Sect 11.7 - Radical Equations

Concept #1 Solutions to Radical Equations.

Definition of a Radical Equation

Any equation that has one or more radicals containing a variable is called a **Radical Equation**.

For example, $\sqrt[3]{x} = 4$ and $\sqrt{x} = 5$ are radical equations. To solve each equation, we first raise each side to the power of the index of the radical and solve:

$$\frac{3}{\sqrt{x}} = 4 \qquad \sqrt{x} = 5$$

$$(\frac{3}{\sqrt{x}})^3 = 4^3 \qquad (\sqrt{x})^2 = 5^2$$
But, if $\sqrt[n]{a}$ is a real number, then $(\sqrt[n]{a})^n = a$. So,
$$(\frac{3}{\sqrt{x}})^3 = 4^3 \qquad (\sqrt{x})^2 = 5^2$$

$$x = 64 \qquad x = 25$$

Check

	CHECK
$\sqrt[3]{x} = 4$	$\sqrt{x} = 5$
$\sqrt[3]{64} = 4$?	$\sqrt{25} = 5?$
4 = 4 True	5 = 5 True

The property we are using in each case is called the Power Property.

Power Property

If P and Q are algebraic expressions and n is a natural number, then every solution to the equation P = Q will also be a solution to the equation $P^n = Q^n$.

Check

Note, the converse is not true. In other words, a solution to $P^n = Q^n$ is not necessarily a solution to P = Q. To see why, consider the following equation: x = 5 (now, square both sides) $x^2 = 5^2$ $x^2 = 25$ (solve) $x^2 - 25 = 0$ (x - 5)(x + 5) = 0x = 5 or x = -5Clearly, x = -5 is a false solution or an **extraneous solution**. This means that whenever we use the power property and solve, we will need to check all the proposed answers in the original equation.

Concept #2 Solving a Radical Equation with One Radical.

Steps in Solving Radical Equations

- 1) Isolate a radical containing a variable on one side of the equation.
- 2) Raise both sides of the equation to the power of the index.
- 3) If the resulting equation still has a radical containing a variable, repeat steps #1 and #2. If not, solve the resulting equation.
- 4) Check all the proposed solutions in the original equation.

Solve the following:

Ex. 1a	$\sqrt{u} - 6 = 7$	Ex. 1b	$(3x-4)^{1/2} + 7 = 9$	
Ex. 1c	$5 - \sqrt[3]{2x-7} = 9$	Ex. 1d	$\sqrt{6x+7} - 1 = x + 1$	
Ex. 1e	$\sqrt{4x+5} - 13 = 2x - 13$	8		
Ex. 1f	$x - \sqrt{28 - 3x} = 0$	Ex. 1	g $\sqrt[4]{5x^2+36} = x$	
<u>Solut</u>				
a)	$\sqrt{u} - 6 = 7$ (isola	ate \sqrt{u})		
	$\sqrt{u} = 13$ (squa	are both side	es)	
	$(\sqrt{u})^2 = (13)^2$ (simplify)			
	u = 169			
	Check: u = 169			
	$\sqrt{u - 6} = 7$			
	$\sqrt{169} - 6 = 7$?			
	13 – 6 = 7 ?			
	7 = 7 True			
	The solution is {169}.			
b)	$(3x-4)^{1/2} + 7 = 9$	(isolate (3x	$(-4)^{1/2}$	
	$(3x-4)^{1/2} = 2$	(square bo	th sides)	
	, , , , ,	(simplify)		
	3x - 4 = 4	(solve)		
	3x = 8			
	$x = \frac{8}{3}$			

