b) are con-
sidered for all sub-layers k j of the face k. From Euler-Bernoulli
hypotheses, βk = −w′ (k = a, b), where, •′ is used to denote
∂ • /∂x . The mid-plan of the core is set to coincide with the
origin of the z-axis, so that zc = 0.

FIG. 1. Kinematics representation of the multilayer faces sandwich beam with
third-order shear deformation theory for the core.
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Using the displacement continuity conditions between lay-
ers, the displacement fields (1) may be written in terms of only
three main variables. It is chosen then to write the displacements
of the face layers neutral line, ua and ub, in terms of the axial
displacement and section rotation of the core, uc and βc. Con-
sequently, the i-th layer displacement fields may be rewritten in
terms of the three model independent mechanical variables uc,
βc and w as

ŭk(x, z) =
(

uc ± hcβc

3
∓ dkw

′
)

− (z − zk)w′;

k = a(+), b(−)

ŭc(x, z) = uc + zβc − 4z3

3h2
c

(βc + w′) (2)

w̆i (x, z) = w(x); i = a, b, c

where

dk = 3hk + hc

6
; zk = ±hk + hc

2
;

hk =
n,m∑
j=1

hk j ; k = a(+, n), b(−, m)

The usual strain-displacement relations for each layer yield
the following axial ε1 and shear ε5 strains for the i-th layer

ε1k = εm
k + (z − zk)εb

k

ε1c = εm
c + zεb

c − 4z3

3h2
c

εh
c

(3)

ε5c =
(

1 − 4z2

h2
c

)
εs

c

where

εm
k = u′

c ± hcβ
′
c

3
∓ dkw

′′; εb
k = −w′′; k = a(+), b(−)

εm
c = u′

c; εb
c = β′

c; εh
c = β′

c + w′′; εs
c = βc + w′

Notice that the parameters dk (k = a, b) are membrane-bending
coupling parameters. Notice also that εh

c = εb
c − εb

k = (εs
c)′,

meaning that the higher-order strain corresponds to a relative
bending deformation between faces and core.

2.2. Reduced Piezoelectric Constitutive Equations
Linear orthotropic piezoelectric materials with material sym-

metry axes parallel to the beam ones are considered here. ci j ,
ek j and εkk (i, j = 1, . . . , 6; k = 1, 2, 3) denote their elastic,
piezoelectric and dielectric material constants.

The piezoelectric face sub-layers are poled transversely and
subjected to transverse electrical fields only. Hence, the three-
dimensional linear constitutive equations of the face sub-layer

k j can be reduced [3] to

{
σ1k j

D3k j

}
=


c

k j ∗
11 −e

k j ∗
31

e
k j ∗
31 ε

k j ∗
33




{
ε1k

E3k j

}
(4)

where,

c
k j ∗
11 = c

k j

11 − c
k j

13
2

c
k j

33

; e
k j ∗
31 = e

k j

31 − c
k j

13

c
k j

33

e
k j

33;

ε
k j ∗
33 = ε

k j

33 + e
k j

33
2

c
k j

33

σ1k j , ε1k , D3k j and E3k j are axial stress and strain, and trans-
verse electrical displacement and field. The modification of the
material constants is due to the plane stress assumption (σ3 = 0).

The piezoelectric core layer is poled in the axial direction. Its
constitutive equations can be obtained from those of the surface
layers through a rotation, so that axial and transverse indices
interchange. Therefore, the reduced constitutive equations of
the piezoelectric core are




σ1c

σ5c

D1c

D3c




=




cc∗
33 0 −ec∗

33 0

0 cc
55 0 −ec

15

ec∗
33 0 εc∗

33 0

0 ec
15 0 εc

11







ε1c

ε5c

E1c

E3c




(5)

where

cc∗
33 = cc

33 − cc 2
13

cc
11

; ec∗
33 = ec

33 − cc
13

cc
11

ec
31; εc∗

33 = εc
33 + ec 2

31

cc
11

and σ5c, ε5c, D1c and E1c are transverse shear stress and strain,
and axial electrical displacement and field. The material con-
stants modification is also due to the plane stress assumption for
the core (σ3 = 0).

Notice the presence in Eq. (5) of both axial and transverse
components of the electric field and displacement.

2.3. Electric Potentials and Fields
A constant transverse electrical field is assumed for the face

piezoelectric sub-layers and the remaining in-plane components
are supposed to vanish. Consequently it is, for the k j -th face
piezoelectric sub-layer,

E3k j = − Vk j

hk j

(6)

where Vk j is the difference of electric potential of the k j -th lam-
inae, defined by Vk j = V +

k j
− V −

k j
, with V +

k j
and V −

k j
being the

voltages applied on the upper and lower skins of the k j -th piezo-
electric face sub-layer.
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On the contrary, both axial and transverse electrical fields
are considered for the core piezoelectric layer. In addition, the
transverse one is assumed to be quadratic through thickness
and not constant as for the face sub-layers. Hence, the electric
potential in the core is assumed cubic through thickness and in
the following form,

�(x, z) = �0(x) + z

hc
�1(x) + z2

h2
c

�2(x) + z3

h3
c

�3(x) (7)

It is worthwhile to rewrite the electric potential (7) in terms
of the mean and difference of electric potential on the upper and
lower skins of the piezoelectric core,

