Sect 10.3 - Absolute Value Equations

Concept \#1 Solving Absolute Value Equations
Recall that the absolute value of a number is the distance that number is from zero. So, $|-4|=4$ and $|4|=4$. If we have an equation like $|x|=4$, this means that $x=4$ or $x=-4$. So, the solution to the equation is $\{-4,4\}$. The absolute value has to be equal to a positive number. If we have an equation where the absolute value is equal to a negative number, then the equation has no solution.

Property \#1: Absolute Value Equations in the form $|x|=a$

 If a is a real number, then1) If $a<0$, then $|x|=a$ has no solution.
2) if $a \geq 0$, then $|x|=a$ has solutions of $x=a$ and $x=-a$.

Solve the following:

Ex. 1a $\quad|x|=7.3$
Ex. 1b $\quad|x|-5=-5$
Ex. 1c $\quad-3|y|=-27$
Ex. 1d $\quad|b|+13=7$
Solution:
a) Since $|x|=7.3$, then the solutions are $\{-7.3,7.3\}$.
b) We need to first get the absolute value by itself:

$$
\begin{array}{ll}
|x|-5=-5 & \text { (add } 5 \text { to both sides) } \\
|x|=0 &
\end{array}
$$

Since $|x|=0, x=0$ and $x=-0$ which means $x=0$. So, the solution is $\{0\}$.
c) We need to first get the absolute value by itself:

$$
\begin{aligned}
& -3|y|=-27 \\
& |y|=9
\end{aligned}
$$

Since $|y|=9$, then the solutions are $\{-9,9\}$.
d) We need to first get the absolute value by itself:

$$
\begin{aligned}
& |\mathrm{b}|+13=7 \quad \text { (subtract } 13 \text { from both sides) } \\
& |\mathrm{b}|=-6
\end{aligned}
$$

But the absolute value cannot equal a negative number, so the solution is $\}$.

Solving Absolute Value Equations

1) Isolate the absolute value on one side of the equation and simplify the other side to get an equation in the form $|x|=a$.
2) Use property \#1.
3) If there is no solution from property one, then we are finished. Otherwise, solve the resulting equations from property \#1.
4) Check the solutions. It is possible to get a false solution.

Solve the following:

Ex. 2a $\quad|3 x+4|=5$
Ex. 2b $\quad|2 a-3|-6=-9$
Ex. 2c $\quad-2|3 y-1|=-16$
Ex. 2d $\quad 2|2 x-1|+6=14 x$
Solution:
a) $\quad|3 x+4|=5$
(the absolute value is already isolated) (use property \#1)
$3 x+4=5 \quad$ or $\quad 3 x+4=-5$
$3 x=1 \quad$ or $\quad 3 x=-9$
$x=\frac{1}{3} \quad$ or $\quad x=-3$
Check
$|3 x+4|=5 \quad|3 x+4|=5$
$\left|3\left(\frac{1}{3}\right)+4\right|=5 \quad|3(-3)+4|=5$
$|1+4|=5 \quad|-9+4|=5$
$|5|=5 \quad|-5|=5$
Checks
Checks
The solutions are $\left\{-3, \frac{1}{3}\right\}$.
b) $|2 a-3|-6=-9 \quad$ (isolate the absolute value)
$|2 a-3|=-3 \quad$ (the absolute value \neq negative \#)
No solution.
The solution is $\}$.
c) $\quad-2|3 y-1|=-16$ (isolate the absolute value)
$|3 y-1|=8 \quad$ (use property \#1)
$3 y-1=8 \quad$ or $\quad 3 y-1=-8$
$3 y=9 \quad$ or $\quad 3 y=-7$
$y=3 \quad$ or $\quad y=-\frac{7}{3}$

Check

$$
\begin{array}{ll}
-2|3(3)-1|=-16 & -2\left|3\left(-\frac{7}{3}\right)-1\right|=-16 \\
-2|9-1|=-16 & -2|-7-1|=-16 \\
-2|8|=-16 & -2|-8|=-16 \\
-2(8)=-16 & -2(8)=-16 \\
\text { Checks } & \text { Checks }
\end{array}
$$

