## Section 5.5 - Integration by Substitution

Many times in mathematics, we need to make a substitution in a problem in order to solve it. By using substitution, we get a problem that is easier to work. One classic case is when we are factoring. Let's look at an example.

Ex. 1 Factor $6(x+3 y)^{2}-(x+3 y)-1$.
Solution:
I) We begin by recognizing that this is a quadratic-like expression, i.e., $6(\quad)^{2}-(\quad)-1$
II) Thus, if we let $u=(x+3 y)$, then the expression becomes:

$$
6 u^{2}-u-1
$$

III) Now, we can factor this problem:

$$
6 u^{2}-u-1=(3 u+1)(2 u-1)
$$

IV) Finally, we substitute $u=(x+3 y)$ back into the problem and simplify:

$$
\begin{aligned}
& (3 u+1)(2 u-1)=(3(x+3 y)+1)(2(x+3 y)-1) \\
& =(3 x+9 y+1)(2 x+6 y-1)
\end{aligned}
$$

Notice that there were four steps involved in working this problem:
I) Identify the pattern that you will use.
II) Make a substitution.
III) Work the new problem.
IV) Substitute the original expression into your answer and simplify.

In calculus, when we are integrating, we will make a substitution to make the problem easier to work. There are three basic patterns that we are looking for:

1) $\int u^{n} d u=\frac{u^{n+1}}{n+1}+c, \quad n \neq-1$
2) $\int u^{-1} d u=\int \frac{1}{u} d u=\ln |u|+c$
3) $\int e^{u} d u=e^{u}+c$

To complete the substitution, we will need to find du. This is done by differentiating the substitution and solving for du. For example, if $u=3 x^{2}+6$, then $\frac{d u}{d x}=6 x$. If you treat $\frac{d u}{d x}$ as a fraction and multiply both sides by dx , that will give you $d u=6 x d x$. We then have to substitute in the du as well. To see how all this works, let's look at some examples:

## Integrate the following:

Ex. $2 \int_{0}^{2} 6 x\left(3 x^{2}+6\right)^{5} d x$

## Solution:

We begin by identifying which pattern we need to use.
Since there is no denominator, then we should not consider \#2 and since e is not involved, we can eliminate \#3. Thus, we want use pattern \#1. Hence, we need to make substitution in order that we have the integral written as a power.

$$
\begin{aligned}
& \text { Let } u=3 x^{2}+6 \\
& \frac{d u}{d x}=6 x \quad \Rightarrow \quad d u=6 x d x
\end{aligned}
$$

Substituting, we get:

$$
\int_{0}^{2} 6 x\left(\underline{3 x^{2}+6}\right)^{5} d x=\int_{x=0}^{x=2}(\underline{u})^{5} d u=\int_{x=0}^{x=2} u^{5} d u .
$$

Now $_{x=2}$ we can integrate:

$$
\int_{x=0}^{x=2} u^{5} d u=\left.\frac{u^{6}}{6}\right|_{x=0} ^{x=2} \text { and then substitute } u=3 x^{2}+6:
$$

$$
=\left.\frac{u^{6}}{6}\right|_{x=0} ^{x=2}=\left.\frac{\left(3 x^{2}+6\right)^{6}}{6}\right|_{0} ^{2}=\frac{\left(3(2)^{2}+6\right)^{6}}{6}-\frac{\left(3(0)^{2}+6\right)^{6}}{6}
$$

$$
=\frac{(18+6)^{6}}{6}-\frac{(6)^{6}}{6}=31,850,496-7776=31,842,720
$$

Ex. $3 \int \frac{9 x^{2}}{3 x^{3}-5} d x$

## Solution:

Since there is no e involved and the integral cannot be written as a power, the only choice is pattern \#2:
Let $u=3 x^{3}-5$

$$
\frac{d u}{d x}=9 x^{2} \quad \Rightarrow \quad d u=9 x^{2} d x
$$

Substituting, we get:
$\int \frac{9 x^{2}}{3 x^{3}-5} d x=\int \frac{1}{3 x^{3}-5} \cdot 9 x^{2} d x=\int \frac{1}{u} d u=\ln |u|+c$
Replacing $u$ by $3 x^{3}-5$, we get:
$\ln |u|+c=\ln \left|3 x^{3}-5\right|+c$.
Ex. $4 \int_{0}^{1} 2 \mathrm{xe}^{\mathrm{x}^{2}-1} \mathrm{dx}$

