
 134 

Section 4.2 – Logarithmic Functions & Applications 
 

Recall that exponential functions are one-to-one since every 
horizontal line passes through at most one point on the graph 
of y = bx. So, an exponential function has an inverse. We call 
this inverse function a logarithmic function. 
 
Definition of a Logarithmic Function 
For x > 0 and b > 0 and b ≠ 1, then 
 y = f(x) = logb (x) if and only if x = b

y. 
This called the logarithmic function with base b. 
Note, the domain of logb (x) is (0, ∞). 
 
Think of the logarithmic functions as asking the question: 
"By what power f(x) do we have to raise the base b to get x?" 
 
Ex. 1 Find 

a)  log10(100)  b)  log2(16)       c)  log3(  
1
81
) 

d)  log5 (5)   e)  log7 (1)       f)   log2 (0) 
 Solution: 
 a)  For log10(100), ask the question: "By what power f(x)  
 do we have to raise the base 10 to get 100?" The  
 answer is 2. Thus, since 102 = 100, then log10(100) = 2. 
 
 b)  For log2(16), ask the question: "By what power f(x) do  
 we have to raise the base 2 to get 16?" The answer  
 is 4. Thus, since 24 = 16, then log2(16) = 4. 
 

 c)  For log3(  
1
81
), ask the question: "By what power f(x) do  

 we have to raise the base 3 to get 
  
1
81
?" Since  

 
  
1
81
 = 81 – 1 = (34) – 1 = 3 – 4, the answer is – 4. Thus, since  

 3 – 4 = 
  
1
81
, then log3(  

1
81
) = – 4. 

 
 d)  For log5(5), ask the question: "By what power f(x) do  
 we have to raise the base 5 to get 5?" The answer  
 is 1. Thus, since 51 = 5, then log5(5) = 1. 
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 e)  For log7(1), ask the question: "By what power f(x) do  
 we have to raise the base 7 to get 1?" The answer  
 is 0. Thus, since 70 = 1, then log7(1) = 0. 
 
 f)  The domain of the logarithmic function is (0, ∞). Thus, 
 log2 (0) is undefined. 
 
Ex. 2 Solve the following: 

a)  log4 (x) = 2  b)  log25 (x) =   
1
2
       c)  log7.5 (x) = – 0.2 

 Solution: 
 a)  Let's rewrite the function as an exponential function  
 since y = f(x) = logb (x) if and only if x = b

y:  
  log4 (x) = 2 if and only if x = 4

2 = 16. 
 Thus, x = 16. 
 
 b)  Let's rewrite the function as an exponential function  
 since y = f(x) = logb (x) if and only if x = b

y:  

  log25 (x) =   
1
2
 if and only if x = 251/2 =  25  = 5. 

 Thus, x = 5. 
 
 c)  Let's rewrite the function as an exponential function  
 since y = f(x) = logb (x) if and only if x = b

y:  
  log7.5 (x) = – 0.2 if and only if x = 7.5

– 0.2 ≈ 0.6683. 
 Thus, x ≈ 0.6683. 
 
If have two special bases of logarithms that we usually work 
with. One is base 10 and the other is base e. Both of these 
functions have keys on a scientific calculator. 
 
If b = 10, then log10 (x) is called the common log. It is usually 
denoted as log (x). Thus, if there is no base written, assume 
that it is the common log. 
 
If b = e, then loge (x) is called the natural log. It is usually 
denoted as ln (x). 
 
 
Ex. 3 Evaluate the following: 
a)  ln (e2)    b)  ln (e)     c)  ln (1)      d)  ln (7)     e)  ln (0.024) 
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 Solution: 
 a)  Ask: "By what power do we have to raise e to get e2?" 
 The answer is 2.  Thus, ln (e2) = 2. 
 
 b)  Ask: "By what power do we have to raise e to get e?" 
 The answer is 1.  Thus, ln (e) = 1. 
 
 c)  Ask: "By what power do we have to raise e to get 1?" 
 The answer is 0.  Thus, ln (1) = 0. 
 
 d)  This one we cannot do in our head. Here, we will  
 need to use a calculator. Some calculators, you type in  
 the number and then hit the ln button. Others, you have  
 to reverse the order. 
  ln (7) ≈ 1.945910149 
 
 e)  Again, we have to use our calculator: 
  ln (0.024) ≈ – 3.729701449 
 
Properties of Logarithms: 

 1) logb (1) = 0 since b
0 = 1. 

 2) logb (b) = 1 since b
1 = b. 