Check: $x = \frac{8}{3}$ $(3x-4)^{1/2} + 7 = 9$ $(3(\frac{8}{3})-4)^{1/2}+7=9$? $(8-4)^{1/2} + 7 = 9$? $(4)^{1/2} + 7 = 9$? 2 + 7 = 9? 9 = 9 True The solution is $\left\{\frac{8}{3}\right\}$. c) $5 - \sqrt[3]{2x-7} = 9$ (isolate $\sqrt[3]{2x-7}$) $-\sqrt[3]{2x-7} = 4$ $\sqrt[3]{2x-7} = -4$ (cube both sides) $(\sqrt[3]{2x-7})^3 = (-4)^3$ (simplify) 2x - 7 = -64(solve) 2x = -57x = -28.5Check: x = -28.5 $5 - \sqrt[3]{2x-7} = 9$ $5 - \sqrt[3]{2(-28.5)-7} = 9$? $5 - \sqrt[3]{-57-7} = 9$? $5 - \sqrt[3]{-64} = 9$? 5 - (-4) = 9? 9 = 9 True The solution is $\{-28.5\}$. $\sqrt{6x+7} - 1 = x + 1$ (isolate $\sqrt{6x+7}$) d) $\sqrt{6x+7} = x + 2$ (square both sides) $(\sqrt{6x+7})^2 = (x+2)^2$ (simplify) $6x + 7 = x^2 + 4x + 4$ (solve) $0 = x^2 - 2x - 3$ (factor) 0 = (x - 3)(x + 1)x - 3 = 0 or x + 1 = 0x = 3 or x = -1

Check: x = 3 $\sqrt{6x+7} - 1 = x + 1$ $\sqrt{6(3)+7} - 1 = (3) + 1$? $\sqrt{25} - 1 = (3) + 1$? 5-1=(3)+1? 4 = 4 True The solutions are $\{-1, 3\}$.

$$x = -1$$

$$\sqrt{6x+7} - 1 = x + 1$$

$$\sqrt{6(-1)+7} - 1 = (-1) + 1 ?$$

$$\sqrt{1} - 1 = (-1) + 1 ?$$

$$1 - 1 = (-1) + 1 ?$$

$$0 = 0 \text{ True}$$

 $\sqrt{4x+5} - 13 = 2x - 18$ (isolate $\sqrt{4x+5}$) e) $\sqrt{4x+5} = 2x-5$ $(\sqrt{4x+5})^2 = (2x-5)^2$ ($4x + 5 = 4x^2 - 20x + 25$ $0 = 4x^2 - 24x + 20$ ($0 = 4(x^2 - 6x + 5)$ 0 = 4(x - 1)(x - 5)4 = 0 or x - 1 = 0 or x - 5 = 0No Soln, or x = 1 or x = 5

Check:
$$x = 1$$

 $\sqrt{4x+5} - 13 = 2x - 18$
 $\sqrt{4(1)+5} - 13 = 2(1) - 18$?
 $\sqrt{9} - 13 = 2 - 18$?
 $3 - 13 = 2 - 18$?
 $- 10 = -16$ False
The solution is {5}.

$$x = 5$$

 $\sqrt{4x+5} - 13 = 2x - 18$
 $\sqrt{4(5)+5} - 13 = 2(5) - 18$?
 $\sqrt{25} - 13 = 10 - 18$?
 $5 - 13 = 10 - 18$?
 $-8 = -8$ True

$$x - \sqrt{28 - 3x} = 0$$

- $\sqrt{28 - 3x} = -x$
 $\sqrt{28 - 3x} = x$
 $(\sqrt{28 - 3x})^2 = (x)^2$
 $28 - 3x = x^2$
 $0 = x^2 + 3x - 28$
 $0 = (x + 7)(x - 4)$
 $x + 7 = 0 \text{ or } x - 4 = 0$
 $x = -7 \text{ or } x = 4$

f)

(isolate $\sqrt{28-3x}$)

(square both sides) (simplify) (solve) (factor)