�(x, hc/2) = �+ and �(x, −hc/2) = �− �

�1 + �3

4
= Vc and �0 + �2

4
= �m

where

Vc = �+ − �−; �m = �+ + �−

2
(8)

Notice that for a piezoelectric patch with upper and bottom skins
fully covered by electrodes, the electric potentials �+ and �−,
and thus both Vc and �m , are constant in the axial direction.
Hence, the electric potential (7) may be rewritten as

�(x, z) = �m + z

hc
Vc +

(
z2

h2
c

− 1

4

)
�2(x)

+
(

z2

h2
c

− 1

4

)
z

hc
�3(x) (9)

The axial E1c = −∂�/∂x and transverse E3c = −∂�/∂z
electrical fields may then be evaluated from the electric potential
(9) leading to

E1c = −
(

z2

h2
c

− 1

4

)
� ′

2 −
(

z2

h2
c

− 1

4

)
z

hc
� ′

3

(10)

E3c = − Vc

hc
− z

hc

2�2

hc
−

(
3z2

h2
c

− 1

4

)
�3

hc

Notice that the axial electric field is only due to the electric
potential higher-order terms. Moreover, it vanishes on the upper
and lower surfaces of the piezoceramic core (see Eq. (10)). The
choice of a cubic electric potential is justified by the solution of
the electrostatic equilibrium equation

D1c,1 + D2c,2 + D3c,3 = 0 (11)

Noting that D2c,2 is assumed to vanish and replacing D1c and
D3c, of the core constitutive Eqs. (5), in the last equation lead to

ec∗
33

∂ε1c

∂x
+ εc∗

33
∂E1c

∂x
+ ec

15
∂ε5c

∂z
+ εc

11
∂E3c

∂z
= 0 (12)

Using the definitions of axial and shear strains (3), in terms of the
generalized membrane, bending, higher-order and shear strains,
and the electric field-potential relations together with Eq. (7),
the last equation may be rewritten leading to the relations

εc∗
33

1

4
� ′′

2 − εc
11

2

hc

�2

hc
+ ec∗

33ε
m
c

′ = 0

εc∗
33

1

4

� ′′
3

hc
− εc

11
6

h2
c

�3

hc
+ ec∗

33ε
b
c
′ − ec

15
8

h2
c

εs
c = 0

(13)
εc∗

33
� ′′

2

h2
c

= 0

εc∗
33

� ′′
3

h3
c

+ ec∗
33

4

3h2
c

εh
c
′ = 0

or, alternatively, writing these conditions in terms of the main
variables, uc, βc and w, yields

εc∗
33

1

4
� ′′

2 − εc
11

2

hc

�2

hc
+ ec∗

33u′′
c = 0

εc∗
33

1

4

� ′′
3

hc
− εc

11
6

h2
c

�3

hc
+ ec∗

33β
′′
c − ec

15
8

h2
c

(βc + w′) = 0

(14)
εc∗

33
� ′′

2

h2
c

= 0

εc∗
33

� ′′
3

h3
c

+ ec∗
33

4

3h2
c

(β′′
c + w′′′) = 0

Conditions (13) show that �2 is only coupled to the axial
strain of the core, while �3 is coupled to bending, shear and
higher-order strains. If a linear approximation for uc is consid-
ered, (14) yields �2 = 0. On the other hand, as long as there
is shear strain in the core, a cubic electric potential is induced
through �3, as shown in (13). Also, in case of a cubic approxima-
tion for w, conditions (14) require a quadratic approximation for
βc and �3. This justifies the choice of a cubic through-thickness
electric potential. Although conditions (14) allow the evaluation
of the electric potential in the core from the mechanical variables
uc, βc and w, let us assume for now that it is arbitrary as in (9)
but with �2 = 0. This leads to the following electric potential

�(x, z) = �m + z

hc
Vc +

(
z2

h2
c

− 1

4

)
z

hc
�3(x) (15)

and hence to the following axial and transverse electrical fields
(as in (10) but with �2 = 0)

E1c = −
(

z2

h2
c

− 1

4

)
z

hc
� ′

3, E3c = − Vc

hc
−

(
3z2

h2
c

− 1

4

)
�3

hc

(16)

From Eqs. (6) and (16), it is clear that the electric model
independent variables are Vk j , Vc and �3.
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2.4. Piezoelectric Variational Formulation
A variational formulation may be written using the virtual

work principle extended to the piezoelectric media

δW − δH = 0; ∀δuc, δβc, δw, δVk j , δVc, δ�3 (17)

where δH and δW are the virtual works of electromechanical
internal and applied mechanical forces, respectively.

The virtual work done by the electromechanical internal
forces in the layered piezoelectric faces sandwich beam is

δH = δHc +
b∑

k=a

n,m∑
j=1

δHk j (18)

where,

δHk j =
∫

�k j

(σ1k j δε1k − D3k j δE3k j )d�k j

δHc =
∫

�c

(σ1cδε1c + σ5cδε5c − D1cδE1c − D3cδE3c)d�c

�k j and �c are the volume of the k j -th sub-layer and the core,
respectively.