 3) logb (b
x) = x since bx = bx. 

 4) If logb (x) = logb (y), then x = y. 

Since exponential and logarithmic functions are inverse 
functions, the graph of a log function should be the graph of the 
respective exponential function reflected across the line  
y = x. To see this, let's work the following example: 
 
Ex. 4 Make a table of values and sketch the graph of: 
 a) f(x) = log2 (x)  b)  g(x) = log4 (x) 
 c) h(x) = log1/2 (x)  d)  k(x) = log1/4 (x) 
 Solution: 
 The graph of log2 (x) should be the graph of y = 2

x  
 reflected across the line y = x; the graph of log4 (x)  
 should be the graph of y = 4x reflected across the line  
 y = x; and so on. Let's make some tables: 
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x 
  
1
8
 
  
1
4
 
  
1
2
 1 2 4 8 

log2 (x) – 3 – 2 – 1 0 1 2 3 
 

x 
  
1
64
 
  
1
16
 
  
1
4
 1 4 16 64 

log4 (x) – 3 – 2 – 1 0 1 2 3 
  

x 8 4 2 1 
  
1
8
 
  
1
4
 
  
1
2
 

log1/2 (x) – 3 – 2 – 1 0 1 2 3 
 

x 64 16 4 1 
  
1
64
 
  
1
16
 
  
1
4
 

log1/4 (x) – 3 – 2 – 1 0 1 2 3 
 
 a) f(x) = log2 (x)  b)  g(x) = log4 (x) 

    
 
 c) h(x) = log1/2 (x)  d)  k(x) = log1/4 (x) 
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Notice that the graphs in example 4 c & d are the graphs in 
example 4 a & d reflected across the x-axis. Now, let's 
summarize what we know about logarithmic functions: 
 
The graph of logb (x), b > 1      The graph of logb (x), 0 < b < 1 

     
 
Domain: (0, ∞)    Domain: (0, ∞) 

Range: (– ∞, ∞)    Range: (– ∞, ∞)  

Intercept: (1, 0)    Intercept: (1, 0) 

Increasing     Decreasing 

Concave Down    Concave Up 

x = 0 is a Vertical Asymptote  x = 0 is a Vertical Asymptote 

(as x → 0+, logb (x) → – ∞)  (as x → 0+, logb (x) → ∞) 

Continuous     Continuous 

One - to - One    One - to - One 
 
We can also graph log functions using the techniques of 
shifting stretching and reflecting. Consider the following 
example: 
 
Ex. 5 Sketch the graph of: 
a)   g(x) = ln (x – 2) + 3  b)   h(x) = – 2•log1/2 (x + 3) 
 
 Solution: 
 a)  Since e > 1, the parent function will look like the  
 graph of the function above on the left. The graph  
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 g(x) = ln (x – 2) + 3 is the graph of ln (x) shifted up 3  
 units and to the right two units. 
 
 Parent: y = ln (x)   g(x) = ln (x – 2) + 3 
 

      
 
 Note that the domain of g is x > 2 a since x – 2 > 0. 
 
 b) The graph of h(x) = – 2•log1/2 (x + 3) is the graph of 
 log1/2 (x) reflected across the x-axis, stretched by a  
 factor of two and shifted to the left three units. 
 Parent: y = log1/2 (x)  h(x) = – 2•log1/2 (x + 3) 
 

   
 
Note that the domain of h is x > – 3 a since x + 3 > 0. 
 
Most calculators have only two types of keys for evaluating log 
functions, the common log and the natural log. To evaluate logs 
of other bases, we use the change of base formula: 
 

x = – 3 

x = 2 
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Change of Base Formula 
 
Let a, b, and x be positive real numbers such that a ≠ 0 and 
b ≠ 0, then we can find loga (x) by: 

 loga (x) =
  
logb (x)

logb (a)
 

 
Ex. 6 Find to the nearest thousandth: 
a)  log2 (0.35)   b)  log5 (10.3)  log1/3 (0.2) 
 Solution: 
 a) We need to use the change of base formula with  
  either the common log or the natural log: 

  log2 (0.35) = 
  
log(0.35)
log (2)

 ≈ 
3010299957.0
4559319556.0–

 ≈ – 1.515 

  If we use the natural log, we get: 

  log2 (0.35) = 
  
ln(0.35)
ln (2)

 ≈ 
6931471806.0
049822124.1–

 ≈ – 1.515 

  Either way, we get the same thing. 
 