## Solution:

Since the integral involves e, we want to use pattern \#3.
Let $u=x^{2}-1$

$$
\frac{d u}{d x}=2 x \quad \Rightarrow \quad d u=2 x d x
$$

Substituting, we get:

$$
\int_{0}^{1} 2 x e^{x^{2}-1} d x=\int_{0}^{1} e^{x^{2}-1} 2 x d x=\int_{x=0}^{x=1} e^{u} d u=\left.e^{u}\right|_{x=0} ^{x=1}
$$

Replacing $u$ with $x^{2}-1$ yields:
$\left.e^{u}\right|_{x=0} ^{x=1}=\left.e^{x^{2}-1}\right|_{0} ^{1}=e^{1-1}-e^{0-1}=e^{0}-e^{-1}$
$=1-\mathrm{e}^{-1} \approx 0.63212$
Ex. $5 \int \sqrt{7 x-9} \mathrm{dx}$

## Solution:

There is no denominator or e involved in the problem so we will need to use pattern \#1.
Let $u=7 x-9$
$\mathrm{du}=7 \mathrm{dx}$
Since the integral only has a dx in it as oppose to 7 dx , we will need to divide both sides by 7 .
$\frac{1}{7} \mathrm{du}=\mathrm{dx}$
Substituting, we get:

$$
\begin{aligned}
& \int \sqrt{7 x-9} d x=\int \sqrt{u} \frac{1}{7} d u=\frac{1}{7} \int u^{1 / 2} d u=\frac{1}{7} \cdot \frac{u^{3 / 2}}{\frac{3}{2}}+c \\
& =\frac{1}{7} \cdot \frac{2}{3} u^{3 / 2}+c=\frac{2}{21} u \sqrt{u}+c
\end{aligned}
$$

Replacing $u$ with $7 x-9$ yields:

$$
\frac{2}{21} u \sqrt{u}+c=\frac{2}{21}(7 x-9) \sqrt{7 x-9}+c .
$$

Ex. $6 \int \frac{6 y}{3 y+4} d y$

## Solution:

We have $y$-terms in the top and bottom so it hard to determine what kind of substitution we should try to perform. We can try dividing first to see if that helps:

$$
\begin{gathered}
3 y + 4 \longdiv { 6 y + 0 } \\
\frac{-6 y-8}{-8}
\end{gathered}
$$

Thus, $\int \frac{6 y}{3 y+4} d y=\int\left(2-\frac{8}{3 y+4}\right) d y=2 y-8 \int \frac{1}{3 y+4} d y$
Now, we can see that we need to use pattern \#2.

$$
\text { Let } u=3 y+4
$$

$$
\mathrm{du}=3 \mathrm{dy} \text { solving for dy yields: }
$$

$$
\frac{d u}{3}=d y
$$

Substituting, we get:
$2 y-8 \int \frac{1}{3 y+4} d y=2 y-8 \int \frac{1}{u} \frac{d u}{3}=2 y-\frac{8}{3} \int \frac{1}{u} d u$
$=2 y-\frac{8}{3} \ln |u|+c$. Replacing $u$ by $3 y+4$, we get:
$2 y-\frac{8}{3} \ln |u|+c=2 y-\frac{8}{3} \ln |3 y+4|+c$.
Ex. $7 \int \frac{x^{5}}{e^{1-x^{6}}} d x$
Solution:
Since the problem involves e, we will probably need to use pattern \#3. Before we can do that, we need to bring the exponential into the numerator:

$$
\int \frac{x^{5}}{e^{1-x^{6}}} d x=\int x^{5} e^{-\left(1-x^{6}\right)} d x=\int x^{5} e^{x^{6}-1} d x
$$

Now, we can use pattern \#3:
Let $u=x^{6}-1$
$\mathrm{du}=6 \mathrm{x}^{5} \mathrm{dx} \quad$ solving for $\mathrm{x}^{5} \mathrm{dx}$ yields:
$\frac{d u}{6}=x^{5} d x$

Substituting, we get:
$\int x^{5} e^{x^{6}-1} d x=\int e^{u} \frac{d u}{6}=\frac{1}{6} \int e^{u} d u=\frac{1}{6} e^{u}+c$
Replacing $u$ by $x^{6}-1$, we get:
$\frac{1}{6} e^{u}+c=\frac{1}{6} e^{x^{6}-1}+c$.
Ex. $8 \int_{0}^{1} \frac{10 x^{3}-5 x}{\sqrt{x^{4}-x^{2}+6}} d x$

