Chapter 12 Unit Test - Quadratic Functions

Name \qquad Section \qquad
Be sure to show all your work and circle your answer.
Solve the following using the square root property:

1) $2 x^{2}-5=0$
2) $(3 x-4)^{2}+7=-29$

Solve the following by completing the square:
3) $x^{2}-12 x-3=0$
4) $2 x^{2}-x=10$

Solve the following using the quadratic formula:
5) $3 x^{2}+7 x=6$
6) $2 x^{2}=4(3 x-5)$

Solve the following:

7) $125 x^{3}+64=0$
8) $2 \sqrt[3]{\mathrm{x}^{2}}-\sqrt[3]{\mathrm{x}}=3$
9) $\left(x^{2}+4\right)^{2}-4\left(x^{2}+4\right)-5=0$
10) $S=v t-0.5 \mathrm{gt}^{2}$ for $t(t \geq 0)$

Use the discriminant to determine the number and type of solutions:
11) $-4 x^{2}+4.3 \mathrm{x}-11=0 \quad$ 12) $3 \mathrm{x}^{2}-5 \mathrm{x}-17=0$

Find the vertex, the axis of symmetry, \& sketch the graph of the following:
13) $y=-(x-1)^{2}+4$
14) $y=2 x^{2}+8 x+5$

Find the intercepts of the following:
15) $f(x)=x^{2}-8 x+5$

Solve the following

16) The total cost function for Mr. McBee's Bubble Gum is given by $C(x)=2 x^{2}-12 x+25$, where x is the number of pounds of bubble gum produced and $C(x)$ is the cost in dollars. How many pounds of bubble gum should be produced to minimize the cost? What is the minimum cost?

Answers

1) $\left\{-\frac{\sqrt{10}}{2}, \frac{\sqrt{10}}{2}\right\} \quad$ 2) $\left\{\frac{4-6 i}{3}, \frac{4+6 i}{3}\right\} \quad$ 3) $\{6-\sqrt{39}, 6+\sqrt{39}\}$
2) $\{-2,2.5\}$
3) $\left\{-3, \frac{2}{3}\right\}$
4) $\{3-i, 3+i\}$
5) $\left\{-\frac{4}{5}, \frac{2-2 i \sqrt{3}}{5}, \frac{2+2 i \sqrt{3}}{5}\right\}$
6) $\left\{-\frac{27}{8}, 1\right\}$
7) $\{-i \sqrt{5}, i \sqrt{5},-1,1\}$
8) $t=\frac{v+\sqrt{v^{2}+2 g s}}{g}$
9) Two non-real complex conjugates
10) Two irrational real numbers
11) Vertex: $(1,4)$

Axis of symmetry: $x=1$

14) Vertex: $(-2,-3)$

Axis of symmetry: $x=-2$

15) y-int: $(0,5) \quad x$-int(s): $(4-\sqrt{11}, 0) \&(4+\sqrt{11}, 0)$
16) Three pounds of gum should be produced to minimize the cost. The minimum cost is $\$ 7$.

