Sect 11.2 - Rational Exponents

Concept #1 Definition of $a^{1/n}$ and $a^{m/n}$.

In this section, we want to learn how to write radicals using exponential notation. To see how this is done, let's consider the \sqrt{a} where $a \ge 0$. We want to represent \sqrt{a} as $a^{\text{some power}}$. Let p be that power. Thus, $\sqrt{a} = a^{p}$. Now, if we multiply the \sqrt{a} by itself, we will get a:

 $\sqrt{a} \cdot \sqrt{a} = a \quad (\text{substitute } \sqrt{a} = a^{p})$ $a^{p} \cdot a^{p} = a \quad (\text{multiplying powers with the same base, add exponents})$ $a^{p+p} = a$ $a^{2p} = a \quad (\text{the exponent of a is 1, thus } 2p = 1)$ 2p = 1 $p = \frac{1}{2}.$ Hence, $a^{1/2} = \sqrt{a}$ Now, let's try this same idea for $\sqrt[3]{b}$. Let $b^{r} = \sqrt[3]{b}$. $\sqrt[3]{b} \cdot \sqrt[3]{b} \cdot \sqrt[3]{b} = b \quad (\text{substitute } \sqrt[3]{b} = b^{r})$ $b^{r} \cdot b^{r} \cdot b^{r} = b$ $b^{r+r+r} = b$ $b^{3r} = b$ Hence, 3r = 1 which means $r = \frac{1}{3}$.

Notice a pattern. We are get the fraction 1/n for the exponent where n is equal to the index. Hence, in general, $\sqrt[n]{a} = a^{1/n}$ provided that the radical is defined.

Definition of a^{1/n}

Let n be a natural number greater than 1. If $\sqrt[n]{a}$ is a real number, then $a^{1/n} = \sqrt[n]{a}$.

Simplify the following:

Ex. 1a $(-64)^{1/3}$ Ex. 1c $-144^{1/2}$ Ex. 1c $-144^{1/2}$ Ex. 1d $(-144)^{1/2}$ Ex. 1e $-(-32)^{-1/5}$ Solution: a) $(-64)^{1/3} = \sqrt[3]{-64} = \sqrt[3]{(-4)^3} = -4$

b)
$$81^{1/4} = \sqrt[4]{81} = \sqrt[4]{3^4} = 3$$

c)
$$-144^{1/2} = -\sqrt{144} = -12$$

d)
$$(-144)^{1/2} = \sqrt{-144}$$
 which is undefined.

e) Recall that
$$a^{-r} = \frac{1}{a^r}$$
. So, $-(-32)^{-1/5} = -1 \cdot (-32)^{-1/5} = \frac{-1}{(-32)^{1/5}}$
= $\frac{-1}{\frac{5}{\sqrt{-32}}} = \frac{-1}{\frac{5}{\sqrt{(-2)^5}}} = \frac{-1}{-2} = \frac{1}{2}$.

Recall that power rule for exponents: $(a^m)^n = a^{m \cdot n}$. If we are asked to simplify $(16^{1/4})^3$, we would first evaluate $16^{1/4}$ and then cube the result:

 $(16^{1/4})^3 = (\sqrt[4]{16})^3 = (2)^3 = 8.$ Similarly, if we had $(16^3)^{1/4}$, we would evaluate 16^3 and then take the fourth root of the result:

$$(16^3)^{1/4} = \sqrt[4]{16^3} = \sqrt[4]{4096} = 8.$$

Now, applying the power rule: $(16^{1/4})^3 = 16^{(1/4) \cdot 3} = 16^{3/4}$ and $(16^3)^{1/4} = 16^{3(1/4)} = 16^{3/4}$ This means that $16^{3/4} = (\sqrt[4]{16})^3 = \sqrt[4]{16^3} = 8$ from above. We can generalize this into a definition.

