Section 5.2 - Area and The Definite Integral

Before we begin our discussion of the definite integral, let's explore finding the area under different types of curves.

Given a function, find the area $A(x)$ under the function from

0 to x :

Ex. $1 \quad f(x)=a$
Solution:
The graph of $f(x)=a$ is a horizontal line:

Hence, $A(x)=a x$.
Ex. $2 \quad g(x)=a x$
Solution:
The graph of $g(x)$ is a linear equation passing through the origin:

0
x

Notice that the area under the function is a triangle with a base of x and a height of ax. So, the area is $\frac{1}{2} b h$ or $\frac{1}{2} x \cdot a x=\frac{1}{2} a x^{2}$.
Hence, $A(x)=\frac{1}{2} a x^{2}$.

Ex. $2 \quad h(x)=a x+b$

Solution:
The graph of $g(x)$ is a linear equation passing through the point $(0, b)$:

Notice that the area under the function is a triangle with a base of x and a height of ax plus a rectangle with the length of x and a width of b. The area is the area of the triangle plus the the area of the rectangle. So the area is $\frac{1}{2} a x^{2}+b x$.

Hence, $A(x)=\frac{1}{2} a x^{2}+b x$.
Notice the area function is an antidervative of the original function. Now, let us explore the next example.

Ex. 4 The marginal cost (in dollars) for a certain commodity is $C^{\prime}(x)=2 x+1$ where x is the number of units. Find the increase in production cost when the number of units produced increases from 2 units to 5 units.
Solution:
We will need to integrate $C^{\prime}(x)$, evaluate it at $x=5$ and $x=2$ and then subtract:

$$
C(x)=\int(2 x+1) d x=x^{2}+x+c
$$

Evaluating C at $x=5$ and $x=2$ yields:
$C(5)=(5)^{2}+(5)+c=30+c$
$C(2)=(2)^{2}+(2)+c=6+c$
So, $C(5)-C(2)=30+c-(6+c)=30+c-6-c=24$.
Hence, the increase on production cost will be $\$ 24$.

Ex. 5 Find the area under the curve of $C^{\prime}(x)=2 x+1$, above the x - axis and between $x=2$ and $x=5$.

Solution:

We begin by drawing the region we are trying to find the area of:

Notice that the area of the region can be split into a rectangle and a triangle. The rectangle is 3 units long and \$5 per unit high so that its area is $\$ 15$. The length of the base of the triangle is 3 units and it is $\$ 6$ per unit high so that its area is $\$ 9$. The sum of the two areas is $\$ 24$ which is the same we got in Ex. 4.
This is not a coincidence. For any continuous function $f(x)$
where $f(x) \geq 0$ for all x in a specified interval $[a, b]$, the $\int f(x) d x$ evaluated at b minus $\int f(x) d x$ evaluated at a will correspond to area under the curve from a to b .

Area under a curve

If $f(x)$ is continuous and $f(x) \geq 0$ on [a, b], then the region under the curve $y=f(x)$ above the interval $[a, b]$ has area of:

$$
A=\int_{a}^{b} f(x) d x
$$

a is referred to as the lower limit of integration and b is referred as the upper limit of integration.

Fundamental Theorem of Calculus

If $f(x)$ is continuous on [a,b] and $F(x)$ is any antiderivative of $f(x)$, then

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

The reason why we can use any antiderivative is because when take $F(b)-F(a)$, the constant c in the antiderivative will subtract out. Since we can choose to use any antiderivative of $f(x)$, then we will choose to use the antiderivative where c is 0 .

Integrate the following:

Ex. $6 \int_{1}^{9}\left(\sqrt{\mathrm{t}}-\frac{4}{\sqrt{\mathrm{t}}}\right) \mathrm{dt}$

Solution:

$$
\begin{aligned}
& \int_{1}^{9}(\sqrt{\mathrm{t}} \\
&=\left.-\frac{4}{\sqrt{\mathrm{t}}}\right) \mathrm{dt}=\int_{1}^{9}\left(\mathrm{t}^{1 / 2}-4 \mathrm{t}^{-1 / 2}\right) \mathrm{dt} \\
& \mathrm{t}^{1 / 2} \mathrm{dt}-4 \int_{1}^{9} \mathrm{t}_{9}^{-1 / 2} \mathrm{dt}=\left.\left[\frac{\mathrm{t}^{3 / 2}}{3 / 2}-4 \frac{\mathrm{t}^{1 / 2}}{1 / 2}\right]\right|_{1} ^{9} \\
&= {\left.\left[\frac{2}{3} \mathrm{t}^{3 / 2}-8 \mathrm{t}^{1 / 2}\right]\right|_{1}=\left[\frac{2}{3}(9)^{3 / 2}-8(9)^{1 / 2}\right]-\left[\frac{2}{3}(1)^{3 / 2}-8(1)^{1 / 2}\right] } \\
&= {\left[\frac{2}{3}(27)-8(3)\right]-\left[\frac{2}{3}(1)-8(1)\right]=[18-24]-\left[\frac{2}{3}-8\right] } \\
&=-6+7 \frac{1}{3}=1 \frac{1}{3} .
\end{aligned}
$$