 b) If we use the natural log, we get: 

  log5 (10.3) = 
  
ln(10.3)
ln (5)

 ≈ 
  
2.332143895
1.609437912

 ≈ 1.449 

 
 c) If we use the natural log, we get: 

  log1/3 (0.2) = 
  
ln(0.2)
ln (1/ 3)

 ≈ 
098612289.1–
609437912.1–

 ≈ 1.465 

 
More Properties of Logarithms 
Let b > 0 and b ≠ 1 and let n be a real number. If u and v are 
positive numbers, then the following properties are true: 
 1) logb (u•v) = logb (u) + logb (v) 

 2) logb (  
u
v
) = logb (u) – logb (v) 

 3) logb (u
n) = n• logb (u) 

Caution: logb (u + v) ≠ logb (u) + logb (v) and 
      logb (u – v) ≠ logb (u) – logb (v) 
If you let u = bx and v = by, then property #1 becomes: 
logb (u•v) = logb (b

x•by) = logb (b
x + y) = x + y = logb(b

x) + logb(b
y) 

= logb (u) + logb (v).  A similar proof works for Prop. #2 and #3. 
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Ex. 7 Given logb (6) ≈ 1.2 and logb (7) ≈ 1.7, find: 

a) logb (42)  b)    logb (  
6
7
)  c)     logb (6b

2) 

 Solution: 
 We need to our properties of logs to rewrite each 
 problem in terms of logb (6) and logb (7). 
 a) logb (42) = logb (6•7) = logb (6) + logb (7)       Prop. 1 
  ≈ 1.2 + 1.7 = 2.9. 

 b) logb (  
6
7
) = logb (  

6
7[[[[ ]]]]1/ 2 ) =   12 • logb (  67 )    Prop. 3 

  = 
  
1
2
[ logb (6) – logb (7)]  Prop. 2 

  ≈ 
  
1
2
[ 1.2 – 1.7] = – 0.25. 

 
 c) logb (6b

2) = logb (6) + logb (b
2)  Prop. 1 

  = logb (6) + 2•logb (b)  Prop. 3 
  = 1.2 + 2•1 
  = 3.2. 
 
Ex. 8 Write as the sum and/or difference of logs. 

 a) ln 
  

x2y3

z

    
    
    

    
    
       b) ln 

  

5x

x2 ++++1

    

    
    

    

    
     

 Solution: 
 Again, we need to use our properties of logs: 

 a) ln 
  

x2y3

z

    
    
    

    
    
     = ln (x2y3) – ln (z)  Prop. 2 

  = ln (x2) + ln (y3) – ln (z)  Prop. 1 
  = 2•ln (x) + 3•ln (y) – ln (z)  Prop. 3 
 

 b) ln 
  

5x

x2 ++++1

    

    
    

    

    
     = ln (5x) – ln [

  
x2 ++++1(((( ))))1/ 2 ] Prop. 2 

  = ln (5x) – 
  
1
2
•ln (x2 + 1)  Prop. 3 

  = ln (5) + ln (x) – 
  
1
2
•ln (x2 + 1) Prop. 1 

 
Ex. 9 Write as the logarithm of a single expression: 

 a) 
  
2
3
•ln (x) + ln (y) – 3 ln (z) 

 b) 5•ln (x + 1) – 3•ln (x) + ln (x + 2) 
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 Solution: 

 a) 
  
2
3
•ln (x) + ln (y) – 3 ln (z)  

  = ln (x2/3) + ln (y) – ln (z3)      Prop. 3 
  = ln (x2/3y) – ln (z3)  Prop. 1 

  = ln
  

x2 / 3 y

z3

 
  

 
  
 Prop. 2 

  = ln
  

x2
3

y

z3

    

    
    

    

    
     

 
 b) 5•ln (x + 1) – 3•ln (x) + ln (x + 2)  
  = ln [(x + 1)5] – ln (x3) + ln (x + 2)  Prop. 3 
  = ln [(x + 1)5(x + 2)] – ln (x3)     Prop. 1 

  = ln
  

(x ++++1)5(x++++ 2)

x3

    
        

    
        
   Prop. 2 

 
Ex. 10 Simplify: 

 a)  ln (  e )  b)  e2 ln(3)  c)  ln 
  

e3 e

e1/ 3

    

    
    

    

    
     

 Solution: 
 For all these problems, we will use the fact that ex and  
 ln (x) are inverse functions. In other words, eln (#) = # and 
 ln (e#) = #. 

 a)  ln (  e ) = ln (e
1/2) = 

  
1
2
   (Inverse functions) 

 b)  e2 ln(3) =   e
ln(32)

   Prop. 3 
      = eln(9) = 9  (Inverse functions) 
 

 c)  ln 
  

e3 e

e1/ 3

    

    
    

    

    
     = ln (e3   e ) – ln (e

1/3) Prop. 2 

      = ln (e3) + ln (  e ) – ln (e
1/3)   Prop. 1 

      = 3 + 1/2 – 1/3 = 3
  
1
6
. 

