Section 2.4 - Differentiation Using Limits

Objective a: Defining the derivative
Recall our discussion on finding the average rate of change between two points on a curve. We drew the secant line and calculated the slope of that line. We then modified the formula for the slope to get the difference quotient:

The slope of the secant line is $m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$ (The symbol delta, Δ, means "change in"). Let $h=x_{2}-x_{1}$ and let $x=x_{1}$. Then $x_{2}=x_{1}+h=x+h$. Plugging into m, we get:

$$
m=\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f(x+h)-f(x)}{h} .
$$

The quotient, $\frac{f(x+h)-f(x)}{h}$, is called the difference quotient.
Keep in mind that this is another formula for the slope of the line between two points on the curve.

Ex. 1 Given that $f(x)=x^{2}$, find the difference quotient when
a) $x=2$ and $h=0.1$.
b) $x=2$ and $h=0.01$.
c) $x=2$ and $h=0.001$.
d) $x=2$ and $h \rightarrow 0$

Solution:
a) $\quad \frac{f(x+h)-f(x)}{h}=\frac{f(2+0.1)-f(2)}{0.1}=\frac{f(2.1)-f(2)}{0.1}=\frac{(2.1)^{2}-(2)^{2}}{0.1}$
$=\frac{4.41-4}{0.1}=\frac{0.41}{0.1}=4.1$. So, the slope of the line or the average rate of change is 4.1.
b) $\quad \frac{f(x+h)-f(x)}{h}=\frac{f(2+0.01)-f(2)}{0.01}=\frac{f(2.01)-f(2)}{0.01}=\frac{(2.01)^{2}-(2)^{2}}{0.01}$
$=\frac{4.0401-4}{0.01}=\frac{0.0401}{0.01}=4.01$. So, the slope of the line or the average rate of change is 4.01 .
c) $\quad \frac{f(x+h)-f(x)}{h}=\frac{f(2+0.001)-f(2)}{0.001}=\frac{f(2.001)-f(2)}{0.001}$
$=\frac{(2.001)^{2}-(2)^{2}}{0.001}=\frac{4.004001-4}{0.001}=\frac{0.004001}{0.001}=4.001$. So,
the slope of the line or the average rate of change is 4.001 .
d) $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$. But $f(2+h)$
$=(2+h)^{2}=4+4 h+h^{2}$ and $f(2)=(2)^{2}=4$. So,
$\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{4+4 h+h^{2}-4}{h}=\lim _{h \rightarrow 0} \frac{4 h+h^{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{h(4+h)}{h}=\lim _{h \rightarrow 0} 4+h=4+(0)=4$. This is the
instantaneous rate of change of f at $x=2$. This is the slope of the tangent line at $x=2$.

$m=\frac{f(x+h)-f(x)}{h}$ corresponds to the average rate of change. For example, if you traveled 171 miles in 3 hours, your average speed was $\frac{171}{3}=51 \mathrm{mph}$. This would be your average rate of change. $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ corresponds to the instantaneous rate of change. It is as if you took a picture of your speedometer. The reading on the speedometer tells you how fast you are going at a particular moment. This is your instantaneous rate of change.

We call this instantaneous rate of change the derivative of the function f with respect to x. We denote this as $f^{\prime}(x)$ ("f prime of x "), y ' ("y prime"), $\frac{d y}{d x}$ ("dee y dee x "), or $\frac{d f}{d x}$ ("dee f dee x "). Hence, we can make the following definition:
Definition: The derivative of the function f with respect to x is:

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Objective b: Applying the definition of the derivative.
Ex. 2 For the following function, compute $\mathrm{f}^{\prime}(\mathrm{x})$

$$
f(x)=x^{2}
$$

Solution:

$$
f(x+h)=(x+h)^{2}=x^{2}+2 x h+h^{2} \text { and } f(x)=x^{2} .
$$

Thus, $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h=2 x+0=2 x . \text { Thus. } f^{\prime}(x)=2 x .
\end{aligned}
$$

Ex. 3 For the following function, compute $\mathrm{f}^{\prime}(\mathrm{x})$ and find the equation of the tangent line at the given value of x.
$f(x)=x^{3}-1 ; x=2$
Solution:

$$
\begin{aligned}
& f(x+h)=(x+h)^{3}-1=x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-1 \text { and } \\
& f(x)=x^{3}-1 \text {. Thus, } f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-1-\left(x^{3}-1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-1-x^{3}+1}{h}=\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}\right)}{h}=\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}=3 x^{2}+0+0 \\
& =3 x^{2} \text {. Thus, } f^{\prime}(x)=3 x^{2} . \\
& \text { When } x=2 \text {, then } m=f^{\prime}(2)=3(2)^{2}=12 \text { and } \\
& f(2)=(2)^{3}-1=8-1=7 .
\end{aligned}
$$

Using the point-slope formula, we can find the equation of the tangent line:

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-7=12(x-2) \\
& y-7=12 x-24 \\
& y=12 x-17 .
\end{aligned}
$$

Ex. 4 For the following function, compute $\mathrm{f}^{\prime}(\mathrm{p})$ and find the equation of the tangent line at the given value of p.