Check: x = -7x = 4 Check. x = -7 $x = \sqrt{28 - 3x} = 0$ $(-7) = \sqrt{28 - 3(-7)} = 0$? $(-7) = \sqrt{28 - 3(-7)} = 0$? $(-7) = \sqrt{49} = 0$? -7 - 7 = 0? 4 - 4 = 0 ? 0 = 0 True - 14 = 0 False The solution is $\{4\}$. $\sqrt[4]{5x^2+36} = x$ (raise both sides to the fourth power) $(\sqrt[4]{5x^2 + 36})^4 = (x)^4$ (simplify) $5x^2 + 36 = x^4$ (solve) $x^4 - 5x^2 - 36 = 0$ This equation is in the form of a quadratic. Let $u = x^2$, then $x^4 - 5x^2 - 36 = 0$ $(x^2)^2 - 5x^2 - 36 = 0$ $u^2 - 5u - 36 = 0$ (factor) (u - 9)(u + 4) = 0u - 9 = 0 or u + 4 = 0Substitute x^2 back in for u: $x^2 - 9 = 0$ or $x^2 + 4 = 0$ (x-3)(x+3) = 0 or No real solution x - 3 = 0 or x + 3 = 0x = 3 or x = -3x = -3 $\sqrt[4]{5x^2 + 36} = x$ $\sqrt[4]{5(-3)^2 + 36} = (-3) ?$ $\sqrt[4]{45 + 36} = -3 ?$ $\sqrt[4]{81} = -3 ?$ Check: x = 3 $\sqrt[4]{5x^2 + 36} = x$ $\sqrt[4]{5(3)^2 + 36} = (3) ?$ $\sqrt[4]{45+36} = 3$? $\sqrt[4]{81} = 3$? 3 = 3 True 3 = -3 False The solution is {3}.

g)

Concept #3 Solving Radical Equations Involving More than One Radical.

To solve a radical equation with more than one radical containing a variable, we simply isolate one radical and apply steps one and two of our procedure and then repeat the process for the other radical.

Solve the following:

Ex. 2a
$$\sqrt{4x+1} - \sqrt{x-1} = 2$$
 Ex. 2b $\sqrt[3]{5x^2 - 8x - 2} - \sqrt[3]{x} = 0$
Ex. 2c $\sqrt{3\sqrt{2x+3}} - \sqrt{5x-6} = 0$ Ex. 2d $-\sqrt{x-7} = 2\sqrt{x-4} + 3$
Solution:
a) $\sqrt{4x+1} - \sqrt{x-1} = 2$ (isolate $\sqrt{4x+1}$)
 $\sqrt{4x+1} = \sqrt{x-1} + 2$ (square both sides)
 $(\sqrt{4x+1})^2 = (\sqrt{x-1} + 2)^2$ (simplify {(F + L)² = F² + 2FL + L²})
 $4x + 1 = (\sqrt{x-1})^2 + 2(\sqrt{x-1})(2) + (2)^2$
 $4x + 1 = (x - 1) + 4\sqrt{x-1} + 4$
 $4x + 1 = x + 3 + 4\sqrt{x-1}$ (isolate $4\sqrt{x-1}$)
 $3x - 2 = 4\sqrt{x-1}$ (square both sides)
 $(3x - 2)^2 = (4\sqrt{x-1})^2$ (simplify {(F - L)² = F² - 2FL + L²})
 $9x^2 - 12x + 4 = 16(x - 1)$
 $9x^2 - 12x + 4 = 16(x - 1)$
 $9x^2 - 12x + 4 = 16(x - 1)$
 $9x^2 - 12x + 4 = 16(x - 1)$
 $9x^2 - 12x + 4 = 16(x - 1)$
 $9x^2 - 10 = 0$ or $x - 2 = 0$
 $x = \frac{10}{9}$ or $x = 2$
Check: $x = \frac{10}{9}$ or $x = 2$
Check: $x = \frac{10}{9}$ or $x = 2$
Check: $x = \frac{10}{9}$ or $x = 2$
 $\sqrt{4x+1} - \sqrt{x-1} = 2$ $\sqrt{4x+1} - \sqrt{x-1} = 2$
 $\sqrt{4(\frac{10}{9})+1} - \sqrt{\frac{10}{9}-1} = 2$? $\sqrt{4x+1} - \sqrt{x-1} = 2$
 $\sqrt{\frac{40}{9}} + 1 - \sqrt{\frac{1}{9}} = 2$? $\sqrt{9} - \sqrt{1} = 2$?
 $\sqrt{\frac{49}{9}} - \sqrt{\frac{1}{9}} = 2$? $3 - 1 = 2$?
 $\sqrt{\frac{49}{9}} - \sqrt{\frac{1}{9}} = 2$? $2 = 2$ True
 $2 = 2$ True
The solutions are $\{\frac{10}{9}, 2\}$.
b) $\sqrt[3]{5x^2 - 8x - 2} - \sqrt[3]{x} = 0$ (isolate $\sqrt[3]{5x^2 - 8x - 2}$)
 $\sqrt[3]{5x^2 - 8x - 2} = \sqrt[3]{x}$ (cube both sides)