 

Solve the following for x: 
 
Ex. 11 ln (x) = 2[ ln(3) – ln(5)] 
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 Solution: 
 Here, we will use our properties of logs: 
 ln (x) = 2[ ln(3) – ln(5)] 
 ln (x) = 2[ ln(3/5)] Prop. 2 
 ln (x) = ln [(3/5)2]  Prop. 3 
 ln (x) = ln [9/25] 
 Since ln (x) is one-to-one, then 

 x = 
  
9
25
 

 
Ex. 12 a) e10x = 6   b) 5•ln(x) = 10 
 Solution: 
 a) Since ln(x) is one-to-one, we can take the ln of both  
 sides of the equation:  
  e10x = 6 
  ln (e10x)= ln (6) 
  10x = ln (6) 

  x = 
  
ln(6)
10
 ≈ 0.1792. 

 
 b) We begin by solving for ln (x). Then, since ex is one- 
 to-one, we can raise e by the quantities on both sides of  
 the equation: 
  5•ln(x) = 10 
  ln(x) = 2 
  eln(x) = e2 
  x = e2  ≈ 7.3891. 
 
Ex. 13  Suppose a certain amount is invested at 7%  
   compounded continuously. How long would it take for  
   the money to double? 
 Solution: 
 Let Qo be the initial amount invested. Then, double that  
 amount would be 2Qo. Thus, our equation becomes: 
  2Qo = Qoe

kt  (divide by Qo) 
  2 = ekt 
 Take the ln of both sides: 
  ln (2) = ln (ekt) 
  ln (2) = kt  Now, divide by k 
 Thus, for doubling time, we can use the formula: 
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 (Rule of 70)  t = 
  
ln(2)
k
  or k = 

  
ln(2)
t
 

 Since the interest rate is 7%, then k = 0.07. Hence, 

  t = 
  
ln(2)
0.07
 ≈ 9.902. 

 It will take about 9.902 years for the money to double. 
 
Ex. 14  A publisher estimates that if x thousand complimentary  
   copies of a certain textbook are distributed to  
    instructors, the first-year sales of the textbook will be  
   approximately f(x) = 20 – 15e– 0.2x thousand copies.  
   How many complementary copies should the publisher  
   distribute to generate the first-year sales of 12,000  
   copies? 
 Solution: 
 Since the target sales is 12,000 copies, we will set f(x) =  
 12 and solve for x: 
  20 – 15e– 0.2x = 12 
  – 15e– 0.2x = – 8 

  e– 0.2x = 
  
8
15
 

 Now, take the ln of both sides: 

  ln (e– 0.2x) = ln (
  
8
15
) 

  – 0.2x = ln (
  
8
15
) 

  x = 
( )
2.0–

ln
15
8

 ≈ 3.14304 

 Thus, about 3,143 complementary copies will need to  
 be distributed. 
 
Ex. 15  The total sales of a company was $100 million in 1995  
    and $150 million in 1998. If the sales are growing  
    exponentially, find the rate of growth per year and  
            predict what the total sales will be in 2005. 
 Solution: 
 Let Qo = 100. Then, when t = 3, Q(3) = 150. We can use  
 this equation to solve for k: 
  Q(3) = 100ek(3) = 100e3k = 150 
  e3k = 1.5 
 Take the ln of both sides: 
  ln (e3k) = ln (1.5) 
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  3k = ln (1.5) 

  k = 
  
ln(1.5)
3
 ≈ 0.13516 

 So, the sales are growing at a rate of about 13.516% per  
 year. Thus, our function can now be written as: 
  Q(t) = 100e0.13516t 
 Since 2005 corresponds to t = 10, then 
  Q(10) = 100e0.13516(10) = 100e1.3516 ≈ 372.7 
 Hence, in 2005, the sales should be about  
 $372.7 million. 
 