The solutions are $\left\{-\frac{7}{3}, 3\right\}$.
d) $\quad 2|2 x-1|+6=14 x \quad$ (isolate the absolute value)

2| $2 x-1 \mid=14 x-6$
$|2 x-1|=7 x-3 \quad$ (use property \#1)
$2 x-1=7 x-3 \quad$ or $2 x-1=-(7 x-3)$
$-5 x-1=-3 \quad$ or $2 x-1=-7 x+3$
$-5 x=-2 \quad$ or $\quad 9 x-1=3$
$x=0.4 \quad$ or $\quad 9 x=4$
$x=0.4 \quad$ or $\quad x=\frac{4}{9}$
Check
2| $2(0.4)-1 \mid+6=14(0.4)$ or $2\left|2\left(\frac{4}{9}\right)-1\right|+6=14\left(\frac{4}{9}\right)$
2| $0.8-1 \mid+6=5.6 \quad$ or $\quad 2\left|\frac{8}{9}-1\right|+6=\frac{56}{9}$
$2|-0.2|+6=5.6 \quad$ or $\quad 2\left|\frac{8}{9}-\frac{9}{9}\right|+6=\frac{56}{9}$
$0.4+6=5.6 \quad$ or
or $\frac{2}{9}+\frac{54}{9}=\frac{56}{9}$
Does Not Check.

Checks

The solution is $\left\{\frac{4}{9}\right\}$.
Concept \#2 Solving equations that have two absolute values.
If we have an equation like $|a|=|b|$, this means that either a and b are equal or have opposites signs. In other words, either $\mathrm{a}=\mathrm{b}$ or $\mathrm{a}=-\mathrm{b}$.

Property \#2: Absolute Value Equations in the form $|x|=|y|$
If $|x|=|y|$, then $x=y$ or $x=-y$

Solve the following:

Ex. 3a $\quad|5 x-4|=|5 x+8| \quad$ Ex. $3 b \quad|2 r-7|=|3 r+11|$
Ex. 3c $\quad-|4 p-1|=|p+3|$
Solution:
a) Since $|5 x-4|=|5 x+8|$, then

$$
\begin{array}{lll}
5 x-4=5 x+8 & \text { or } & 5 x-4=-(5 x+8) \\
-4=8 & \text { or } & 5 x-4=-5 x-8 \\
\text { No Solution } & \text { or } & 10 x-4=-8 \\
& & 10 x=-4 \\
& & x=-0.4
\end{array}
$$

Check

$$
\begin{aligned}
& |5(-0.4)-4|=|5(-0.4)+8| \\
& |-2-4|=|-2+8| \\
& |-6|=|6| \\
& 6=6
\end{aligned}
$$

Checks
The solution is $\{-0.4\}$.
b) Since $|2 r-7|=|3 r+11|$, then

$$
\begin{array}{lccc}
2 r-7=3 r+11 & \text { or } & 2 r-7=-(3 r+11) \\
-r-7=11 & \text { or } & & 2 r-7=-3 r-11 \\
-r=18 & & \text { or } & 5 r-7=-11 \\
r=-18 & & \text { or } & 5 r=-4 \\
& & r=-0.8
\end{array}
$$

Check

$$
\begin{aligned}
& |2(-18)-7|=|3(-18)+11| \\
& |-36-7|=|-54+11| \\
& |-43|=|-43| \\
& 43=43 \text { Checks } \\
& |2(-0.8)-7|=|3(-0.8)+11| \\
& |-1.6-7|=|-2.4+11| \\
& |-8.6|=|8.6| \\
& 8.6=8.6 \text { Checks }
\end{aligned}
$$

The solutions are $\{-18,-0.8\}$.
c) Since $-|4 p-1|$ is negative and $|p+3|$ cannot be negative, there is no solution. The solution is $\}$.