Definition of a^{m/n} (rational exponents)

Let a be a real number and m and n be natural numbers where n > 1. If m/n is reduced to lowest terms and $\sqrt[n]{a}$ is a real number (defined), then

1)
$$a^{m/n} = (\sqrt[n]{a})^m$$
 and
2) $a^{m/n} = \sqrt[n]{a^m}$

Simplify the following:

Ex. 2a	27 ^{2/3}	Ex. 2b	25 ^{7/2}
Ex. 2c	$\left(\frac{1}{36}\right)^{5/2}$	Ex. 2d	(- 2401) ^{5/4}
Ex. 2e	$(-8)^{7/3}$		
<u>Solut</u>	tion:		
a)	Let's use part one of the de	efinition:	
	$27^{2/3} = (\sqrt[3]{27})^2 = (3)^2 = 9$		
b)	$25^{7/2} = (\sqrt{25})^7 = (5)^7 = 78,$	125	

c)
$$\left(\frac{1}{36}\right)^{5/2} = \left(\sqrt{\frac{1}{36}}\right)^5 = \left(\frac{1}{6}\right)^5 = \frac{1}{7776}$$
.

d) $(-2401)^{5/4} = (\sqrt[4]{-2401})^5$, but $\sqrt[4]{-2401}$ is not a real number. Thus, $(-2401)^{5/4}$ is undefined in the real numbers.

e)
$$(-8)^{7/3} = (\sqrt[3]{-8})^7 = (-2)^7 = -128.$$

Concept #2 Converting between Rational Exponents and Radical Notation

<u>Convert the following into radical notation. Assume the variables</u> <u>represent positive real numbers:</u>

	Ex. 3b	$(7x^3)^{1/4}$
5a ^{1/3}	Ex. 3d	$w^{-4/5}$
$a^{4/7} = \sqrt[7]{a^4}$		
$(7x^3)^{1/4} = \sqrt[4]{7x^3}$		
$5a^{1/3} = 5\sqrt[3]{a}$		
$w^{-4/5} = \frac{1}{w^{4/5}} = \frac{1}{\frac{5}{\sqrt{w^4}}}.$		
	•	5a ^{1/3} Ex. 3d tion: $a^{4/7} = \sqrt[7]{a^4}$ $(7x^3)^{1/4} = \sqrt[4]{7x^3}$ 5a ^{1/3} = 5 $\sqrt[3]{a}$

<u>Convert the following into an expression using rational exponents.</u> <u>Assume the variables represent positive real numbers:</u>

V	Ex. 4b	6 ³ √ 5b
$-3\sqrt[5]{a^2}$	Ex. 4d	$(\sqrt[5]{-3a})^2$
<u>tion:</u>		
$\sqrt[4]{b^5} = b^{5/4}$		
$-3\sqrt[5]{a^2} = -3a^{2/5}$		
$(\sqrt[5]{-3a})^2 = (-3a)^{2/5}$		
	$ \frac{4}{\sqrt{b^5}} - 3\sqrt[5]{a^2} = 5^{5/4} = 5^{5/$	$-3 \sqrt[5]{a^2}$ Ex. 4d <u>tion:</u> $\frac{4}{\sqrt{b^5}} = b^{5/4}$ $6 \sqrt[3]{5b} = 6(5b)^{1/3}$ $-3 \sqrt[5]{a^2} = -3a^{2/5}$

Concept #3 Properties of Rational Exponents

The properties of exponents we developed in chapter 5 can be used with rational exponents.

Properties of Integral Exponents					
Assume that a and b are non-zero real numbers and m and n are rational					
numbers such a ^m , a ⁿ , b ^m , and b ⁿ are real numbers.					
Description	Property	Example			
1. Multiplying like bases	The Product Rule				
	1. $a^{m}a^{n} = a^{m+n}$	$x^{2/5}x^{4/5} = x^{2/5 + 4/5} = x^{6/5}$			
2. Dividing like bases	The Quotient Rule				
	2. $\frac{b^m}{b^n} = b^{m-n}$	$\frac{b^{6/7}}{b^{2/7}} = b^{6/7 - 2/7} = b^{4/7}$			
3. A power raised by a	The Power Rule				
power	3. $(a^m)^n = a^{m \cdot n}$	$(\mathbf{x}^{3/5})^{2/7} = \mathbf{x}^{3/5 \cdot 2/7} = \mathbf{x}^{6/35}$			
4. A product to a power	Power of a Product Rule				
	4. $(ab)^{n} = a^{n}b^{n}$	$(ab)^{2/3} = a^{2/3}b^{2/3}$			
5. A quotient to a power	Power of a Quotient Rule				
	5. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$\left(\frac{a}{b}\right)^{4/5} = \frac{a^{4/5}}{b^{4/5}}$			
Description	Definition	Example			
1. Negative Exponents					
	1. $a^{-n} = \left(\frac{1}{a}\right)^n = \frac{1}{a^n}$	$x^{-7/3} = \frac{1}{x^{7/3}}$			
2. Zero Exponents	2. $a^0 = 1$	$(-5)^0 = 1$			