Using strain definitions (3), constitutive Eqs. (4) and (5), and
electrical field relations (6) and (16), then integrating through
thickness, the above equations for the k j -th face sub-layer and
core become

δHk j =
∫ L

0

[
c

k j ∗
11

(
Ak j δεm

k εm
k + Ī k j δεm

k εb
k + Ī k j δεb

kε
m
k

+ Ik j δεb
kε

b
k

) + e
k j ∗
31

(
Ak j δεm

k + Ī k j δεb
k

) Vk j

hk j

+ e
k j ∗
31

δVk j

hk j

(
Ak j ε

m
k + Ī k j ε

b
k

) − ε
k j ∗
33 Ak j

δVk j

hk j

Vk j

hk j

]
dx

(19)

δHc =
∫ L

0

{
δεm

c cc∗
33 Acε

m
c

+ δεb
c

[
cc∗

33 Ic

(
εb

c − 1

5
εh

c

)
− ec∗

33
2 Ī c

3

� ′
3

h3
c

]

+ δεh
c

[
cc∗

33 Ic

(
−1

5
εb

c + 1

21
εh

c

)
+ ec∗

33
2 Ī c

21

� ′
3

h3
c

]

+ δεs
c

[
8

15
cc

55 Acε
s
c + ec

15

(
2Ac

3

Vc

hc
− 4Ic

5

�3

h3
c

)]

+ δVc

hc

[
ec

15
2Ac

3
εs

c − εc
11 Ac

Vc

hc

]

+ δ� ′
3

h3
c

[
ec∗

33

(
−2 Ī c

3
εb

c + 2 Ī c

21
εh

c

)
− εc∗

33
8 ¯̄I c

15

� ′
3

h3
c

]

− δ�3

h3
c

[
ec

15
4Ic

5
εs

c + 4εc
11 Ī c

�3

h3
c

]}
dx (20)

Ak j , Ī k j and Ik j are, respectively, the area and the first and sec-
ond moments of area of the k j -th face sub-layer cross section,
defined as

[Ak j , Ī k j , Ik j ] =
∫ b/2

−b/2

∫ zk j +hk j /2

zk j −hk j /2
[1, (z − zk), (z − zk)2]dz dy

(21)

where the local z-axis of the k j -th sub-layer is situated at

zk j = ±hk j + hc

2
±

j−1∑
r=1

hkr ; k = a(+), b(−) (22)

For the core, Ac, Ic, Ī c and ¯̄I c are, respectively, the area and the
second, fourth and sixth moments of area of its cross section,
defined as

[
Ac, Ic, Ī c,

¯̄I c
] =

∫ b/2

−b/2

∫ hc/2

−hc/2
[1, z2, z4, z6] dz dy (23)

One may notice from (20) that Vc is coupled to the core shear
strain only. This term may be interpreted as the virtual work
done by shearing moments 2Acec

15Vc/3hc induced by the ap-
plied voltage Vc. Its dual is the generalized shear strain εs

c,
which is also the shear angle of the core. That is, only shear
strain is induced by an axially constant applied difference of
electric potential. Notice, however, that although the differ-
ence of potential Vc is constant in axial direction, the induced
electrical field is not, due to the contribution of the variable
�3.

The beam is subjected to surface axial and transversal forces
at the boundaries of each face sub-layer (F

k j
x ,F

k j
z ) and core

(Fc
x ,Fc

z ), and to body ones ( f
k j
x , f

k j
z , f c

x , f c
z ). Their virtual work

on the beam can be written as

δW =
c∑

i=a

δWi (24)

where

δWk =
n,m∑
j=1

{[ ∫
Ak j

(
F

k j
x δŭk + F

k j
z δw

)
dAk j

]L

0

+
∫

�k j

(
f

k j
x δŭk + f

k j
z δw

)
d�k j

}

δWc =
[ ∫

Ac

(
Fc

x δŭc + Fc
z δw

)
dAc

]L

0

+
∫

�c

(
f c
x δŭc + f c

z δw
)
d�c
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Using displacement expressions (2), one may write the previous
equations for the k-th face and the core, as

δWk =
[

Nkδuc ± Nkhc

3
δβc − (Mk ± Nkdk)δw′ + Qkδw

]L

0

+
∫ L

0

(
nkδuc ± nkhc

3
δβc − (mk ± nkdk)δw′ + qkδw

)
dx ;

k = a(+), b(−) (25)

δWc = [δuc Nc + δβc Mc − δw′ Pc + δwQc]L
0

+
∫ L

0
(δucnc + δβcmc − δw′ pc + δwqc)dx (26)

where the, boundary and distributed, normal, moment and shear
resultants are defined as

Nk =
∑

j

Nk j ; Mk =
∑

j

Mk j ; Qk =
∑

j

Qk j

(27)
nk =

∑
j

nk j ; mk =
∑

j

mk j ; qk =
∑

j

qk j

with

Nk j =
∫

F
k j
x dAk j ; Mk j =

∫
F

k j
x (z − zk)dAk j

Qk j =
∫

F
k j
z dAk j

nk j =
∫

f
k j
x dAk j ; mk j =

∫
f

k j
x (z − zk)dAk j

qk j =
∫

f
k j
z dAk j

Nc =
∫

Fc
x dAc; Mc =

∫
Fc

x

(
z − 4z3

3h2
c

)
dAc

Pc =
∫

Fc
x

4z3

3h2
c

dAc; Qc =
∫

Fc
z dAc

nc =
∫

f c
x dAc; mc =

∫
f c
x

(
z − 4z3

3h2
c

)
dAc

pc =
∫

f c
x

4z3

3h2
c

dAc; qc =
∫

f c
z dAc

Notice that a difference between the axial forces F
k j
x and f

k j
x

( j = 1, . . . , (n, m)) on each sub-layer of face k may induce
bending moments Mk and mk , due to the membrane-bending
coupling caused by the first moment of area Ī k j . Notice also
that when the axial forces Fc

x and f c
x applied in the core are

asymmetric through thickness, they induce bending moments
Mc and mc and shear moments Pc and pc. The latter are
due to the higher-order terms considered in the displacement
fields.

