Section 2.6 - Instantaneous Rate of Change

Objective a: Understanding applications of instantaneous rates of change.

Recall that the instantaneous rate of change of a function with respect to x is given by the derivative:

$$f'(x) = \frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

In science, the function s(t) is often used to describe the **position** (think distance) of an object moving along a straight line as a function of time t. The function v(t) is used for the **velocity** of the object (think speed) and the function a(t) is used for the **acceleration** (think how fast an object is speeding up or slowing down). The velocity function is the rate of change of position with respect to time, so v(t) = s'(t). Whereas the acceleration function is the rate of change of "speed" with respect to time, so a(t) = v'(t).

- Ex. 1 Given the position function $s(t) = 7t^2 28t + 5$, $t \ge 0$ and t is measured in seconds, find:
 - a) The velocity and acceleration function.

b) Find all the times the object is stationary. <u>Solution:</u>

a)
$$v(t) = s'(t) = \frac{d}{dt}[7t^2 - 28t + 5] = 14t - 28.$$

 $a(t) = v'(t) = \frac{d}{dt}[14t - 28] = 14.$

b) An object is stationary when the velocity is equal to zero. Thus, setting v(t) = 0 and solving yields:

$$14t - 28 = 0$$

 $14t = 28$
 $t = 2$
Hence, at t = 2 seconds, the object is stationary.

- Ex. 2 Given the position function $s(t) = t^4 6t^2 + 8t$, $t \ge 0$ and t is measured in seconds, find:
 - a) The velocity and acceleration function.
 - b) Find all the times the object is stationary.

Solution:

a)
$$v(t) = s'(t) = \frac{d}{dt}[t^4 - 6t^2 + 8t] = 4t^3 - 12t + 8t$$

 $a(t) = v'(t) = \frac{d}{dt}[4t^3 - 12t + 8] = 12t^2 - 12t$

b) An object is stationary when the velocity is equal to zero. Thus, setting v(t) = 0 and solving yields: $4t^3 - 12t + 8 = 0$

$$4(t^3 - 3t + 2) = 0$$

The possible rational zeros are ± 1 and ± 2 . Using synthetic division, we find:

1	1	0	- 3	2	
		1	1	-2	
	1	1	- 2	0	

So, t - 1 is a factor of $4(t^3 - 3t + 2)$ and our problem becomes:

 $4(t - 1)(t^2 + t - 2) = 0$

4(t - 1)(t + 2)(t - 1) = 0

t = 1 or t = -2. But t = -2 is not in the domain of the function since $t \ge 0$. Thus, t = 1 is the only solution. Hence, at t = 1 second, the object is stationary.

Ex. 3 The circular area A, in m², of an oil spill is given by:

- A = πr^2 , where r is the radius of the oil spill in meters.
- a) Find the rate of change of the area with respect to the radius.
- b) Find the rate of change of the area at r = 7 m.

c) What does the answer in part b mean? <u>Solution:</u>

a)
$$\frac{dA}{dr} = \frac{d}{dr}(\pi r^2) = 2\pi r$$

b)
$$\frac{dA}{dr} \Big|_{r=7} = 2\pi(7) = 14\pi \text{ m}^2/\text{m} = 14\pi \text{ m}$$

c) The rate of change of the area of the oil spill is $14\pi \text{ m}^2$ per 1 m of change in the radius.

Ex. 4 The number of new homes sold h (in thousands of homes) in the United States from July, 2004 to July, 2005 can be modeled by:

 $h(t) = \frac{2}{3}t^3 - 13.55245t^2 + 92.016127t + 1036.51049$ where t is the time in months after June of 2004.