$$\begin{pmatrix} 3\sqrt{5}x^2 - 8x - 2 \)^3 = (\sqrt[3]{x} \)^3 & (\text{simplify}) \\ 5x^2 - 8x - 2 = x & (\text{solve}) \\ 5x^2 - 9x - 2 = 0 & (\text{factor}) \\ (5x + 1)(x - 2) = 0 & \\ 5x + 1 = 0 & \text{or} \quad x - 2 = 0 \\ x = -0.2 & \text{or} \quad x = 2 \\ \text{Check:} \quad x = -0.2 & \\ \sqrt[3]{5x^2 - 8x - 2} - \sqrt[3]{x} = 0 & \\ \sqrt[3]{5(-0.2)^2 - 8(-0.2) - 2} - \sqrt[3]{(-0.2)} = 0 & ? \\ \sqrt[3]{5(0.04) - 8(-0.2) - 2} - \sqrt[3]{(-0.2)} = 0 & ? \\ \sqrt[3]{5(0.04) - 8(-0.2) - 2} - \sqrt[3]{(-0.2)} = 0 & ? \\ \sqrt[3]{5(0.04) - 8(-0.2) - 2} - \sqrt[3]{(-0.2)} = 0 & ? \\ \sqrt[3]{5(0.04) - 8(-0.2) - 2} - \sqrt[3]{(-0.2)} = 0 & ? \\ \sqrt[3]{5(0.04) - 8(-0.2) - 2} - \sqrt[3]{(-0.2)} = 0 & ? \\ \sqrt[3]{5(0.04) - 8(-0.2) - 2} - \sqrt[3]{(-0.2)} = 0 & ? \\ \sqrt[3]{5(0.04) - 8(-0.2) - 2} - \sqrt[3]{(-0.2)} = 0 & ? \\ \sqrt[3]{5(0.04) - 8(-0.2) - 2} - \sqrt[3]{(-0.2)} = 0 & ? \\ \sqrt[3]{3(-16 - 2} - \sqrt[3]{-0.2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 8(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 8(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(4) - 8(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(4) - 8(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(4) - 8(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(4) - 8(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(4) - 8(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 8(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 8(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 8(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 8(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 8(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 3(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 3(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 3(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 3(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 3(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 3(2) - 3} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 3(2) - 2} - \sqrt[3]{2} = 0 & ? \\ \sqrt[3]{5(2)^2 - 2} - \sqrt[3]{5$$