3. THIRD-ORDER PIEZOELECTRIC FINITE
ELEMENT MODEL
Using the expressions of virtual works in the variational

formulation, a finite element model for the piezoelectric sand-
wich/multilayer beam is developed. Lagrange linear shape func-
tions are assumed for the axial displacement of the core, uc. The
electrical difference of potentials Vk j of the l and p piezoelec-
tric sub-layers of the faces a and b, respectively, and Vc of the
piezoelectric core, are considered to be constant in the element.
A quadratic shape function is assumed for the section rotation
of the core βc, to avoid shear locking, and for the third-order
coefficient �3 in the core electric potential, to respect the electro-
static equilibrium conditions (13). For the transverse deflection
w, Hermite cubic shape functions are assumed. Hence, the el-
ementary degrees of freedom (dof) column vector q̂ is defined
as

q̂ = col
(

u(1)
c , w(1), w′(1), β(1)

c , �
(1)
3 , u(2)

c , w(2), w′(2), β(2)
c , �

(2)
3 ,

β(0)
c , V (0)

a1
, . . . , V (0)

al
, V (0)

b1
, . . . , V (0)

bp
, V (0)

c , �
(0)
3

)
(28)

where the ˆ will be used to define elementary quantities. Using
this definition in the relations (19) and (20), the discretized vir-
tual works of the elementary electromechanical internal forces
of the face sub-layers δĤ k j and the core δĤ c are

δĤ k j = δq̂t
(
K̂k j m − K̂k j me − K̂t

k j me + K̂k j e
)
q̂ = δq̂t K̂k j q̂

(29)
δĤ c = δq̂t

(
K̂cm − K̂cme − K̂t

cme + K̂ce
)
q̂ = δq̂t K̂cq̂

where the elementary mechanical K̂k j m , piezoelectric K̂k j me and
dielectric K̂k j e stiffness matrices of k j -th sub-layer of the faces
are

K̂k j m =
∫ Le

0
c

k j ∗
11

[
Ak j B

t
kmBkm + Ī k j

(
Bt

kmBkb + Bt
kbBkm

)
+ Ik j B

t
kbBkb

]
dx

(30)
K̂k j me = −

∫ Le

0
e

k j ∗
31

1

hk j

(
Ak j B

t
km + Ī k j B

t
kb

)
Npk j dx

K̂k j e = −
∫ Le

0
ε

k j ∗
33

Ak j

h2
k j

Nt
pk j Npk j dx

Le is the element length. Bkm and Bkb are the membrane (m) and
bending (b) strain operators of the faces. Npk j is the interpolation
matrix used for the difference of electric potential Vk j in the faces
sub-layers.



MODELLING SMART BEAMS WITH EMBEDDED SHEAR-MODE PIEZOCERAMICS 363

The elementary stiffness matrices of the core K̂cm , K̂cme and
K̂ce are written as

K̂cm =
∫ Le

0

{
cc∗

33

[
AcBt

cmBcm + IcBt
cbBcb

− Ic

5

(
Bt

cbBch + Bt
chBcb

) + Ic

21
Bt

chBch

]

+ 8

15
cc

55 AcBt
csBcs

}
dx

K̂cme = −
∫ Le

0

{
ec∗

33

(
−2 Ī c

3h3
c

Bt
cbN′

�3 + 2 Ī c

21h3
c

Bt
chN′

�3

)

+ ec
15Bt

cs

(
2Ac

3hc
NV c − 4Ic

5h3
c

N�3

)}
dx

K̂ce = −
∫ Le

0

{
εc∗

33
8 ¯̄I c

15h6
c

N′
�3

t N′
�3

+ εc
11

(
Ac

h2
c

Nt
V cNV c + 4 Ī c

h6
c

Nt
�3N�3

)}
dx (31)

where Bcm , Bcb, Bch and Bcs are the membrane (m), bending (b),
higher-order (h) and shear (s) strain operators. Notice that bend-
ing and higher-order strains of the core are coupled. The piezo-
electric stiffness is composed of terms coupling shear strains
with the electric variables Vc and �3 and terms coupling the
derivative � ′

3 with bending and higher-order strains. The latter
are due to the axial component of the electrical field. The electric
variables Vc and �3 are interpolated by the operators NV c and
N�3.

The elementary virtual work of distributed applied mechan-
ical forces may be written as

δŴ = δq̂T F̂m (32)

where F̂m defines the vector of generalized distributed mechan-
ical nodal forces obtained from (25) and (26),

F̂m =
∫ Le

0

[
Nt

ax na + Nt
bx nb + Nt

cx nc + Nt
az(qa + qb + qc)

−Nt
ar (ma + mb) + Nt

cr mc − Nt
cs pc

]
dx (33)

Ni x , Nz , Nir and Ncs are the translation in x and z directions, ro-
tation and shear interpolation matrices. The point forces contri-
butions in (25) and (26) can be added a posteriori to the matricial
system.

