Section 2.4 – Differentiation Using Limits

Objective a: Defining the derivative

Recall our discussion on finding the average rate of change between two points on a curve. We drew the secant line and calculated the slope of that line. We then modified the formula for the slope to get the difference quotient:

The slope of the secant line is $m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$ (The symbol delta, Δ , means "change in"). Let $h = x_2 - x_1$ and let $x = x_1$. Then $x_2 = x_1 + h = x + h$. Plugging into m, we get: $m = \frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x+h) - f(x)}{h}$.

The quotient, $\frac{f(x+h)-f(x)}{h}$, is called the difference quotient. Keep in mind that this is another formula for the slope of the line between two points on the curve. Ex. 1 Given that $f(x) = x^2$, find the difference quotient when x = 2 and h = 0.1. a) b) x = 2 and h = 0.01. x = 2 and h = 0.001. C) x = 2 and $h \rightarrow 0$ d) Solution: $\frac{f(x+h)-f(x)}{h} = \frac{f(2+0.1)-f(2)}{0.1} = \frac{f(2.1)-f(2)}{0.1} = \frac{(2.1)^2 - (2)^2}{0.1}$ a) $=\frac{4.41-4}{0.1}=\frac{0.41}{0.1}=4.1$. So, the slope of the line or the average rate of change is 4.1. $\frac{f(x+h)-f(x)}{h} = \frac{f(2+0.01)-f(2)}{0.01} = \frac{f(2.01)-f(2)}{0.01} = \frac{(2.01)^2 - (2)^2}{0.01}$ b) $=\frac{4.0401-4}{0.01} = \frac{0.0401}{0.01} = 4.01$. So, the slope of the line or the average rate of change is 4.01. $\frac{f(x+h)-f(x)}{h} = \frac{f(2+0.001)-f(2)}{0.001} = \frac{f(2.001)-f(2)}{0.001}$ C) $= \frac{(2.001)^2 - (2)^2}{0.001} = \frac{4.004001 - 4}{0.001} = \frac{0.004001}{0.001} = 4.001.$ So, the slope of the line or the average rate of change is 4.001. $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}.$ But f(2 + h) d) $= (2 + h)^2 = 4 + 4h + h^2$ and $f(2) = (2)^2 = 4$. So, $\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{4+4h + h^2 - 4}{h} = \lim_{h \to 0} \frac{4h + h^2}{h}$ = $\lim_{h \to 0} \frac{h(4+h)}{h} = \lim_{h \to 0} 4 + h = 4 + (0) = 4$. This is the **instantaneous** rate of change of f at x = 2. This is the slope of the **tangent line** at x = 2. Tangent line. The slope of the tangent line corresponds to the instantaneous rate of f at x = 2.

m = $\frac{f(x+h)-f(x)}{h}$ corresponds to the average rate of change. For example, if you traveled 171 miles in 3 hours, your average speed was $\frac{171}{3}$ = 51 mph. This would be your average rate of change. $\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$ corresponds to the instantaneous rate of change. It is as if you took a picture of your speedometer. The reading on the speedometer tells you how fast you are going at a particular moment. This is your instantaneous rate of change.

We call this instantaneous rate of change **the derivative of the function f with respect to x.** We denote this as f'(x)

("f prime of x"), y ' ("y prime"), $\frac{dy}{dx}$ ("dee y dee x"), or $\frac{df}{dx}$ ("dee f dee x"). Hence, we can make the following definition:

Definition: The derivative of the function f with respect to x is:

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Objective b: Applying the definition of the derivative.

Ex. 2 For the following function, compute f '(x)
f(x) = x²
Solution:
f(x + h) = (x + h)² = x² + 2xh + h² and f(x) = x².
Thus, f '(x) =
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} \frac{h(2x+h)}{h}$
= $\lim_{h \to 0} 2x + h = 2x + 0 = 2x$. Thus. f '(x) = 2x.

Ex. 3 For the following function, compute f '(x) and find the equation of the tangent line at the given value of x.
f(x) = x³ - 1; x = 2
Solution:
f (x + h) = (x + h)³ - 1 = x³ + 3x²h + 3xh² + h³ - 1 and
f (x) = x³ - 1. Thus, f '(x) =
$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$

= $\lim_{h\to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - 1 - (x^3 - 1)}{h}$
= $\lim_{h\to 0} \frac{h(3x^2 + 3xh^2 + h^3 - 1 - x^3 + 1)}{h} = \lim_{h\to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$
= $\lim_{h\to 0} \frac{h(3x^2 + 3xh + h^2)}{h} = \lim_{h\to 0} 3x^2 + 3xh + h^2 = 3x^2 + 0 + 0$
= $3x^2$. Thus, f '(x) = $3x^2$.
When x = 2, then m = f '(2) = $3(2)^2 = 12$ and
f (2) = (2)³ - 1 = 8 - 1 = 7.
Using the point-slope formula, we can find the equation
of the tangent line:
y - y_1 = m(x - x_1)
y - 7 = $12(x - 2)$
y - 7 = $12x - 24$
y = $12x - 17$.