Use the properties of exponents to simplify the following:

Ex. 5a	$\frac{x^{2/3} \bullet x^{1/4}}{x^{5/6}}$	Ex. 5b	$\left(\frac{a^{2/3}b^{1/4}}{c^{3/8}}\right)^{12}$
Ex. 5c	$\left(\frac{1875y^2z^{-7}}{3y^{-6}z^5}\right)^{1/4}$	Ex. 5d	$\sqrt[3]{\sqrt{x}}$

Solution:

a) Multiplying powers of the same base, add the exponents:

$$\frac{x^{2/3} \cdot x^{1/4}}{x^{5/6}} = \frac{x^{2/3+1/4}}{x^{5/6}} = \frac{x^{11/12}}{x^{5/6}}$$

Dividing powers of the same base, subtract the exponents: $\frac{x^{11/12}}{x^{5/6}} = x^{11/12 - 5/6} = x^{1/12} \text{ or } \sqrt[12]{x}.$

b) Apply the product and quotient to a power rules: $\left(\frac{a^{2/3}b^{1/4}}{c^{3/8}}\right)^{12} = \frac{(a^{2/3})^{12}(b^{1/4})^{12}}{(c^{3/8})^{12}} \quad \text{(apply the power rule)}$ $= \frac{a^8b^3}{c^{9/2}}.$

c) Simplify inside the parenthesis using the quotient rule: $\left(\frac{1875y^2z^{-7}}{3y^{-6}z^5}\right)^{1/4} = \left(\frac{625y^{2-(-6)}z^{-7-5}}{1}\right)^{1/4} = \left(\frac{625y^8z^{-12}}{1}\right)^{1/4}$ Now, use the definition of negative exponents:

$$\left(\frac{625y^8z^{-12}}{1}\right)^{1/4} = \left(\frac{625y^8}{z^{12}}\right)^{1/4}$$

Apply the product and quotient to a power rule:

$$\left(\frac{625y^8}{z^{12}}\right)^{1/4} = \frac{(625)^{1/4}(y^8)^{1/4}}{(z^{12})^{1/4}}$$

Apply the power rule:

$$\frac{(625)^{1/4}(y^8)^{1/4}}{(z^{12})^{1/4}} = \frac{\sqrt[4]{625}(y^2)}{z^3} = \frac{5y^2}{z^3}.$$

d)
$$\frac{\sqrt[3]{\sqrt{x}}}{\sqrt{x}} = (\sqrt{x})^{1/3} = (x^{1/2})^{1/3} \quad \text{(multiply the exponents)}$$
$$= x^{1/2 \cdot 1/3} = x^{1/6} = \sqrt[6]{x}.$$

Concept #4 Applications involving Rational Exponents

Solve the following:

Ex. 6 The radius r of a right circular cone of volume V and height h is given by $r = \left(\frac{3V}{\pi h}\right)^{1/2}$. Find the radius of a cone with a volume of 680.595 in³ and a height of 9 in. Use $\pi \approx 3.14$. Solution: $r = \left(\frac{3V}{\pi h}\right)^{1/2} = r = \left(\frac{3(680.595)}{(3.14)(9)}\right)^{1/2} = (72.25)^{1/2} = \sqrt{72.25} = 8.5$ So, the radius is 8.5 inches.