Using discretized expressions, one may obtain the elemen-
tary electromechanical internal forces virtual work of the sand-
wich/multilayer beam. Then, substituting the expressions of el-
ementary discretized virtual works in (17), the discretized vari-
ational formulation for an element is written as

(K̂ f + K̂c)q̂ = F̂m (34)

where K̂ f = ∑
k

∑
j K̂k j . Notice that electric dofs may be elim-

inated from the dofs vector through a static condensation. Since
there are elemental (V (0)

a j
, V (0)

b j
, V (0)

c and �
(0)
3 ) and nodal (� (1)

3
and �

(2)
3 ) electric dofs, the static condensation will be obtained

in two steps. First, the unknown elemental electric dofs are con-
densed at the element level; then, after assembling, the nodal
electric dofs are condensed at the global level. Notice that the
static condensation at the element level may also be used to
eliminate the internal mechanical dof β(0)

c .
Therefore, let us decompose the electric dofs in prescribed

elemental ones q̂a , corresponding to the difference of poten-
tials (V (0)

a j
, V (0)

b j
, V (0)

c ) applied to an actuator; unknown ele-
mental ones q̂s , corresponding to the difference of potentials
(V (0)

a j
, V (0)

b j
, V (0)

c ) induced in a sensor and the unknown �
(0)
3 for

the piezoelectric core; and nodal ones q̂e, corresponding to the
unknown �

(1)
3 and �

(2)
3 for the core. Notice that even for an ac-

tuator in the core, for which V (0)
c is known and prescribed, the

third-order variable �3 is unknown, that is �
(1)
3 , �

(2)
3 and �

(0)
3 ,

since the applied difference of potential only determines �+ and
�−, that is Vc. The mechanical dofs vector is also decomposed
into the nodal q̂m and elemental q̂mc ones.

For the sake of clarity, the mechanical q̂mc and electrical q̂s

elemental dofs to be condensed are assembled to form the vector
q̂c = col (q̂mc, q̂s) of dofs to be condensed at the element level.
Then, the elementary dofs vector q̂ in (28) may be rewritten as
q̂ = col(q̂m, q̂e, q̂c, q̂a). Consequently, Eq. (34) may be decom-
posed in the following form




K̂m −K̂me −K̂mc −K̂ma

K̂ee K̂ec K̂ea

K̂cc K̂ca

sym K̂aa







q̂m

q̂e

q̂c

q̂a


 =




F̂m

0
F̂c

0


 (35)

The differences of potential applied to the actuators q̂a are pre-
scribed, hence their virtual variations δq̂a vanish. Therefore, the
fourth line of Eq. (35) is automatically satisfied and may be
ignored. In addition, the terms in the remaining lines, corre-
sponding to q̂a , can be moved to the right hand side leading,
respectively, to the following equivalent electric load vectors

F̂ma = K̂ma q̂a, F̂ea = −K̂ea q̂a, F̂ca = −K̂ca q̂a (36)

Since the stiffness matrix K̂cc corresponding to the unknown
elemental dofs is non-singular, the third line of (35) can be solved
for q̂c in terms of q̂m and q̂e, leading to

q̂c = K̂−1
cc

(
F̂c + F̂ca + K̂t

mcq̂m − K̂t
ecq̂e

)
(37)

Equation (35) may then be statically condensed by replacing
expressions (36) and (37) in the first and second lines and
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eliminating the solved third and fourth lines,

[
K̂∗

m −K̂∗
me

−K̂∗t
me K̂∗

ee

] {
q̂m

q̂e

}
=

{
F̂m + F̂∗

ma + F̂mc

F̂∗
ea − F̂ec

}
(38)

where the modified stiffness matrices are

K̂∗
m = K̂m − K̂mcK̂−1

cc K̂t
mc K̂∗

me = K̂me − K̂mcK̂−1
cc K̂t

ec

K̂∗
ee = K̂ee − K̂ecK̂−1

cc K̂t
ec (39)

and the generalized forces in the right-hand side are

F̂∗
ma = F̂ma + K̂mcK̂−1

cc F̂ca F̂mc = K̂mcK̂−1
cc F̂c

(40)
F̂∗

ea = F̂ea − K̂ecK̂−1
cc F̂ca F̂ec = K̂ecK̂−1

cc F̂c

This equation allows to solve for the nodal mechanical q̂m and
electrical q̂e dofs, when the beam is subjected to mechanical
forces col(F̂m, F̂c) and/or differences of electric potentials q̂a ,
through the equivalent loads F̂ma and F̂ea . The unknown elemen-
tal mechanical q̂mc and electrical q̂s dofs may then be evaluated
through (37) in a post-processing calculation. One may notice
that the second line of Eq. (38) could also be condensed stat-
ically. However, this must be done after assembling to ensure
continuity of the nodal electrical dofs. Hence, the elementary
system (38) is assembled to get the corresponding global stiff-
ness matrices, K∗

m , K∗
me, K∗

ee, and mechanical and electrical load
vectors, Fm , F∗

ma , Fmc, F∗
ea and Fec, leading to

[
K∗

m −K∗
me

−K∗t
me K∗

ee

] {
qm

qe

}
=

{
Fm + F∗

ma + Fmc

F∗
ea − Fec

}
(41)