- Find the rate of change of the number of new homes sold with respect to time.
- b) Find the rate of change of the number of new homes sold in December, 2004 (t = 6).
- c) What does the answer in part b mean? <u>Solution:</u>

a)
$$h'(t) = \frac{d}{dt} \left(\frac{2}{3}t^3\right) - \frac{d}{dt}(13.55245t^2) + \frac{d}{dt}(92.016127t) + \frac{d}{dt}(1036.51049)$$

- $= 2t^2 27.1049t + 92.016127$
- b) $h'(6) = 2(6)^2 27.1049(6) + 92.016127$ = 72 - 162.6294 + 92.016127 = 1.386727 thousand per month.
- c) Thus, the number of new homes sold was increasing at a rate of ≈ 1387 homes per month in December, 2004

In business and economics, we are interested in examining the cost, the revenue and the profit for a particular commodity. The total cost function C(x) is the total cost of producing x units of a product. The total revenue function R(x) is revenue received from selling x units of a product. The total profit function P(x) = R(x) - C(x) is the total profit from producing and selling x units of a product. The marginal cost, the marginal revenue, and the marginal profit measures the rate of the respective catagories with respect to the number of units produced. In other words:

The **Marginal Cost**, C'(x), is the rate of change of the total cost with respect to the number of x units produced ("the cost to produce one more unit or the $(x + 1)^{st}$ unit") The **Marginal Revenue**, R'(x), is the rate of change of the total revenue with respect to the number of x units sold ("the amount of revenue received from selling one more or the $(x + 1)^{st}$ unit").

The **Marginal Profit**, P'(x), is the rate of change of the total profit with respect to the number of x units produced and sold ("the amount of profit received from producing and selling one more or the $(x + 1)^{st}$ unit"). Since P(x) = R(x) – C(x), then P'(x) = R'(x) – C'(x).

Ex. 5 Let $C(x) = \frac{3}{5}x^2 + 5x + 102$ be the total cost function for

producing x units of a particular commodity and $p(x) = -2x^2 + 3x + 62$ be the price at which all x units are sold.

Solution:

- a) Find the marginal revenue and the marginal cost.
- b) Use the marginal cost to estimate the cost of producing the 4^{th} unit (x = 3).
- c) Use the marginal revenue to estimate the revenue derived from the sale of the 4^{th} unit (x = 3).
- d) Find the marginal profit.
- e) Use the marginal profit to estimate the profit derived from the production and sale of the 4^{th} unit (x = 3).
- f) If the average cost is $\frac{C(x)}{x}$, compute the average cost and the marginal average cost.

Solution:

- a) The total revenue is $x \cdot p(x)$, so $R(x) = x(-2x^2 + 3x + 62) = -2x^3 + 3x^2 + 62x$. Computing the derivative, we get: $R'(x) = \frac{d}{dx}[-2x^3 + 3x^2 + 62x] = -6x^2 + 6x + 62$. Since $C(x) = \frac{3}{5}x^2 + 5x + 102$, then $C'(x) = \frac{d}{dx}[\frac{3}{5}x^2 + 5x + 102] = \frac{6}{5}x + 5$.
- b) To find the cost of producing the 4th unit $((x + 1)^{st}$ unit), we need to evaluate C'(x) at x = 3 units: C'(3) = $\frac{6}{5}(3) + 5 = 3.6 + 5 = \8.60 The cost to produce the 4th unit is about \$8.60.

c) To find the revenue of selling the 4th unit $((x_0 + 1)^{st}$ unit), we need to evaluate R'(x) at x = 3 units: R'(3) = $-6(3)^2 + 6(3) + 62 = -54 + 18 + 62 = 26$. The revenue from selling the 4th unit is about \$26.

d) Since P'(x) = R'(x) – C'(x), then P'(x) =
-
$$6x^2 + 6x + 62 - (\frac{6}{5}x + 5) = -6x^2 + 4.8x + 57.$$

e) To find the profit of producing and selling the 4th unit $((x + 1)^{st}$ unit), we need to evaluate P'(x) at x = 3 units: P'(3) = $-6(3)^2 + 4.8(3) + 57$ = -54 + 14.4 + 57 = 17.4. The profit from producing and selling the 4th unit is about \$17.40.

f) We first find the average cost function:

$$A = \frac{C(x)}{x} = \frac{\frac{3}{5}x^2 + 5x + 102}{x} = \frac{3}{5}x + 5 + \frac{102}{x}$$
Computing the derivative, we get:

$$A'(x) = \frac{d}{dx}[\frac{3}{5}x + 5 + \frac{102}{x}] = \frac{d}{dx}[\frac{3}{5}x + 5 + 102x^{-1}]$$

$$= \frac{3}{5} - 102x^{-2} = \frac{3}{5} - \frac{102}{x^2}.$$