Sect 10.3 - Absolute Value Equations

Concept #1 Solving Absolute Value Equations

Recall that the absolute value of a number is the distance that number is from zero. So, |-4| = 4 and |4| = 4. If we have an equation like |x| = 4, this means that x = 4 or x = -4. So, the solution to the equation is $\{-4, 4\}$. The absolute value has to be equal to a positive number. If we have an equation where the absolute value is equal to a negative number, then the equation has no solution.

Property #1: Absolute Value Equations in the form |x| = a

If a is a real number, then

- 1) If a < 0, then |x| = a has no solution.
- 2) if $a \ge 0$, then |x| = a has solutions of x = a and x = -a.

Solve the following:

Ex. 1c	x = 7.3 - 3 y = -27		x – 5 = – 5 b + 13 = 7		
<u>Solu</u>					
a)	Since $ \mathbf{x} = 7.3$, then the solutions are $\{-7.3, 7.3\}$.				
b)	We need to first get the absolute value by itself:				
	x - 5 = - 5	(add 5 to both sides)			
	x = 0				
	Since $ x = 0$, $x = 0$ and $x = -0$ which means $x = 0$.				
	solution is {0}.				
C)	We need to first get the absolute value by itself:				
	− 3 y = − 27	(divide both	n sides by – 3)		
	y = 9				
	Since $ y = 9$, then the solutions are $\{-9, 9\}$.				
d)	We need to first get the absolute value by itself:				
	b + 13 = 7	(subtract 1	3 from both sides)		
	b = - 6				
	But the absolute value cannot equal a negative number, so				
	.				

Solving Absolute Value Equations

- 1) Isolate the absolute value on one side of the equation and simplify the other side to get an equation in the form |x| = a.
- 2) Use property #1.
- 3) If there is no solution from property one, then we are finished. Otherwise, solve the resulting equations from property #1.
- 4) Check the solutions. It is possible to get a false solution.

Solve the following:

Ex. 2a	3x + 4 = 5		Ex. 2b	2a – 3 – 6 = – 9	
Ex. 2c	- 2 3y - 1 = - 16		Ex. 2d	2 2x-1 +6=14x	
<u>Solu</u>	tion:				
a)	3x + 4 = 5		(the absolute value is already isolated)		
			(use property #1)		
	3x + 4 = 5		3x + 4 = -5		
	3x = 1	or	3x = -9		
	$\mathbf{x} = \frac{1}{3}$	or	x = - 3		
	Check				
	3x + 4 = 5		3x + 4 = 5		
	$\left 3\left(\frac{1}{3}\right) + 4 \right = 5$		3(-3) + 4 = 5		
	1 + 4 = 5		-9+4 =5		
	5 = 5		-5 = 5		
	Checks		Checks		
	The solutions ar	e {– 3	$, \frac{1}{3}$.		
b)	2a – 3 – 6 = –	- 9	(isolate the abso	lute value)	
	2a – 3 = – 3		(the absolute val	ue ≠ negative #)	
	No solution.				
	The solution is {	}.			
c)	- 2 3y - 1 = -	- 16	(isolate the abso	lute value)	
	3y – 1 = 8		(use property #1)	
			3y - 1 = -8	,	
	3y = 9	or	3y = -7		
	y = 3	or	$y = -\frac{7}{3}$		

Check -2 | 3(3) - 1 | = -16 $-2 | 3(-\frac{7}{3}) - 1 | = -16$ -2 | 9 - 1 | = -16 -2 | -7 - 1 | = -16-2|-8|=-16 -2|8|=-16 -2(8) = -16-2(8) = -16Checks Checks The solutions are $\{-\frac{7}{3}, 3\}$. 2|2x-1|+6=14x(isolate the absolute value) 2|2x-1| = 14x-6|2x - 1| = 7x - 3(use property #1) 2x - 1 = 7x - 3or 2x - 1 = -(7x - 3)or 2x - 1 = -7x + 3-5x - 1 = -3or -5x = -29x - 1 = 3or 9x = 4x = 0.4or $x = \frac{4}{9}$ x = 0.4Check 2 | 2(0.4) - 1 | + 6 = 14(0.4) or $2 | 2(\frac{4}{9}) - 1 | + 6 = 14(\frac{4}{9})$ or $2\left|\frac{8}{9}-1\right|+6=\frac{56}{9}$ 2 0.8 - 1 + 6 = 5.6 or $2 \left| \frac{8}{9} - \frac{9}{9} \right| + 6 = \frac{56}{9}$ 2 | - 0.2 | + 6 = 5.6 or $2\left|-\frac{1}{9}\right| + 6 = \frac{56}{9}$ 0.4 + 6 = 5.6or $\frac{2}{9} + \frac{54}{9} = \frac{56}{9}$ 6.4 = 5.6Does Not Check. Checks The solution is $\left\{\frac{4}{\alpha}\right\}$.

Concept #2 Solving equations that have two absolute values.

d)

If we have an equation like |a| = |b|, this means that either a and b are equal or have opposites signs. In other words, either a = b or a = -b.

Property #2: Absolute Value Equations in the form |x| = |y|If |x| = |y|, then x = y or x = -y

Solve the following:

Ex. 3a
$$|5x-4| = |5x+8|$$
 Ex. 3b $|2r-7| = |3r+11|$
Ex. 3c $-|4p-1| = |p+3|$
Solution:
a) Since $|5x-4| = |5x+8|$, then
 $5x-4 = 5x+8$ or $5x-4 = -(5x+8)$
 $-4 = 8$ or $5x-4 = -5x-8$
No Solution or $10x-4 = -8$
 $10x = -4$
 $x = -0.4$
Check
 $|5(-0.4)-4| = |5(-0.4)+8|$
 $|-2-4| = |-2+8|$
 $|-6| = |6|$
 $6 = 6$
Checks
The solution is $\{-0.4\}$.
b) Since $|2r-7| = |3r+11|$, then
 $2r-7 = 3r+11$ or $2r-7 = -(3r+11)$
 $-r-7 = 11$ or $2r-7 = -3r-11$
 $-r = 18$ or $5r = 7 = -11$
 $r = -18$ or $5r = -4$
Check
 $|2(-18)-7| = |3(-18)+11|$
 $|-36-7| = |-54+11|$
 $|-43| = |-43|$
 $43 = 43$ Checks
 $|2(-0.8)-7| = |3(-0.8)+11|$
 $|-1.6-7| = |-2.4+11|$
 $|-8.6| = |8.6|$
 $8.6 = 8.6$ Checks
The solutions are $\{-18, -0.8\}$.
c) Since $-|4p-1|$ is negative and $|p+3|$ cannot be negative, there is no solution. The solution is $\{-\}$.