Ex. 16  The half-life for carbon-14 (14C) is 5,730 years. If a  
    scientist found a fossil in which the ratio of 14C to 12C is  

    
  
1
3
 of the ratio found in the atmosphere.  How old is the  

     fossil? 
 Solution: 
 For half-life, we can use the same formula as for  
 doubling time. Since the half-life is 5,730 years, the  
 decay constant is: 

  k = 
  
ln(2)
t
 = 
  
ln(2)
5730

 ≈ 1.20986 x 10 – 4 

 Since the ratio is 
  
1
3
 of the ratio in the atmosphere, the  

 amount of 14C in the fossil is 
  
1
3
 of the original amount. 

 Thus,  
  Q(t) = Qoe

 – kt 

  
  
1
3
Qo = Qoe

 – 0.000120968t  (divide by Qo) 

  
  
1
3
 = e – 0.000120968t  (take the ln of both sides) 

  ln (
  
1
3
) = ln (e – 0.000120968t) 

  ln (
  
1
3
) = – 0.000120968t 

  t = 
000120968.0–

)(ln
3
1

 ≈ 9082. 

 Hence, the fossil is about 9,082 years old. 
Carbon 14 dating is only used for objects that are less than 
50,000 years old. Beyond that, there is too little Carbon 14 to 
detect. 
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Ex. 17 Evaluate the following limits if they exist: 
  a) 

  
lim
x→→→→∞∞∞∞

ln(x)  b) 
  
lim
x→→→→0++++

 ln(x) 

 Solution: 
 Recall that the graph of ln(x) looks like: 
 f(x) = ln(x) 

  
 
We will now examine how to differentiate exponential and 
logarithmic functions. We will begin with differentiate ln (x). 
Since the natural log is not a polynomial function, we will need to 
use the definition of the derivative and the fact that  

  
lim
m→→→→∞∞∞∞

(1 + 
  
1
m
)m = e. 

 
Ex. 18 Find the derivative of ln (x) using the definition of the  
 derivative. 
 Solution: 
 If y = ln (x), then 

 y ' = 
  
lim
h→ 0

 
h

)x(f–)hx(f +
 = 
  
lim
h→→→→ 0
 

h
)xln(–)hxln( +
 

 = 
  
lim
h→ 0

 
  
1
h
•{ln (x + h) – ln (x)}  

 = 
  
lim
h→ 0

 
  
1
h
•{ln (
  
x++++ h
x
)}  Prop. #2 of Logs. 

 = 
  
lim
h→ 0

 ln {
h
1

x
hx





 +

} Prop. #3 of Logs. 

 = 
  
lim
h→ 0

 ln { ( )h1
x
h1+ } 

As x increases 
without bound, so 
does ln(x). But as x 
goes to zero from the 
positive side, ln(x) 
decreases without 
bound. Thus,  
a)  
  
lim
x→→→→∞∞∞∞

 ln(x) = ∞  & 

b) 
  
lim
x→→→→0++++

 ln(x) = – ∞. 
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 Now, we can make a substitution. Let m = 
  
x
h
, then 

 
  
m
x
 = 
  
1
h
 and 

  
1
m
 = 
  
h
x
. Also, h → 0 implies m → ∞. 

 
 Thus,  

 
  
lim
h→ 0

 ln { ( )h1
x
h1+ }  = 

  
lim
m→→→→∞∞∞∞

 ln { ( )xm
m
11+ } 

 = 
  
lim
m→→→→∞∞∞∞

 ln { ( ) x
1

m

m
11 




 + }. 

 But, 
  
lim
m→→→→∞∞∞∞

(1 + 
  
1
m
)m = e, so 

 
  
lim
m→→→→∞∞∞∞

 ln [ ( ) x
1

m

m
11 




 + ] =  ln {[ ]x1e } = 
  
1
x
 • ln {e}    Prop. #3 

 = 
  
1
x
•1 = 
  
1
x
. 

 
Derivative of the natural logarithm 
If x > 0 and f(x) > 0, then 

1) 
  
d
dx
[ln (x)] = 

  
1
x
   and 

2) 
  
d
dx
[ln (f(x))] = 

  
1
f(x)
•
  
d
dx
[f(x)] = 

  
f '(x)
f(x)
  (chain rule) 