## Solution:

First, let's factor 5 out of the numerator and bring it in front of the integral sign:

$$
\int_{0}^{1} \frac{10 x^{3}-5 x}{\sqrt{x^{4}-x^{2}+6}} d x=5 \int_{0}^{1} \frac{2 x^{3}-x}{\sqrt{x^{4}-x^{2}+6}} d x
$$

If we try using pattern \#2, we would end up with a big mess:
Let $u=\left(x^{4}-x^{2}+6\right)^{1 / 2}$

$$
d u=\frac{1}{2}\left(x^{4}-x^{2}+6\right)^{-1 / 2}\left(4 x^{3}-2 x\right) d x
$$

Since this is more than we bargained for, we need to try a different pattern. Since pattern \#1 is the only other feasible alternative, let's write the square root in the denominator as a power:

$$
\begin{aligned}
& 5 \int_{0}^{1} \frac{2 x^{3}-x}{\sqrt{x^{4}-x^{2}+6}} d x=5 \int_{0}^{1}\left(x^{4}-x^{2}+6\right)^{-1 / 2}\left[2 x^{3}-x\right] d x \\
& \text { Let } u=x^{4}-x^{2}+6 \\
& \mathrm{du}=\left(4 \mathrm{x}^{3}-2 \mathrm{x}\right) \mathrm{dx} \text { solving for }\left(2 \mathrm{x}^{3}-\mathrm{x}\right) \mathrm{dx} \text { yields: } \\
& \frac{d u}{2}=\left(2 x^{3}-x\right) d x
\end{aligned}
$$

Substituting in, we get :

$$
\begin{aligned}
& 5 \int_{0}^{1}\left(x^{4}-x^{2}+6\right)^{-1 / 2}\left[2 x^{3}-x\right] d x=5 \int_{x=0}^{x=1} u^{-1 / 2} \frac{d u}{2} \\
& =\frac{5}{2} \int_{x=0}^{x=1} u^{-1 / 2} d u=\left.\frac{5}{2} \frac{u^{1 / 2}}{\frac{1}{2}}\right|_{x=0} ^{x=1}=\left.\frac{5}{2} \cdot 2 u^{1 / 2}\right|_{x=0} ^{x=1}=\left.5 u^{1 / 2}\right|_{x=0} ^{x=1}
\end{aligned}
$$

Replacing $u$ by $x^{4}-x^{2}+6$, we obtain:
$\left.5 u^{1 / 2}\right|_{x=0} ^{x=1}=\left.5\left(x^{4}-x^{2}+6\right)^{1 / 2}\right|_{0} ^{1}$
$=5 \sqrt{1^{4}-1^{2}+6}-5 \sqrt{0^{4}-0^{2}+6}=5 \sqrt{6}-5 \sqrt{6}=0$

Ex. $9 \int \frac{e^{\sqrt{x}}}{\left(e^{\sqrt{x}}-1\right) \sqrt{x}} d x$

## Solution:

Since e is involved, one might try $\mathrm{u}=\sqrt{\mathrm{x}}$. But $d u=\frac{1}{2 \sqrt{x}} d x$ or $2 d u=\frac{1}{\sqrt{x}}$. If we substitute this into the integral, we do not get something that is easy to integrate:
$\int \frac{e^{\sqrt{x}}}{\left(e^{\sqrt{x}}-1\right) \sqrt{x}} d x=\int \frac{e^{u}}{e^{u}-1} 2 d u=2 \int \frac{e^{u}}{e^{u}-1} d u$
Thus, pattern \#3 does not work. So, we should try something different. Pattern \#2 is the only other feasible choice in this problem:

$$
\begin{aligned}
& \text { Let } u=e^{\sqrt{x}}-1 \\
& d u=e^{\sqrt{x}} \cdot \frac{d}{d x}[\sqrt{x}]=e^{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}} d x \quad \text { (multiply by } 2 \text { ) } \\
& 2 d u=e^{\sqrt{x}} \cdot \frac{1}{\sqrt{x}} d x
\end{aligned}
$$

