Section 6.3 - Improper Integrals

Improper integrals are integrals where the limits of integration are not finite. Either the upper limit of integration is $+\infty$, the lower limit of integration is $-\infty$, or both. Since we can only integrate on a finite interval, we integrate as if we have a finite interval, replacing the infinite limit of integration with N , and take the limit as $N \rightarrow \infty$ (or $-\infty$). If the limit is finite, we say that the integral converges. If the limit is not finite, we say the integral diverges. Let's summarize these ideas:

Improper Integrals

If $f(x)$ is continuous, then

1) $\int_{a}^{+\infty} f(x) d x=\lim _{N \rightarrow+\infty} \int_{a}^{N} f(x) d x$
2) $\int_{-\infty}^{b} f(x) d x=\lim _{N \rightarrow-\infty} \int_{N}^{b} f(x) d x$
3) $\quad \int_{-\infty}^{+\infty} f(x) d x=\lim _{N \rightarrow-\infty} \int_{N}^{0} f(x) d x+\lim _{N \rightarrow+\infty} \int_{0}^{M} f(x) d x$

If the limit(s) are finite, the integral converges. If the limit(s) are infinite, the integral diverges.

Before we look at some examples, we will look at a property involving limits at infinity that occurs frequently in applications. We will not prove it, but assume it to be true:

Special Limit Property:

Let $m>0$ and $k>0$. Then $\lim _{N \rightarrow+\infty} N^{m} e^{-k N}=0$.

Evaluate the following:

Ex. $1 \int_{1}^{\infty} x^{-3 / 2} \mathrm{dx}$

Solution:

First, we rewrite the integral as the limit as $\mathrm{N} \rightarrow \infty$ of the integral from 1 to N :

$$
\int_{1}^{\infty} x^{-3 / 2} d x=\lim _{N \rightarrow+\infty} \int_{1}^{N} x^{-3 / 2} d x
$$

Integrating, we get:
$\lim _{N \rightarrow+\infty} \int_{1}^{N} x^{-3 / 2} d x=\left.\lim _{N \rightarrow+\infty} \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}}\right|_{1} ^{N}=\left.\lim _{N \rightarrow+\infty} \frac{-2}{\sqrt{x}}\right|_{1} ^{N}$
$=\lim _{N \rightarrow+\infty} \frac{-2}{\sqrt{N}}-\frac{-2}{\sqrt{1}}=0+2=2$. Hence, the integral
converges.
Ex. $2 \int_{-\infty}^{-2} \frac{2 x}{x^{2}+5} d x$
Solution:
First, we rewrite the integral as the limit as $N \rightarrow-\infty$ of the integral from N to -2 :
$\int_{-\infty}^{-\infty} \frac{2 x}{x^{2}+5} d x=\lim _{N \rightarrow-\infty} \int_{N}^{-2} \frac{2 x}{x^{2}+5} d x$
Using substitution and integrating, we get:
Let $u=x^{2}+5$
$d u=2 x d x$
Thus, $\lim _{N \rightarrow-\infty} \int_{N}^{-2} \frac{2 x}{x^{2}+5} d x=\lim _{N \rightarrow-\infty} \int_{N}^{-2} \frac{1}{u} d u$
$=\left.\lim _{N \rightarrow-\infty} \ln |u|\right|_{x=N} ^{x=-2}=\left.\lim _{N \rightarrow-\infty} \ln \left|x^{2}+5\right|\right|_{N} ^{-2}$
$=\lim _{N \rightarrow-\infty} \ln \left|(-2)^{2}+5\right|-\ln \left|N^{2}+5\right|$
$=\lim _{N \rightarrow-\infty} \ln (9)-\ln \left(N^{2}+5\right)=-\infty$. Hence, the integral
diverges.
Ex. $3 \int_{0}^{\infty} x e^{-x} d x$

Solution:

First, we rewrite the integral as the limit as $N \rightarrow \infty$ of the integral from 0 to N :
$\int_{0}^{\infty} x e^{-x} d x=\lim _{N \rightarrow+\infty} \int_{0}^{N} x e^{-x} d x$
Using Integration by parts and integrating, we get:
I) Let $u=x$ and $d v=e^{-x} d x$.
II) Then $d u=d x$ and $v=\int e^{-x} d x=-e^{-x}$.
III) Plug into the integration by parts formula and integrate:

$$
\begin{aligned}
& \int u \cdot d v=u \cdot v-\int v \cdot d u \\
& \lim _{N \rightarrow+\infty} \int_{0}^{N} x e^{-x} d x \\
& =\lim _{N \rightarrow+\infty}\left[\left.x \cdot\left(-e^{-x}\right)\right|_{0} ^{N}-\int_{0}^{N}-e^{-x} \cdot d x\right] \\
& =\lim _{N \rightarrow+\infty}\left[-\left.x e^{-x}\right|_{0} ^{N}+\int_{0}^{N} e^{-x} d x\right] \\
& =\lim _{N \rightarrow+\infty}\left[-x e^{-x}-\left.e^{-x}\right|_{0} ^{N}\right] \\
& =\lim _{N \rightarrow+\infty}\left[-\mathrm{Ne}^{-N}-e^{-N}-\left(-0-e^{-0}\right)\right] \\
& =\lim _{N \rightarrow+\infty}\left[-\mathrm{Ne}^{-N}-e^{-N}+1\right]
\end{aligned}
$$

But, by the Special Limit Property, $\lim _{N \rightarrow+\infty}-\mathrm{Ne}^{-N}=0$
So, we get:
$=-0-0+1=1$. The integral converges.
Ex. 4 Suppose an investment will generate $\$ 3500$ per year in perpetuity. If it is invested at 7% compounded continuously, what is the present value of the investment?