Ex. $7 \int_{0}^{3}\left(3 x^{2}-6 x+5\right) d x$

Solution:

$$
\begin{aligned}
& \int_{0}^{3}\left(3 x^{2}-6 x+5\right) d x=\left.\left[x^{3}-3 x^{2}+5 x\right]\right|_{0} ^{3} \\
& =\left[(3)^{3}-3(3)^{2}+5(3)\right]-\left[(0)^{3}-3(0)^{2}+5(0)\right] \\
& =[27-27+15]-[0]=15 .
\end{aligned}
$$

Ex. $8 \int_{1}^{5} x^{2}(x-3) d x$

Solution:

We begin by distributing the x^{2} and then integrating:

$$
\begin{aligned}
& \int_{1}^{5} x^{2}(x-3) d x=\int_{1}^{5}\left(x^{3}-3 x^{2}\right) d x=\left.\left(\frac{x^{4}}{4}-x^{3}\right)\right|_{1} ^{5} \\
& =\left(\frac{(5)^{4}}{4}-(5)^{3}\right)-\left(\frac{(1)^{4}}{4}-(1)^{3}\right)=\left(\frac{625}{4}-125\right)-\left(\frac{1}{4}-1\right) \\
& =\frac{625}{4}-125-\frac{1}{4}+1=\frac{624}{4}-124=156-124=32 .
\end{aligned}
$$

Ex. $9 \int_{1}^{4}\left(\frac{1}{x}+e^{x}\right) d x$
Solution:
We begin by integrating term by term:

$$
\begin{aligned}
& \int_{1}^{4}\left(\frac{1}{x}+e^{x}\right) d x=\int_{1}^{4} \frac{1}{x} d x+\int_{1}^{4} e^{x} d x=\left.\left[\ln |x|+e^{x}\right]\right|_{1} ^{4} \\
& =\left[\ln |4|+e^{4}\right]-\left[\ln |1|+e^{1}\right]=\ln (4)+e^{4}-[0+e] \\
& =\ln (4)+e^{4}-e .
\end{aligned}
$$

Ex. 10 Find the area under
a) $f(x)=x^{2}$ on the interval $[0,4]$.
b) $g(x)=-x^{2}$ on the interval $[0,4]$

Solution:
a)

The area under the curve is equal the integral of x^{2} from $x=0$ to $x=4$.
$A=\int_{0}^{4} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{4}$
$=\frac{4^{3}}{3}-\frac{0^{3}}{3}=\frac{64}{3}-0=\frac{64}{3}$ sq. units.
b)

By symmetry, the area under the should be equal to the result in part a. Let's see what happens when we integrate $-x^{2}$ from $x=0$ to $x=4$:
$A=\int_{0}^{4}-x^{2} d x=-\left.\frac{x^{3}}{3}\right|_{0} ^{4}$
$=-\frac{4^{3}}{3}-\left(-\frac{0^{3}}{3}\right)=-\frac{64}{3}+0=-\frac{64}{3}$.

So, the area is $\frac{64}{3}$ sq. units.

Notice that for the negative value functions, the definite integral gives us a negative result.

Ex. 11 Evaluate $\int_{-3}^{4} x^{3} d x$ and interpret the results.
Solution:
If we examine a picture of the graph, we can see that part of the area is above the x-axis and part of it is below the x -axis.

Thus, if we integrate x^{3}
 from -3 to 0 , the
result should be negative and if we integrate from 0 to 4, the result should be positive:
$\int_{-3}^{0} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{-3} ^{0}$
$=\frac{0^{4}}{4}-\frac{(-3)^{4}}{4}=-\frac{81}{4}$.
$\int_{0}^{4} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{0} ^{4}$
$=\frac{4^{4}}{4}-\frac{0^{4}}{4}=64$.
But $\int_{-3}^{4} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{-3} ^{4}=\frac{4^{4}}{4}-\frac{(-3)^{4}}{4}=64-\frac{81}{4}=43.75$.
Notice that the definite integral is equal to the area above the x-axis minus the area below the x-axis.

Ex. 12 Given the graph of f, is $\int_{a}^{b} f(x) d x$ positive, negative, or 0 ?
a)

b)

Solution:
a) Since the areas are equal, then $\int_{a}^{b} f(x) d x=0$
b) There is more area below the x-axis, so $\int_{a}^{b} f(x) d x<0$.
c) There is more area above the x-axis, so $\int_{a}^{b} f(x) d x>0$.