$$\begin{aligned} x &= \frac{3}{25} & x = 3 \\ \text{Check:} & x = \frac{3}{25} \\ \sqrt{3\sqrt{2x+3}} &= \sqrt{5x-6} = 0 \\ \sqrt{3\sqrt{2(\frac{3}{25})+3}} &= \sqrt{5(\frac{3}{25})-6} = 0 ? \\ \sqrt{3\sqrt{\frac{6}{25}+3}} &= \sqrt{\frac{3}{5}-6} = 0 ? \\ \text{But } \sqrt{\frac{3}{5}-6} \text{ is the square root of a negative number, which is undefined. Hence, the check fails. \\ \text{Check:} & x = 3 \\ \sqrt{3\sqrt{2(3)+3}} &= \sqrt{5x-6} = 0 \\ \sqrt{3\sqrt{2(3)+3}} &= \sqrt{5(3)-6} = 0 ? \\ \sqrt{3\sqrt{9}} &= \sqrt{9} = 0 ? \\ 3 - 3 = 0 ? \\ 0 = 0 \text{ True} \\ \text{The solution is (3).} \\ &= \sqrt{x-7} = 2\sqrt{x-4} + 3 \qquad (\text{square both sides}) \\ (-\sqrt{x-7})^2 &= (2\sqrt{x-4} + 3)^2 \quad (\text{simplify } \{(F + L)^2 = F^2 + 2FL + L^2\}) \\ x - 7 &= (2\sqrt{x-4})^2 + 2(2\sqrt{x-4})(3) + (3)^2 \\ x - 7 &= 4(x-4) + 12\sqrt{x-4} + 9 \\ x - 7 &= 4x - 16 + 12\sqrt{x-4} + 9 \\ x - 7 &= 4x - 7 + 12\sqrt{x-4} \qquad (\text{isolate } 12\sqrt{x-4}) \\ &= 3x = 12\sqrt{x-4} \qquad (\text{square both sides}) \\ (-3x)^2 &= (12\sqrt{x-4})^2 \\ 9x^2 &= 144(x-4) \\ 9x^2 &= 144x - 576 \qquad (\text{solve}) \\ 9x^2 - 144x + 576 &= 0 \qquad (factor) \end{aligned}$$

d)

101

 $9(x^2 - 16x + 64) = 0$ $9(x-8)^2 = 0$ 9 = 0 or x - 8 = 0No Soln or x = 8Check: x = 8 $-\sqrt{x-7} = 2\sqrt{x-4} + 3$ - $\sqrt{(8)-7} = 2\sqrt{(8)-4} + 3$? $-\sqrt{1} = 2\sqrt{4} + 3$? - 1 = 2(2) + 3 ? -1=7 False The solution is { }.

Concept #4

Applications

Solve the following:

Ex. 3 The approximate time t (in seconds) required for a pendulum to make one complete swing back and forth is given by t $\approx 2\pi \sqrt{\frac{L}{9.8}}$

where L is the length of the pendulum in meters.

- a) Find the time (to the nearest tenth) it take a 0.8 meter pendulum to swing back and forth.
- Find the length of a pendulum that takes 1.5 seconds to swing b) back and forth. (round to the nearest hundredth meter).

Solution:

Replace L by 0.8 meters and evaluate: a)

t ≈ 2π
$$\sqrt{\frac{0.8}{9.8}}$$
 = 2π $\sqrt{\frac{8}{98}}$ = 2π $\sqrt{\frac{4}{49}}$ = 2π($\frac{2}{7}$) = $\frac{4}{7}$ π ≈ 1.795... ≈ 1.8
It will take about 1.8 seconds.

b) Replace t by 1.5 and solve:

$$1.5 \approx 2\pi \sqrt{\frac{L}{9.8}} \quad \text{(isolate } \sqrt{\frac{L}{9.8}}\text{)}$$
$$\frac{1.5}{2\pi} = \sqrt{\frac{L}{9.8}} \quad \text{(square both sides)}$$
$$\left(\frac{1.5}{2\pi}\right)^2 = \left(\sqrt{\frac{L}{9.8}}\right)^2 \quad \text{(simplify)}$$
$$\frac{2.25}{4\pi^2} = \frac{L}{9.8} \quad \text{(solve)}$$
$$L = \frac{2.25 \cdot 9.8}{4\pi^2} \approx 0.558... \approx 0.56 \text{ meters}$$

The pendulum is approximately 0.56 meters.