
 94 

Sect 11.7 - Radical Equations 

 
Concept #1 Solutions to Radical Equations. 
 

Definition of a Radical Equation 
Any equation that has one or more radicals containing a variable is called a  

Radical Equation. 

For example,   x
3

 = 4 and   x  = 5 are radical equations. To solve each 

equation, we first raise each side to the power of the index of the radical 
and solve: 

   x
3

 = 4         x  = 5 

 (  x
3

)3 = 43     (  x )2 = 52 

But, if   a
n

 is a real number, then (  a
n

)n  = a. So,  

 (  x
3

)3 = 43     (  x )2 = 52 

 x = 64      x = 25 
 
Check      Check 

   x
3

 = 4        x  = 5 

   64
3

 = 4 ?       25  = 5 ? 

 4 = 4 True      5 = 5  True 

The property we are using in each case is called the Power Property. 

Power Property 
 If P and Q are algebraic expressions and n is a natural number, 
 then every solution to the equation P = Q will also be a solution to 
 the equation Pn = Qn.  
 
Note, the converse is not true. In other words, a solution to Pn = Qn is not 
necessarily a solution to P = Q. To see why, consider the following 
equation: x = 5   (now, square both sides) 
  x2 = 52 
  x2 = 25  (solve) 
  x2 – 25 = 0 
  (x – 5)(x + 5) = 0 
  x = 5 or x = – 5  

 Clearly, x = – 5 is a false solution or an extraneous solution. 
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This means that whenever we use the power property and solve, we will 
need to check all the proposed answers in the original equation. 
 
Concept #2  Solving a Radical Equation with One Radical. 
 

Steps in Solving Radical Equations 
1)  Isolate a radical containing a variable on one side of the equation.  
2) Raise both sides of the equation to the power of the index. 
3) If the resulting equation still has a radical containing a variable,  
 repeat steps #1 and #2. If not, solve the resulting equation. 
4) Check all the proposed solutions in the original equation. 
 

Solve the following: 

Ex. 1a   u  – 6 = 7  Ex. 1b (3x – 4)1/2 + 7 = 9 

Ex. 1c 5 –   2x−7
3

= 9  Ex. 1d   6x+7  – 1 = x + 1 

Ex. 1e   4x+5  – 13 = 2x – 18  

Ex. 1f  x –   28−3x = 0  Ex. 1g   5x2
+36

4
 = x 

 Solution: 

 a)   u  – 6 = 7 (isolate   u ) 

    u  = 13  (square both sides) 

  (  u )2 = (13)2 (simplify) 

  u = 169 
  Check: u = 169 

    u  – 6 = 7 

    169  – 6 = 7 ? 

  13 – 6 = 7 ? 
  7 = 7 True 
  The solution is {169}. 

 b) (3x – 4)1/2 + 7 = 9 (isolate (3x – 4)1/2) 
  (3x – 4)1/2  = 2  (square both sides) 
  ((3x – 4)1/2)2 = (2)2 (simplify) 
  3x – 4 = 4   (solve) 
  3x = 8 

  x = 
  
8

3
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  Check: x = 
  
8

3
 

  (3x – 4)1/2 + 7 = 9 

  (3(
  
8

3
) – 4)1/2 + 7 = 9  ? 

  (8 – 4)1/2 + 7 = 9  ? 
  (4)1/2 + 7 = 9  ? 
  2 + 7 = 9  ? 
  9 = 9 True 

  The solution is {
  
8

3
}. 

 c) 5 –   2x−7
3

= 9  (isolate   2x−7
3

) 

  –   2x−7
3

 = 4 

    2x−7
3

 = – 4  (cube both sides) 

  (  2x−7
3

)3 = (– 4)3 (simplify) 

  2x – 7 = – 64  (solve) 
  2x = – 57 
  x = – 28.5 
  Check: x = – 28.5 

  5 –   2x−7
3

= 9 

  5 –   2(−28.5)−7
3

= 9  ? 

  5 –   −57−7
3

= 9  ? 

  5 –   −64
3

= 9  ? 

  5 – (– 4) = 9  ? 
  9 = 9 True 
  The solution is {– 28.5}. 

 d)   6x+7  – 1 = x + 1 (isolate   6x+7 ) 

    6x+7  = x + 2  (square both sides) 

  (  6x+7 )2 = (x + 2)2 (simplify) 

  6x + 7 = x2 + 4x + 4 (solve) 
  0 = x2 – 2x – 3  (factor) 
  0 = (x – 3)(x + 1) 
  x – 3 = 0 or x + 1 = 0 
  x = 3 or x = – 1 
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  Check: x = 3    x = – 1 

    6x+7  – 1 = x + 1     6x+7  – 1 = x + 1 

    6(3)+7  – 1 = (3) + 1  ?    6(−1)+7  – 1 = (– 1) + 1  ? 