Substituting in, we get:
$\int \frac{e^{\sqrt{x}}}{\left(e^{\sqrt{x}}-1\right) \sqrt{x}} d x=\int \frac{1}{\left(e^{\sqrt{x}}-1\right)} \cdot e^{\sqrt{x}} \cdot \frac{1}{\sqrt{x}} d x=\int \frac{1}{u} 2 d u$
$=2 \int \frac{1}{u} d u=2 \ln |u|+c$
Replacing $u$ by $e^{\sqrt{x}}-1$, we obtain:
$2 \ln |u|+c=2 \ln \left|e^{\sqrt{x}}-1\right|+c$.
Ex. $10 \int\left[(x-4)^{9}+3(x-4)^{3}+7\right] d x$
Solution:
Since pattern \#2 or \#3 does not apply in this situation, we want to try to use pattern \#1:

$$
\text { Let } u=(x-4)
$$

$$
d u=d x
$$

Substituting in, we get:

$$
\begin{aligned}
& \int\left[(x-4)^{9}+3(x-4)^{3}+7\right] d x=\int\left[u^{9}+3 u^{3}+7\right] d u \\
& =\frac{u^{10}}{10}+\frac{3 u^{4}}{4}+7 u+c
\end{aligned}
$$

Replacing $u$ by $(x-4)$, we obtain:

$$
\frac{u^{10}}{10}+\frac{3 u^{4}}{4}+7 u+c=\frac{(x-4)^{10}}{10}+\frac{3(x-4)^{4}}{4}+7(x-4)+c .
$$

Ex. $11 \int \frac{1}{x[\ln (x)]^{5}} d x$
Solution:
Pattern \#2 will not work since using $u=x[\ln (x)]^{5}$ would create a mess for du. Thus, the only feasible option is pattern \#1. Let's write $[\ln (x)]^{5}$ in the denominator as a power:

$$
\begin{gathered}
\int \frac{1}{x[\ln (x)]^{5}} d x=\int[\ln (x)]^{-5} \frac{1}{x} d x \\
\operatorname{Let} u=[\ln (x)] \\
d u=\frac{1}{x} d x
\end{gathered}
$$

Substituting, we get:

$$
\int[\ln (x)]^{-5} \frac{1}{x} d x=\int u^{-5} d u=\frac{u^{-4}}{-4}+c=-\frac{1}{4 u^{4}}+c
$$

Replacing $u$ by $[\ln (x)]$, we obtain:

$$
-\frac{1}{4 u^{4}}+c=-\frac{1}{4[\ln (x)]^{4}}+c
$$

Ex. 12 When a machine is $t$ years old, the rate at which its value is changing is $-960 \mathrm{e}^{-t / 5}$ dollars per year. If the machine was bought new for $\$ 5,000$, how much will it be worth 10 years later?

## Solution:

We need to begin by integrating $-960 \mathrm{e}^{-t / 5}$ with respect to $t$ to find the function that will give us the value of the machine:

$$
V(t)=\int-960 e^{-t / 5} d t=-960 \int e^{-t / 5} d t
$$

$$
\text { Let } \mathrm{u}=-\mathrm{t} / 5
$$

$$
\begin{aligned}
& d u=-d t / 5 \quad \text { solving for dt yields: } \\
& -5 d u=d t
\end{aligned}
$$

Substituting, we get:
$V(t)=-960 \int e^{-t / 5} d t=-960 \int e^{u}(-5) d u$
$=4800 \int e^{u} d u=4800 e^{u}+c$
Replacing u by $-\mathrm{t} / 5$, we obtain:
$4800 e^{u}+c=4800 e^{-t / 5}+c$
When the machine was new $(t=0)$, then the value $V(t)$
was $\$ 5000$. Plugging and solving for c yields:

$$
\begin{aligned}
& \mathrm{V}(0)=4800 \mathrm{e}^{-(0) / 5}+\mathrm{c}=5000 \\
& 4800 \mathrm{e}^{0}+\mathrm{c}=5000 \\
& 4800+\mathrm{c}=5000 \\
& \mathrm{c}=200 \\
& \text { Thus, } \mathrm{V}(\mathrm{t})=4800 \mathrm{e}^{-\mathrm{t} / 5}+\mathrm{c}=4800 \mathrm{e}^{-\mathrm{t} / 5}+200
\end{aligned}
$$

Ten years later corresponds to $t=10$. Evaluating $\mathrm{V}(\mathrm{t})$ at 10 yields:
$\mathrm{V}(10)=4800 \mathrm{e}^{-\mathrm{t} / 5}+200=4800 \mathrm{e}^{-(10) / 5}+200$
$=4800 \mathrm{e}^{-2}+200 \approx \$ 849.61$.
Hence, the machine was worth $\$ 849.61$ ten years later.