The second line of Eq. (41) allows the static condensation of
the assembled vector of nodal electrical dofs, qe. This is achieved
by solving the second line of (41) for qe, leading to

qe = K∗−1
ee

(
K∗t

meqm + F∗
ea − Fec

)
(42)

Then, replacing qe in the first line of (41), it is possible to write
the equilibrium equations for the nodal mechanical dofs qm as

(
K∗

m − K∗
meK∗−1

ee K∗t
me

)
qm = Fm + (

Fmc − K∗
meK∗−1

ee Fec
)

+ (
F∗

ma + K∗
meK∗

ee
−1F∗

ea

)
(43)

FIG. 2. Cantilever sandwich beam with embedded shear piezoceramic material (dimensions in mm and not in scale). (a) Continuous core case, (b) Discontinuous
core case.

The solution of (43) not only leads to faster calculations since
matrices dimensions are lower but also prevents ill-conditioning
problems of solving directly Eq. (41). Therefore, both piezoelec-
tric actuators and sensors can be considered in a closed-loop
analysis. The finite element matrices were obtained through an-
alytic (exact) integration. The choice of a quadratic section rota-
tion βc is coherent with the cubic transverse deflection w, hence
there is no need of a special numerical integration scheme, such
as reduced integration.

4. RESULTS AND COMPARISONS
In this section, the results obtained with the proposed FE

model are compared with the existing analytical and FE results
found in the literature for a sandwich beam with a continuous
piezoceramic core. Then, the proposed model is used to eval-
uate the effects of TSDT and third-order electric potential on
the results of a more realistic case of a small piezoceramic patch
embedded in an elastic core (discontinuous core). For that, let us
consider the shear actuated cantilever beam, presented by Sun
and Zhang [1, 2] and shown in Figure 2, consisting of a cantilever
sandwich beam with length 100 mm and composed of two alu-
minum faces, each with 8 mm thickness, and a 2 mm thickness
foam core. For the continuous core case, a PZT5H piezoceramic
layer covers the entire core (Figure 2a), whereas, for the dis-
continuous core case, a PZT5H piezoceramic patch with length
10 mm is inserted in the core 10 mm away from the clamped
end, replacing the existing foam (Figure 2b). Aluminum prop-
erties are: Young’s modulus Eb = 70.3 GPa and Poisson’s
ratio ν = 0.345. Those of the foam are: Young’s modulus
E f = 35.3 MPa and shear modulus G f = 12.7 MPa; and, for the
PZT5H: c∗

33 = 60.9 GPa, c55 = 23 GPa, piezoelectric coupling
constants e∗

33 = 27.6 C m−2, e15 = 17 C m−2, and dielectric
constants ε11 = 1.503 10−8 F m−1 and ε∗

33 = 1.334 10−8 F m−1.

4.1. Cantilever Sandwich Beam with a Shear
Piezoceramic Actuator Core Layer

First, the sandwich beam with a continuous PZT5H piezo-
ceramic core (Figure 2a) is used as an example to compare the
results found with the present FE model, using 40 elements,
to the analytical results presented by Zhang and Sun [2] and
Aldraihem and Khdeir [6], and to the FE results presented by
Benjeddou et al. [3, 4]. Notice that the analytical results of Zhang
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and Sun [2] were found using an assumption of a linear electric
potential through the piezoceramic core thickness combined to a
classical sandwich beam theory (i.e., Euler-Bernoulli faces and
Timoshenko core). On the other hand, Aldraihem and Khdeir [6]
used an equivalent single layer (ESL) model for the sandwich
beam, for which the shear strain is represented by first-order
(FSDT, i.e., Timoshenko) and third-order (TSDT, Reddy [19])
theories. Although not stated in their text, it appears that Aldrai-
hem and Khdeir [6] also consider a linear through-thickness
electric potential for the piezoceramic core.

In order to bend the beam, a voltage of 20 V is applied between
the top and bottom surfaces of the piezoelectric core. Hence, a
through-thickness electric field is induced, which in turns in-
duces a shear strain, in the piezoelectric core. Figure 3 shows
the resulting deflection of the sandwich beam along its length
evaluated using Zhang and Sun’s analytical sandwich FSDT so-
lution [2], Aldraihem and Khdeir’s analytical ESL TSDT so-
lution [6], Benjeddou et al.’s sandwich FSDT FE model [3, 4]
and the present sandwich TSDT FE model. In addition, Figure
3 also presents the results found when the contributions of �3,
corresponding to the third-order term in the electric potential,
are neglected. Notice that the latter case corresponds to the as-
sumption of a linear through-thickness electric potential in the
core. As already shown in a previous work [3, 4], the FSDT FE
model results match very well the analytical ones presented by
Zhang and Sun [2]. However, as can be observed in Figure 3 and
also in Figure 5a of [6], the ESL TSDT model of Aldraihem and
Khdeir [6] is stiffer than the sandwich FSDT model of Zhang
and Sun [2]. Indeed, the results obtained with the present TSDT
FE model using a linear electric potential also indicate that the
inclusion of variable shear strains may lead to a stiffer model

FIG. 3. Sandwich beam deflection along longitudinal direction. —: FSDT
analytic [2], · · ·: FSDT FE [3, 4], –·–: ESL TSDT analytic [6], - - -: Present
TSDT FE with linear electric potential, – –: Present TSDT FE with cubic electric
potential.

