Sect 11.2 - Rational Exponents

Concept \#1 Definition of $a^{1 / n}$ and $a^{m / n}$.
In this section, we want to learn how to write radicals using exponential notation. To see how this is done, let's consider the \sqrt{a} where $a \geq 0$. We want to represent \sqrt{a} as $a^{\text {some power }}$. Let p be that power. Thus, $\sqrt{a}=a^{p}$. Now, if we multiply the $\sqrt{\mathrm{a}}$ by itself, we will get a:

$$
\begin{array}{ll}
\sqrt{a} \cdot \sqrt{a}=a & \text { (substitute } \left.\sqrt{a}=a^{p}\right) \\
a^{p} \cdot a^{p}=a & \text { (multiplying powers with the same base, add exponents) } \\
a^{p+p}=a & \\
a^{2 p}=a & \text { (the exponent of } a \text { is } 1, \text { thus } 2 p=1) \\
2 p=1 & \\
p=\frac{1}{2} . & \text { Hence, } a^{1 / 2}=\sqrt{a}
\end{array}
$$

Now, let's try this same idea for $\sqrt[3]{b}$. Let $b^{r}=\sqrt[3]{b}$.

$$
\left.\sqrt[3]{b} \cdot \sqrt[3]{b} \cdot \sqrt[3]{b}=b \quad \text { (substitute } \sqrt[3]{b}=b^{r}\right)
$$

$b^{r} \cdot b^{r} \cdot b^{r}=b$
$b^{r+r+r}=b$
$b^{3 r}=b$
Hence, $3 r=1$ which means $r=\frac{1}{3}$.
Notice a pattern. We are get the fraction $1 / n$ for the exponent where n is equal to the index. Hence, in general, $\sqrt[n]{a}=a^{1 / n}$ provided that the radical is defined.

Definition of $a^{1 / n}$

Let n be a natural number greater than 1. If $\sqrt[n]{a}$ is a real number, then $a^{1 / n}=\sqrt[n]{a}$.

Simplify the following:

Ex. 1a	$(-64)^{1 / 3}$	Ex. 1b	$81^{1 / 4}$
Ex. 1c	$-144^{1 / 2}$	Ex. 1d	$(-144)^{1 / 2}$
Ex. 1e	$-(-32)^{-1 / 5}$		

Solution:
a) $(-64)^{1 / 3}=\sqrt[3]{-64}=\sqrt[3]{(-4)^{3}}=-4$
b) $81^{1 / 4}=\sqrt[4]{81}=\sqrt[4]{3^{4}}=3$
c) $-144^{1 / 2}=-\sqrt{144}=-12$
d) $(-144)^{1 / 2}=\sqrt{-144}$ which is undefined.
e) Recall that $\mathrm{a}^{-r}=\frac{1}{\mathrm{a}^{r}}$. So, $-(-32)^{-1 / 5}=-1 \bullet(-32)^{-1 / 5}=\frac{-1}{(-32)^{1 / 5}}$

$$
=\frac{-1}{\sqrt[5]{-32}}=\frac{-1}{\sqrt[5]{(-2)^{5}}}=\frac{-1}{-2}=\frac{1}{2} .
$$

Recall that power rule for exponents: $\left(a^{m}\right)^{n}=a^{m \cdot n}$. If we are asked to simplify $\left(16^{1 / 4}\right)^{3}$, we would first evaluate $16^{1 / 4}$ and then cube the result:

$$
\left(16^{1 / 4}\right)^{3}=(\sqrt[4]{16})^{3}=(2)^{3}=8
$$

Similarly, if we had $\left(16^{3}\right)^{1 / 4}$, we would evaluate 16^{3} and then take the fourth root of the result:

$$
\left(16^{3}\right)^{1 / 4}=\sqrt[4]{16^{3}}=\sqrt[4]{4096}=8
$$

Now, applying the power rule:

$$
\left(16^{1 / 4}\right)^{3}=16^{(1 / 4) \cdot 3}=16^{3 / 4} \quad \text { and } \quad\left(16^{3}\right)^{1 / 4}=16^{3(1 / 4)}=16^{3 / 4}
$$

This means that $16^{3 / 4}=(\sqrt[4]{16})^{3}=\sqrt[4]{16^{3}}=8$ from above. We can generalize this into a definition.