 
Differentiate the following functions: 
Ex. 19 y = ln (2x) 
 Solution: 

 y ' = 
  
d
dx
[ln (2x)] = 

  
1
2x
•
  

(x2 Š3)3

3x+56 [2x] = 
  
1
2x
•2 = 
  
1
x
 

 
Ex. 20 y = ln (x3 + 3) 
 Solution: 

 y ' = 
  
d
dx
[ln (x3 + 3)] = 

  
1

x3+ 3
•
  
d
dx
[x3 + 3] = 

  
1

x3+ 3
•3x2 = 

  
3x2

x3+ 3
 

 
Ex. 21  y = ln [(x + 3)3•(x – 5)4] 
 Solution: 
 First use the properties of logs to simplify y: 
 y = ln [(x + 3)3•(x – 5)4]  
 = ln [(x + 3)3] + ln [(x – 5)4]  Prop. 1 
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 = 3•ln (x + 3) + 4•ln (x – 5)  Prop. 3 
 Now differentiate: 

 y ' = 3•
  
d
dx
[ln (x + 3)] + 4•

  
d
dx
[ln (x – 5)] 

 = 3•
  
1
x+ 3
•[1] + 4•

5–x
1 •[1] = 

  
3
x+ 3
 + 

5–x
4 . 

 

Ex. 22 y = ln 






 +

1–x2

1x3 2

 

 Solution:  
 First use the properties of logs to simplify y: 

 y = ln 






 +

1–x2

1x3 2

 = ln (3x2 + 1) – ln ( 1–x2 )   Prop. #2 

 = ln (3x2 + 1) – ln ([2x – 1]1/2) 

 = ln (3x2 + 1) – 
  
1
2
ln (2x – 1)  Prop. #3 

 Now, we can differentiate: 

 y ' = 
  
d
dx
[ln (3x2 + 1)] – 

  
1
2
•
  
d
dx
[ln (2x – 1)] 

 = 
  
1

3x2 + 1
•
  
d
dx
[3x2 + 1] – 

  
1
2
•

1–x2
1 •
  
d
dx
[2x – 1] 

 = 
  
1

3x2 + 1
• [6x] – 

  
1
2
•

1–x2
1 • [2] 

 = 
  
6x

3x2 + 1
 – 

1–x2
1 . 

 
Logarithmic Differentiation: 
Sometimes it is easier to take the natural log of both sides of an 
equation before differentiating. Let's look at some examples: 
 

Ex. 23  f(x) = 
6

32

5x3

)3–x(

+
 

 Solution: 
 We begin by taking the natural log of both sides and simplify  
 the right side of the equation: 

 ln [f(x)] = ln [
6

32

5x3

)3–x(

+
] 

 ln [f(x)] = ln [(x2 – 3)3] – ln [  3x+5
6

] Prop. #2 
 ln [f(x)] = ln [(x2 – 3)3] – ln [(3x + 5)1/6] 
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 ln [f(x)] = 3•ln (x2 – 3) – 
  
1
6
•ln (3x + 5) Prop. #3 

 Now, we can differentiate both sides of the equation: 

 
  
d
dx
{ln [f(x)]} = 3•

  
d
dx
{ln (x2 – 3)} – 

  
1
6
•
  
d
dx
{ln (3x + 5)} 

 
  
1
f(x)
•f '(x) = 3•

3–x
1
2
•
  
d
dx
(x2 – 3) – 

  
1
6
•
  
1

3x+ 5
•
  
d
dx
(3x + 5) 

 
  
1
f(x)
•f '(x) = 3•

3–x
1
2
•(2x) – 

  
1
6
•
  
1

3x+ 5
•(3) 

 
  
1
f(x)
•f '(x) = 

3–x
x6
2
 – 
  

1
2(3x+ 5)

 

 Now, we will solve for f '(x) by multiplying both sides by f(x): 

 f '(x) = (
3–x
x6
2
 – 
  

1
2(3x+ 5)

)•f(x) 

 But f(x) = 
6

32

5x3

)3–x(

+
. Thus, f '(x) becomes: 

 f '(x) = (
3–x
x6
2
 – 
  

1
2(3x+ 5)

)
6

32

5x3

)3–x(

+
 

 
Ex. 24 Show that if f(x) = ex, then f ’(x) = ex. 
 Solution: 
 We begin by taking the natural log of both sides: 
 ln [f(x)] = ln (ex)  
 ln [f(x)] = x  (inverse functions) 
 Now, differentiate both sides: 

 
  
d
dx
{ln [f(x)]} = 

  
d
dx
{x} 

 
  
1
f(x)
•f '(x) = 1 

 Now, solve for f '(x) by multiplying by both sides by f(x): 
 f '(x) = 1•f(x) 
 f '(x) = f(x)  But, f(x) = ex, thus 
 f '(x) = ex. 
 
 