TABLE 1
Tip deflection due to a 20 V voltage applied to the shear

piezoelectric core

Tip deflection (µm)

FSDT analytic [2] 0.1196
FSDT FE [3, 4] 0.1196
ESL TSDT analytic [6] 0.1091
Present TSDT FE, linear electric potential 0.0999
Present TSDT FE, cubic electric potential 0.0879

(Figure 3). It is also shown in Figure 3 that the assumption of a
cubic electric potential for the piezoelectric core leads to an ad-
ditional bending stiffness. This may be explained by the fact that,
even for an applied (prescribed) difference of electric potential
to the upper and lower surfaces of a piezoelectric shear actuator,
there exists another contribution to the electric potential induced
in the piezoelectric material. Then, this third-order induced elec-
tric potential leads to an augmentation of both bending and shear
stiffness of the core. This combined electromechanical coupling
yields an overall stiffer structure, as shown in Figure 3 for the
present TSDT FE with cubic electric potential. For further ref-
erence, the tip deflection obtained by the different models is
presented in Table 1.

4.2. Cantilever Sandwich Beam with an Embedded Shear
Piezoceramic Patch

In this section, the proposed FE model is used to perform
a comparative analysis between FSDT and TSDT solutions for
the more realistic case of a discontinuous piezoceramic core
(Figure 2b). For that, two conditions are studied: 1) an elec-
tric potential of 20 V is applied to the piezoceramic patch, and
2) a transverse mechanical force of 10 N applied to the sand-
wich beam at 3 cm from the clamped end. In both cases, 48
finite elements are used, 10 along the piezoceramic patch and
38 distributed along the rest of the beam. In the first case, a dif-
ference of electric potential V (0)

c is prescribed and the resulting
deflection, shear strains, and electric field are evaluated using
a FSDT FE model, presented in [4, 17], and the present TSDT
FE model with cubic electric potential. In the second case, the
difference of electric potential V (0)

c is unknown and induced by
the beam deformation. In this case, deflection, shear strains, and
electric field are also evaluated. Notice, however, that in both
cases (electrical or mechanical load), the third-order term of the
electric potential in the core is induced and, thus, the electric
field must be evaluated after the beam deformation.

4.2.1. Actuation Behavior
Figure 4 shows the sandwich beam deflection along the lon-

gitudinal direction induced by a difference of potential of 20 V
applied to the piezoceramic core, acting as a piezoelectric shear
actuator. Notice that, as for the continuous case, the TSDT model
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FIG. 4. Sandwich beam deflection along longitudinal direction induced by an
applied voltage to the piezoceramic patch. —: TSDT, - - -: FSDT.

yields a stiffer structure than the FSDT model. This extra stiff-
ness appears to be due to both the third-order strain and the
induced electric potential in the piezoelectric core.

As explained previously, although an electric difference of
potential is applied at the upper and lower surfaces of the
piezoelectric actuator and, thus, the electric potentials at the
surfaces are completely defined, the resulting deformation of
the piezoelectric material leads also to an induced potential.
Hence, the electric field shall be variable along the core thick-
ness. As shown in Figure 5, only the TSDT model is able to
represent the through-thickness variation of the electric field.
Analysis of TSDT model results (Figure 5) also shows that
the electric field is stronger at the piezoelectric core surfaces

FIG. 5. Electric field Ez in the core along longitudinal and thickness direc-
tions, for electrical load, using TSDT (solid line) and FSDT (dashed line).

TABLE 2
Mechanical and electrical quantities induced by a 20 V voltage

applied to the shear piezoelectric patch

Tip
deflection

(µm)

Maximum shear
strain in the core

(µm/m)

Electric
field Ez
(V/mm)

FSDT 0.0945 7.2949 10
TSDT 0.0676 8.0370 6.94–16.11

and smaller near its center. This effect may explain the smaller
actuation performance of the shear actuator shown in Figure
4 and Table 2, since the actual electrical field applied to the
shear actuator is smaller where the shear strain is expected to be
maximum.

The shear strains induced in the core due to the applied volt-
age are shown in Figures 6 and 7, using FSDT and TSDT mod-
els respectively. As expected, both models yield similar shear
strain behavior along the longitudinal direction. However, only
the TSDT model is able to represent the quadratic variation of
shear strains in the thickness direction. Moreover, Table 2 shows
that the maximum shear strain in the core for the TSDT model
(at x = 17 mm and z = 0 mm) is higher than that for the
FSDT model (at x = 18 mm, constant in z). Notice that, for
the TSDT model, the shear strains vanish at the piezoelectric
core upper and lower surfaces. Hence, this leads also to a con-
tinuity of shear strains between the sandwich beam core and
faces, since the faces were assumed not to present shear strains
(Euler-Bernoulli hypotheses). This effect may also explain the
smaller deflection of the sandwich beam (Figure 4) when using
the TSDT model, since the equivalent forces actuating the beam
faces depend on the shear stress at the interfaces, which vanish
for the TSDT model.

FIG. 6. Shear strain in the core along longitudinal and thickness directions,
for electrical load, using FSDT.
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FIG. 7. Shear strain in the core along longitudinal and thickness directions,
for electrical load, using TSDT.