Definition of $a^{m / n}$ (rational exponents)
Let a be a real number and m and n be natural numbers where $n>1$. If m / n is reduced to lowest terms and $\sqrt[n]{a}$ is a real number (defined), then

1) $a^{m / n}=(\sqrt[n]{a})^{m} \quad$ and
2) $a^{m / n}=\sqrt[n]{a^{m}}$

Simplify the following:

Ex. 2a $\quad 27^{2 / 3}$
Ex. 2c $\quad\left(\frac{1}{36}\right)^{5 / 2}$
Ex. 2b $\quad 25^{7 / 2}$

Ex. 2e $\quad(-8)^{7 / 3}$
Solution:
a) Let's use part one of the definition:

$$
27^{2 / 3}=(\sqrt[3]{27})^{2}=(3)^{2}=9
$$

b) $\quad 25^{7 / 2}=(\sqrt{25})^{7}=(5)^{7}=78,125$
c) $\left(\frac{1}{36}\right)^{5 / 2}=\left(\sqrt{\frac{1}{36}}\right)^{5}=\left(\frac{1}{6}\right)^{5}=\frac{1}{7776}$.
d) $(-2401)^{5 / 4}=(\sqrt[4]{-2401})^{5}$, but $\sqrt[4]{-2401}$ is not a real number.

Thus, $(-2401)^{5 / 4}$ is undefined in the real numbers.
e) $\quad(-8)^{7 / 3}=(\sqrt[3]{-8})^{7}=(-2)^{7}=-128$.

Concept \#2 Converting between Rational Exponents and Radical Notation

Convert the following into radical notation. Assume the variables represent positive real numbers:

Ex. 3a $\quad a^{4 / 7}$
Ex. 3c $\quad 5 a^{1 / 3}$
Solution:
a) $a^{4 / 7}=\sqrt[7]{a^{4}}$
b) $\left(7 x^{3}\right)^{1 / 4}=\sqrt[4]{7 x^{3}}$
c) $5 a^{1 / 3}=5 \sqrt[3]{\mathrm{a}}$
d) $\quad w^{-4 / 5}=\frac{1}{w^{4 / 5}}=\frac{1}{\sqrt[5]{w^{4}}}$.

Convert the following into an expression using rational exponents. Assume the variables represent positive real numbers:

Ex. 4a

Ex. 4b
$6 \sqrt[3]{5 b}$
Ex. 4c
$-3 \sqrt[5]{a^{2}}$
Solution:
a) $\sqrt[4]{b^{5}}=b^{5 / 4}$
b) $\quad 6 \sqrt[3]{5 b}=6(5 b)^{1 / 3}$
c) $-3 \sqrt[5]{a^{2}}=-3 a^{2 / 5}$
d) $(\sqrt[5]{-3 a})^{2}=(-3 a)^{2 / 5}$

Ex. 3b	$\left(7 x^{3}\right)^{1 / 4}$
Ex. 3d	$w^{-4 / 5}$

Concept \#3 Properties of Rational Exponents
The properties of exponents we developed in chapter 5 can be used with rational exponents.

Properties of Integral Exponents

Assume that a and b are non-zero real numbers and m and n are rational numbers such a^{m}, a^{n}, b^{m}, and b^{n} are real numbers.

Description	Property	Example
1. Multiplying like bases	The Product Rule 1. $a^{m} a^{n}=a^{m+n}$	$x^{2 / 5} x^{4 / 5}=x^{2 / 5+4 / 5}=x^{6 / 5}$
2. Dividing like bases	The Quotient Rule 2. $\frac{b^{m}}{b^{n}}=b^{m-n}$	$\frac{b^{6 / 7}}{b^{2 / 7}}=b^{6 / 7-2 / 7}=b^{4 / 7}$
3. A power raised by a power	The Power Rule 3. $\left(a^{m}\right)^{n}=a^{m \bullet n}$	$\left(x^{3 / 5}\right)^{2 / 7}=x^{3 / 5 \cdot 2 / 7}=x^{6 / 35}$
4. A product to a power	Power of a Product Rule 4. $(a b)^{n}=a^{n} b^{n}$	$(\mathrm{ab})^{2 / 3}=\mathrm{a}^{2 / 3} \mathrm{~b}^{2 / 3}$
5. A quotient to a power	Power of a Quotient Rule 5. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$	$\left(\frac{a}{b}\right)^{4 / 5}=\frac{a^{4 / 5}}{b^{4 / 5}}$
Description	Definition	Example
1. Negative Exponents	1. $a^{-n}=\left(\frac{1}{a}\right)^{n}=\frac{1}{a^{n}}$	$x^{-7 / 3}=\frac{1}{x^{7 / 3}}$
2. Zero Exponents	2. $a^{0}=1$	$(-5)^{0}=1$