$$
f(p)=\frac{1}{\sqrt{p}} ; p=9 \text { where } p \geq 0
$$

Solution:

$$
\begin{aligned}
& f^{\prime}(p)=\lim _{h \rightarrow 0} \frac{f(p+h)-f(p)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{p+h}}-\frac{1}{\sqrt{p}}}{h} \\
& =\lim _{h \rightarrow 0}\left[\left(\frac{1}{\sqrt{p+h}}-\frac{1}{\sqrt{p}}\right) \div h\right] \\
& =\lim _{h \rightarrow 0}\left[\left(\frac{1}{\sqrt{p+h}} \bullet \frac{\sqrt{p}}{\sqrt{p}}-\frac{1}{\sqrt{p}} \bullet \frac{\sqrt{p+h}}{\sqrt{p+h}}\right) \bullet \frac{1}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\left(\frac{\sqrt{p}-\sqrt{p+h}}{\sqrt{p} \sqrt{p+h}}\right) \bullet \frac{1}{h}\right] \text { Here, we will need to }
\end{aligned}
$$

rationalize the numerator by multiplying top and bottom

$$
\operatorname{by}(\sqrt{p}+\sqrt{p+h})
$$

$$
=\lim _{h \rightarrow 0}\left[\left(\frac{\sqrt{p}-\sqrt{p+h}}{\sqrt{p} \sqrt{p+h}} \bullet \frac{(\sqrt{p}+\sqrt{p+h})}{(\sqrt{p}+\sqrt{p+h})}\right) \bullet \frac{1}{h}\right]
$$

$$
=\lim _{h \rightarrow 0}\left[\left(\frac{(\sqrt{p})^{2}-(\sqrt{p+h})^{2}}{\sqrt{p} \sqrt{p+h}(\sqrt{p}+\sqrt{p+h})}\right) \cdot \frac{1}{h}\right]
$$

$$
=\lim _{h \rightarrow 0}\left[\left(\frac{(p)-(p+h)}{\sqrt{p} \sqrt{p+h}(\sqrt{p}+\sqrt{p+h})}\right) \cdot \frac{1}{h}\right]
$$

$$
=\lim _{h \rightarrow 0}\left[\left(\frac{-h}{\sqrt{p} \sqrt{p+h}(\sqrt{p}+\sqrt{p+h})}\right) \cdot \frac{1}{h}\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{-1}{\sqrt{p} \sqrt{p+h}(\sqrt{p}+\sqrt{p+h})}=\frac{-1}{\sqrt{p} \sqrt{p+(0)}(\sqrt{p}+\sqrt{p+(0)})}
$$

$$
=\frac{-1}{\sqrt{p} \sqrt{p}(\sqrt{p}+\sqrt{p})}=\frac{-1}{p(2 \sqrt{p})}=\frac{-1}{2 p \sqrt{p}} \text {. Thus, } f^{\prime}(p)=\frac{-1}{2 p \sqrt{p}} \text {. }
$$

$$
\text { When } \mathrm{p}=9 \text {, then } \mathrm{m}=\mathrm{f}^{\prime}(9)=\frac{-1}{2(9) \sqrt{(9)}}=\frac{-1}{54} \text { and }
$$

$$
y=f(9)=\frac{1}{\sqrt{(9)}}=\frac{1}{3}
$$

Using the point-slope formula, we can find the equation of the tangent line:

$$
\begin{aligned}
& y-y_{1}=m\left(p-p_{1}\right) \\
& y-\frac{1}{3}=\frac{-1}{54}(p-9) \\
& y-\frac{1}{3}=\frac{-1}{54} p+\frac{1}{6} \\
& y=\frac{-1}{54} p+\frac{1}{2} .
\end{aligned}
$$

Objective c: Understanding differentiability.
Definition: A function f is differentiable at a point ($c, f(c)$) if $f^{\prime}(c)$ exists (in other words, $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists at $x=c$).

Property: If a function is differentiable at $\mathrm{x}=\mathrm{c}$, then it is continuous at $\mathrm{x}=\mathrm{c}$.
The converse is not true. Consider the following example: Suppose $f(x)=|x|$. The graph of f looks like:

Ex. 5 y

Since there are no "breaks" or "holes" in the graph, f is continuous for all real numbers. But, the derivative does not exist at $x=0$ since
$\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{|h|-|0|}{h}=\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=1$ and
$\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{|h|-|0|}{h}=\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=-1$.
Typically, a function is not differentiable at $\mathrm{x}=\mathrm{c}$ if

1) It is not continuous at $x=c$.

Or
2) It has a "sharp point" or a "sharp corner" at $x=c$.

Or
3) It has a vertical tangent line at $x=c$.

Ex. 6 Consider the following graphs:
a)

b)

C

In a) and b), the function is not differentiable at $x=c$ since the graph has a sharp point or corner at $\mathrm{x}=\mathrm{c}$.
c)

In c) and d), the function is not differentiable at $\mathrm{x}=\mathrm{c}$
since the tangent line is a vertical line. Thus, the slope of the tangent line is undefined.
e)

c

C

In e) and f), the function is not differentiable at $x=c$ since the function is not continuous at $x=c$.

Ex. 7 Consider the following graph of f :

I) At which of the labeled points is f continuous?
II) At which of the labeled points is f differentiable?

Solution:

I) The function f is only continuous at the points a, b, \& d. It is discontinuous at c since $\lim _{x \rightarrow c} f(x) \neq f(c)$. It is discontinuous at e since $f(e)$ is not defined. It is discontinuous at f since $\lim _{x \rightarrow f} f(x)$ does not exist.
II) The function f is only differentiable at the point b. It is not differentiable at c, e, and f since it is not continuous at those points (see part I). It is not differentiable at a since the tangent line is vertical and It is not differentiable at d since the function has a sharp corner at d.