4.2.2. Sensing Behavior
It is also worthwhile to evaluate the sensor aspect of the piezo-

electric material. This is done here through the evaluation of the
deformation and electric potential induced in the piezoceramic
core when a mechanical transversal force of 10 N is applied to the
sandwich beam at 3 cm from the clamped end, using FSDT and
TSDT models. This mechanical force is expected to induce large
shear strain variations near the piezoceramic patch. Notice that,
in this case, both linear and cubic parts of the electric potential,
that is Vc and �3, are induced by the mechanical deformation
of the piezoelectric core. However, due to the electromechanical
coupling between electrical and mechanical variables, Vc with
εs

c, and �3 with εb
c , εh

c and εs
c, the induced electric potential also

leads to a stiffening of the piezoelectric core (both in shear and
bending). Figure 8 shows the sandwich beam deflection along the
longitudinal direction induced by the applied transversal force
evaluated using FSDT and TSDT models, with and without in-
duced potential. As for the applied voltage case, here the TSDT
model also leads to smaller deflections than FSDT model, due
to a stiffening of the structure (see also Table 3). It can also

TABLE 3
Deflection and strain induced by a 10 N transversal force

applied to the sandwich beam at 3 cm from the clamped end

Tip deflection
(µm)

Maximum shear
strain in the core

(µm/m)

FSDT without induced
potential

0.6592 —

TSDT without induced
potential

0.6402 —

FSDT 0.6322 18.4884
TSDT 0.6167 26.4054

FIG. 8. Sandwich beam deflection along longitudinal direction induced by
an applied transversal force. - - -: FSDT without induced potential, –·–: TSDT
without induced potential, – –: FSDT, —: TSDT.

be observed from Figure 8 that the induced potential (Vc for
FSDT, and Vc and �3 for TSDT) does increase the stiffness of
the piezoelectric core.

It is also worthwhile to analyze the shear strains induced by
the applied mechanical load. Figure 9 shows shear strains in the
core neutral line along longitudinal direction, evaluated using
FSDT and TSDT models. It can be observed that the longitudinal
variation of the shear strain is quite similar for FSDT and TSDT.
Although not shown in the figure, for the through-thickness
behavior the expected constant, for FSDT, and quadratic, for

FIG. 9. Shear strain in the core neutral line along longitudinal direction in-
duced by an applied transversal force, using FSDT (dashed line) and TSDT
(solid line).
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FIG. 10. Electric potential in the core along longitudinal and thickness direc-
tions, for mechanical load, using FSDT.

TSDT, shear strains were observed. Notice that although the
overall deflection of the sandwich beam is smaller when evalu-
ated using the TSDT model (Figure 8), the shear strains in the
elastic/piezoelectric core are larger (Figure 9 and Table 3).

Figures 10 and 11 show the electric potential in the core
along longitudinal and thickness directions induced by the sand-
wich beam deformation, using FSDT and TSDT models. It indi-
cates quite similar results for the electric potential, excepted for
the through-thickness nonlinear behavior present only in TSDT
model. Although, the third-order term of the electric potential
appears to have little effect on the electric potential, it does affect
the mechanical response due to the electromechanical coupling
between �3 and bending, shear and third-order core strains, as
observed in Figure 8.

FIG. 11. Electric potential in the core along longitudinal and thickness direc-
tions, for mechanical load, using TSDT.

5. CONCLUSIONS AND PERSPECTIVES
A higher-order sandwich beam electromechanical model

based on a refinement of CST, where the core is modelled with
a TSDT, was proposed. It was shown that the electromechani-
cal coupling with the higher-order strains requires a third-order
through-thickness approximation for the electric potential. Us-
ing these assumptions, a FE model was developed and, then,
compared with analytical and numerical CST and analytical ESL
models for a continuous piezoceramic core. It was shown that
even when acting as an actuator, there exists a third-order in-
duced potential in the piezoceramic material which may yield
an overall stiffer structure. A comparison between FSDT and
TSDT FE results for piezoceramic sensor and actuator embed-
ded in an elastic core was also performed to evaluate the elec-
trical and mechanical model refinement. For the actuator case,
analysis of TSDT model results has shown that the electric field
is stronger at the piezoelectric core surfaces and smaller near
its center. It was also observed that the vanishing shear strains
at the piezoelectric core upper and lower surfaces, for TSDT
model, may also explain the smaller deflection of the sandwich
beam, since the equivalent forces actuating the beam faces de-
pend on the shear stress at the interfaces. For the sensor case,
it was shown that although the overall deflection of the sand-
wich beam induced by a mechanical transversal force is smaller
when evaluated using the TSDT model, the shear strains in the
elastic/piezoelectric core are larger. Also, although the third-
order term of the electric potential appears to have little ef-
fect on the electric potential, it does affect the mechanical re-
sponse due to its electromechanical coupling with bending, shear
and third-order core strains. Notice that the proposed model is
limited to extension and bending vibrations of straight beams
with rectangular cross section. Extension to torsional vibrations
and more general cross sections can be considered as a future
work.

Research on the extension of the present FE model to al-
low dynamic analyses of sandwich beams with embedded shear
piezoceramic sensors and actuators is being conducted. There-
fore, it is expected that the comparison with recently published
experimental results for the vibration of a cantilever sandwich
beam with embedded shear piezoceramic patches [20] will al-
low a better evaluation of the effectiveness of the present model.
The development of a new FE model allowing a non null shear
stress at the interfaces is also being conducted.
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