    25  – 1 = (3) + 1  ?     1  – 1 = (– 1) + 1  ? 

  5 – 1 = (3) + 1  ?    1 – 1 = (– 1) + 1  ? 
  4 = 4 True     0 = 0 True 
  The solutions are {– 1, 3}. 

 e)   4x+5  – 13 = 2x – 18 (isolate   4x+5 ) 

    4x+5  = 2x – 5   (square both sides) 

  (  4x+5 )2 = (2x – 5)2  (simplify) 

  4x + 5 = 4x2 – 20x + 25  (solve) 
  0 = 4x2 – 24x + 20  (factor) 
  0 = 4(x2 – 6x + 5) 
  0 = 4(x – 1)(x – 5) 
  4 = 0  or x – 1 = 0 or x – 5 = 0 
  No Soln, or x = 1 or x = 5 
 
  Check: x = 1    x = 5 

    4x+5  – 13 = 2x – 18    4x+5  – 13 = 2x – 18 

    4(1)+5  – 13 = 2(1) – 18  ?    4(5)+5  – 13 = 2(5) – 18  ? 

    9  – 13 = 2 – 18  ?     25  – 13 = 10 – 18  ? 

  3 – 13 = 2 – 18  ?   5 – 13 = 10 – 18  ? 
  – 10 = – 16 False   – 8 = – 8 True 
  The solution is {5}. 
 

 f) x –   28−3x = 0   (isolate   28−3x ) 

  –   28−3x  = – x 

    28−3x  =  x   (square both sides) 

  (  28−3x )2 = (x)2  (simplify) 

  28 – 3x = x2   (solve) 
  0 = x2 + 3x – 28   (factor) 
  0 = (x + 7)(x – 4) 
  x + 7 = 0 or x – 4 = 0 
  x = – 7 or x = 4 
 



 98 

  Check: x = – 7   x = 4 

  x –   28−3x = 0    x –   28−3x = 0  

  (– 7) –   28−3(−7) = 0   ?  (4) –   28−3(4) = 0  ? 

  (– 7) –   49 = 0   ?   (4) –   16 = 0   ? 

  – 7 – 7 = 0  ?    4 – 4 = 0   ? 
  – 14 = 0 False    0 = 0 True 
  The solution is {4}. 
 

 g)   5x2
+36

4
 = x  (raise both sides to the fourth power) 

  (  5x2
+36

4
)4 = (x)4 (simplify) 

  5x2 + 36 = x4  (solve) 
  x4 – 5x2 – 36 = 0   
  This equation is in the form of a quadratic. Let u = x2, then 
  x4 – 5x2 – 36 = 0  
  (x2)2 – 5x2 – 36 = 0 
  u2 – 5u – 36 = 0  (factor) 
  (u – 9)(u + 4) = 0  
  u – 9 = 0  or u + 4 = 0 
  Substitute x2 back in for u: 
  x2 – 9 = 0  or x2 + 4 = 0 
  (x – 3)(x + 3) = 0  or No real solution 
  x – 3 = 0 or x + 3 = 0 
  x = 3 or x = – 3 
  Check: x = 3    x = – 3 

    5x2
+36

4
 = x      5x2

+36
4

 = x  

    5(3)2 +36
4

 = (3)   ?     5(−3)2 +36
4

 = (– 3) ? 

    45+36
4

 = 3   ?      45+36
4

 = – 3 ? 

    81
4

 = 3   ?      81
4

 = – 3  ? 

  3 = 3   True     3 = – 3  False 
  The solution is {3}. 

Concept #3 Solving Radical Equations Involving More than One  
   Radical. 

To solve a radical equation with more than one radical containing a 
variable, we simply isolate one radical and apply steps one and two of our 
procedure and then repeat the process for the other radical. 
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Solve the following: 

Ex. 2a   4x+1  –   x−1  = 2  Ex. 2b      5x2
−8x−2

3
 –   x

3
 = 0 

Ex. 2c   3 2x+3  –   5x−6  = 0 Ex. 2d    –   x−7  = 2  x−4  + 3 

 Solution: 

 a)   4x+1  –   x−1  = 2  (isolate   4x+1 ) 

    4x+1  =   x−1  + 2  (square both sides) 

  (  4x+1 )2 = (  x−1  + 2)2    (simplify {(F + L)2 = F2 + 2FL + L2}) 

  4x + 1 = (  x−1 )2 + 2(  x−1 )(2) + (2)2 

  4x + 1 = (x – 1) + 4  x−1  + 4 

  4x + 1 = x + 3 + 4  x−1  (isolate 4  x−1 ) 