Solution:

This is a lot like the continuous income stream problems we worked in section 6.2. The only difference is that this investment goes forever. Thus, the present value is:

$$
\int_{0}^{\infty} 3500 \mathrm{e}^{-0.07 \mathrm{x}} \mathrm{dx}
$$

We rewrite the integral as the limit as $\mathrm{N} \rightarrow \infty$ of the integral from 0 to N :

$$
\int_{0}^{\infty} 3500 \mathrm{e}^{-0.07 x} \mathrm{dx}=\lim _{N \rightarrow+\infty} \int_{0}^{N} 3500 \mathrm{e}^{-0.07 x} \mathrm{dx}
$$

$$
=\lim _{N \rightarrow+\infty} 3500 \int_{0}^{N} e^{-0.07 x} d x
$$

Integrating, we get:

$$
=\lim _{N \rightarrow+\infty} 3500 \int_{0}^{N} e^{-0.07 x} d x=\left.\lim _{N \rightarrow+\infty} 3500 \frac{e^{-0.07 x}}{-0.07}\right|_{0} ^{N}
$$

$$
=\lim _{N \rightarrow+\infty}-50000\left[e^{-0.07 N}-e^{-0.07(0)}\right]
$$

$$
=\lim _{N \rightarrow+\infty}-50000\left[\mathrm{e}^{-0.07 \mathrm{~N}}-1\right]=-50000[0-1]
$$

= \$50,000.

The present value of the account is $\$ 50,000$.
Notice that our result is simply $\frac{Q_{0}}{k}$. This is not a coincidence since $\lim _{N \rightarrow+\infty} \int_{0}^{N} Q_{0} e^{-k x} d x=\frac{Q_{0}}{k}$.

Another important application in mathematics using improper integrals are probability density functions. If you are trying to determine the life span of a particular model of T.V., the life span X can be thought of as a continuous random variable since the life span will vary among individual T.V.'s. The probability density function P measure the probability that an individual T.V. will last a certain amount of time. For example, we may want to know how likely will a particular T.V. set last 3 to 5 years (denoted $P(3 \leq X \leq 5)$) or how likely will it last more than six years (denoted $P(X>6)$). There are some basic properties that a function must satisfy in order to be a probability density function:

Probability Density Functions

Let X be a continuous random variable. Then $f(x)$ is a probability density function if all the following are satisfied:

1) $f(x) \geq 0$ for all real x.
2) The total area under the graph of $f(x)$ is 1 .
3) The probability that X lies in $[a, b]$ is

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Let's look at an example.

Ex. 5 The life span of the CD House's radios is measured by a random variable X with probability density function $f(x)=0.005 e^{-0.005 x}$, where x denotes the lifespan (in months) of a randomly selected radio.
a) What is the probability that the life span of a randomly selected radio will be between 48 months and 72 months?
b) What is the probability that the life span of a randomly selected radio will be greater than 84 months?
Solution:
a) $P(48 \leq X \leq 72)=\int_{48}^{72} 0.005 \mathrm{e}^{-0.005 x} \mathrm{dx}$

$$
\begin{aligned}
& =\left.0.005 \frac{\mathrm{e}^{-0.005 x}}{-0.005}\right|_{48} ^{72}=-\left.\mathrm{e}^{-0.005 x}\right|_{48} ^{72}= \\
& =-\mathrm{e}^{-0.005(72)}+\mathrm{e}^{-0.005(48)}=-\mathrm{e}^{-0.36}+\mathrm{e}^{-0.24} \\
& \approx 0.08895 .
\end{aligned}
$$

Thus, there is 8.895% chance the radio will last between 48 and 72 months.
b) $P(X>84)=\int_{84}^{\infty} 0.005 \mathrm{e}^{-0.005 x} \mathrm{dx}$
$=\lim _{N \rightarrow+\infty} \int_{84}^{N} 0.005 \mathrm{e}^{-0.005 \mathrm{x}} \mathrm{dx}$
$=\left.\lim _{N \rightarrow+\infty} 0.005 \frac{e^{-0.005 x}}{-0.005}\right|_{84} ^{N}=\lim _{N \rightarrow+\infty}-\left.e^{-0.005 x}\right|_{84} ^{N}$
$=\lim _{\mathrm{N} \rightarrow+\infty}-\mathrm{e}^{-0.005(\mathrm{~N})}+\mathrm{e}^{-0.005(84)}$
$=\lim _{\mathrm{N} \rightarrow+\infty}-\mathrm{e}^{-0.005(\mathrm{~N})}+\mathrm{e}^{-0.42}=0+\mathrm{e}^{-0.42}$
≈ 0.65705.
Thus, there is 65.705% chance the radio will last longer than 84 months.