Use the properties of exponents to simplify the following:

Ex. 5 a
$\frac{x^{2 / 3} \cdot x^{1 / 4}}{x^{5 / 6}}$
Ex. 5b $\quad\left(\frac{a^{2 / 3} b^{1 / 4}}{c^{3 / 8}}\right)^{12}$
Ex. 5c $\quad\left(\frac{1875 y^{2} z^{-7}}{3 y^{-6} z^{5}}\right)^{1 / 4}$
Ex. 5d
$\sqrt[3]{\sqrt{x}}$

Solution:

a) Multiplying powers of the same base, add the exponents:

$$
\frac{x^{2 / 3} \cdot x^{1 / 4}}{x^{5 / 6}}=\frac{x^{2 / 3+1 / 4}}{x^{5 / 6}}=\frac{x^{11 / 12}}{x^{5 / 6}}
$$

Dividing powers of the same base, subtract the exponents:

$$
\frac{x^{11 / 12}}{x^{5 / 6}}=x^{11 / 12-5 / 6}=x^{1 / 12} \text { or } \sqrt[12]{x} .
$$

b) Apply the product and quotient to a power rules:

$$
\begin{aligned}
& \left(\frac{a^{2 / 3} b^{1 / 4}}{c^{3 / 8}}\right)^{12}=\frac{\left(a^{2 / 3}\right)^{12}\left(b^{1 / 4}\right)^{12}}{\left(c^{3 / 8}\right)^{12}} \quad \text { (apply the power rule) } \\
& =\frac{a^{8} b^{3}}{c^{9 / 2}} .
\end{aligned}
$$

c) Simplify inside the parenthesis using the quotient rule:

$$
\left(\frac{1875 y^{2} z^{-7}}{3 y^{-6} z^{5}}\right)^{1 / 4}=\left(\frac{625 y^{2-(-6)} z^{-7-5}}{1}\right)^{1 / 4}=\left(\frac{625 y^{8} z^{-12}}{1}\right)^{1 / 4}
$$

Now, use the definition of negative exponents:

$$
\left(\frac{625 y^{8} z^{-12}}{1}\right)^{1 / 4}=\left(\frac{625 y^{8}}{z^{12}}\right)^{1 / 4}
$$

Apply the product and quotient to a power rule:

$$
\left(\frac{625 y^{8}}{z^{12}}\right)^{1 / 4}=\frac{(625)^{1 / 4}\left(y^{8}\right)^{1 / 4}}{\left(z^{12}\right)^{1 / 4}}
$$

Apply the power rule:

$$
\frac{(625)^{1 / 4}\left(y^{8}\right)^{1 / 4}}{\left(z^{12}\right)^{1 / 4}}=\frac{\sqrt[4]{625}\left(y^{2}\right)}{z^{3}}=\frac{5 y^{2}}{z^{3}} .
$$

d) $\sqrt[3]{\sqrt{x}}=(\sqrt{x})^{1 / 3}=\left(x^{1 / 2}\right)^{1 / 3} \quad$ (multiply the exponents)
$=x^{1 / 2 \cdot 1 / 3}=x^{1 / 6}=\sqrt[6]{x}$.

Concept \#4 Applications involving Rational Exponents

Solve the following:

Ex. $6 \quad$ The radius r of a right circular cone of volume V and height h is given by $r=\left(\frac{3 V}{\pi h}\right)^{1 / 2}$. Find the radius of a cone with a volume of $680.595 \mathrm{in}^{3}$ and a height of 9 in . Use $\pi \approx 3.14$.

Solution:

$r=\left(\frac{3 V}{\pi h}\right)^{1 / 2}=r=\left(\frac{3(680.595)}{(3.14)(9)}\right)^{1 / 2}=(72.25)^{1 / 2}=\sqrt{72.25}=8.5$
So, the radius is 8.5 inches.