Ex. 4 For the following function, compute f '(p) and find the equation of the tangent line at the given value of p.

f(p) =
$$\frac{1}{\sqrt{p}}$$
; p = 9 where p ≥ 0.
Solution:

$$f'(p) = \lim_{h \to 0} \frac{f(p+h) - f(p)}{h} = \lim_{h \to 0} \frac{\frac{1}{\sqrt{p+h}} - \frac{1}{\sqrt{p}}}{h}$$
$$= \lim_{h \to 0} \left[\left(\frac{1}{\sqrt{p+h}} - \frac{1}{\sqrt{p}} \right) \div h \right]$$
$$= \lim_{h \to 0} \left[\left(\frac{1}{\sqrt{p+h}} \bullet \frac{\sqrt{p}}{\sqrt{p}} - \frac{1}{\sqrt{p}} \bullet \frac{\sqrt{p+h}}{\sqrt{p+h}} \right) \bullet \frac{1}{h} \right]$$
$$= \lim_{h \to 0} \left[\left(\frac{\sqrt{p} - \sqrt{p+h}}{\sqrt{p}\sqrt{p+h}} \right) \bullet \frac{1}{h} \right]$$
 Here, we will need to

rationalize the numerator by multiplying top and bottom
by
$$(\sqrt{p} + \sqrt{p+h})$$
.
= $\lim_{h \to 0} \left[\left(\frac{\sqrt{p} - \sqrt{p+h}}{\sqrt{p} \sqrt{p+h}} \bullet \frac{(\sqrt{p} + \sqrt{p+h})}{(\sqrt{p} + \sqrt{p+h})} \right) \bullet \frac{1}{h} \right]$
= $\lim_{h \to 0} \left[\left(\frac{(\sqrt{p})^2 - (\sqrt{p+h})^2}{\sqrt{p} \sqrt{p+h}(\sqrt{p} + \sqrt{p+h})} \right) \bullet \frac{1}{h} \right]$
= $\lim_{h \to 0} \left[\left(\frac{(p) - (p+h)}{\sqrt{p} \sqrt{p+h}(\sqrt{p} + \sqrt{p+h})} \right) \bullet \frac{1}{h} \right]$
= $\lim_{h \to 0} \left[\left(\frac{-h}{\sqrt{p} \sqrt{p+h}(\sqrt{p} + \sqrt{p+h})} \right) \bullet \frac{1}{h} \right]$
= $\lim_{h \to 0} \frac{-1}{\sqrt{p} \sqrt{p+h}(\sqrt{p} + \sqrt{p+h})} = \frac{-1}{\sqrt{p} \sqrt{p+(0)}(\sqrt{p} + \sqrt{p+(0)})}$
= $\frac{-1}{\sqrt{p} \sqrt{p}(\sqrt{p} + \sqrt{p})} = \frac{-1}{p(2\sqrt{p})} = \frac{-1}{2p\sqrt{p}}$. Thus, f'(p) = $\frac{-1}{2p\sqrt{p}}$.
When p = 9, then m = f'(9) = $\frac{-1}{2(9)\sqrt{(9)}} = \frac{-1}{54}$ and
y = f(9) = $\frac{1}{\sqrt{(9)}} = \frac{1}{3}$.
Using the point-slope formula, we can find the equation of the tangent line:

of the tangent line: $y - y_1 = m(p - p_1)$ $y - \frac{1}{3} = \frac{-1}{54} (p - 9)$ $y - \frac{1}{3} = \frac{-1}{54}p + \frac{1}{6}$ $y = \frac{-1}{54}p + \frac{1}{2}$.

Objective c: Understanding differentiability.

Definition: A function f is differentiable at a point (c, f (c)) if f '(c) exists (in other words, $\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$ exists at x = c).

Property: If a function is differentiable at x = c, then it is continuous at x = c. The converse is not true. Consider the following example: Suppose f (x) = |x|. The graph of f looks like:

Since there are no "breaks" or "holes" in the graph, f is continuous for all real numbers. But, the derivative does not exist at x = 0 since

$$\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^+} \frac{|h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = 1 \text{ and}$$
$$\lim_{h \to 0^-} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^-} \frac{|h| - |0|}{h} = \lim_{h \to 0^-} \frac{|h|}{h} = -1.$$
Typically, a function is not differentiable at x = c if

- 1) It is not continuous at x = c.
- Or
 2) It has a "sharp point" or a "sharp corner" at x = c.
 Or
- 3) It has a vertical tangent line at x = c.
- Ex. 6 Consider the following graphs:

In a) and b), the function is not differentiable at x = c since the graph has a sharp point or corner at x = c.

In c) and d), the function is not differentiable at x = c

since the tangent line is a vertical line. Thus, the slope of the tangent line is undefined.

In e) and f), the function is not differentiable at x = c since the function is not continuous at x = c.

Ex. 7 Consider the following graph of f:

I) At which of the labeled points is f continuous?

II) At which of the labeled points is f differentiable?

Solution:

- I) The function f is only continuous at the points a, b, & d. It is discontinuous at c since $\lim_{x\to c} f(x) \neq f(c)$. It is discontinuous at e since f(e) is not defined. It is discontinuous at f since $\lim_{x\to f} f(x)$ does not exist.
- II) The function f is only differentiable at the point b. It is not differentiable at c, e, and f since it is not continuous at those points (see part I). It is not differentiable at a since the tangent line is vertical and It is not differentiable at d since the function has a sharp corner at d.