  3x – 2 = 4  x−1    (square both sides) 

  (3x – 2)2 = (4  x−1 )2          (simplify {(F – L)2 = F2 – 2FL + L2}) 

  9x2 – 12x + 4 = 16(x – 1) 
  9x2 – 12x + 4 = 16x – 16 (solve) 
  9x2 – 28x + 20 = 0  (factor) 
  (9x – 10)(x – 2) = 0 
  9x – 10 = 0  or  x – 2 = 0 

  x = 
  
10

9
  or  x = 2 

  Check: x = 
  
10

9
   x = 2 

    4x+1  –   x−1  = 2     4x+1  –   x−1  = 2 

  
  

4(
10

9
)+1  – 

  

10

9
−1  = 2   ?    4(2)+1  –   (2)−1  = 2   ? 

  
  

40

9
+1  – 

  

1

9
 = 2   ?     9  –   1  = 2   ? 

  
  

49

9
 – 

  

1

9
 = 2   ?   3 – 1 = 2  ? 

  
  
7

3
 – 

  
1

3
 = 2  ?    2 = 2  True 

  2 = 2  True 

 The solutions are {
  
10

9
, 2}. 

 b)   5x2
−8x−2

3
 –   x

3
 = 0  (isolate   5x2

−8x−2
3

) 

    5x2
−8x−2

3
 =   x

3
   (cube both sides) 
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  (  5x2
−8x−2

3
)3 = (  x

3
)3  (simplify) 

  5x2 – 8x – 2 = x    (solve) 
  5x2 – 9x – 2 = 0    (factor) 
  (5x + 1)(x – 2) = 0 
  5x + 1 = 0    or  x – 2 = 0 
  x = – 0.2  or  x = 2 
  Check: x = – 0.2    

    5x2
−8x−2

3
 –   x

3
 = 0   

    5(−0.2)2 −8(−0.2)−2
3

 –   (−0.2)
3

 = 0   ? 

    5(0.04)−8(−0.2)−2
3

 –   (−0.2)
3

 = 0   ?  

    0.2+1.6−2
3

 –   −0.2
3

 = 0   ? 

    −0.2
3

 –   −0.2
3

 = 0   ? 

  0 = 0  True 
  Check: x = 2    

    5x2
−8x−2

3
 –   x

3
 = 0   

    5(2)2 −8(2)−2
3

 –   (2)
3

 = 0   ? 

    5(4)−8(2)−2
3

 –   2
3

 = 0   ?  

    20−16−2
3

 –   2
3

 = 0   ? 

    2
3

 –   2
3

 = 0   ? 

  0 = 0  True 
  The solutions are {– 0.2, 2}. 
 

 c)   3 2x+3  –   5x−6  = 0  (isolate   3 2x+3 ) 

    3 2x+3  =   5x−6    (square both sides) 

  (  3 2x+3 )2 = (  5x−6 )2     (simplify) 

  3  2x+3  = 5x – 6   (square both sides) 

   (3  2x+3 )2 = (5x – 6)2    (simplify {(F – L)2 = F2 – 2FL + L2}) 

  9(2x + 3) = (5x)2 – 2(5x)(6) + (6)2 
  18x + 27 = 25x2 – 60x + 36  (solve) 
  0 = 25x2 – 78x + 9  (factor) 
  0 = (25x – 3)(x – 3) 
  25x – 3 = 0  or  x – 3 = 0 
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  x = 
  

3

25
  x = 3 

  Check: x = 
  

3

25
    

    3 2x+3  –   5x−6  = 0   

  
  

3 2(
3

25
)+3  – 

  
5(

3

25
)−6  = 0   ? 

  
  

3
6

25
+3  – 

  

3

5
−6  = 0   ? 

  But 
  

3

5
−6  is the square root of a negative number, which is  

  undefined. Hence, the check fails. 
  Check: x = 3    

    3 2x+3  –   5x−6  = 0   

    3 2(3)+3  –   5(3)−6  = 0   ? 

    3 9  –   9  = 0   ? 

    3•3  –   9  = 0   ? 

  3 – 3 = 0   ? 
  0 = 0   True 
  The solution is {3}. 
 

 d) –   x−7  = 2  x−4  + 3  (square both sides)  

  (–  x−7 )2 = (2  x−4  + 3)2   (simplify {(F + L)2 = F2 + 2FL + L2}) 

  x – 7 = (2  x−4 )2 + 2(2  x−4 )(3) + (3)2 

  x – 7 = 4(x – 4) + 12  x−4  + 9 

  x – 7 = 4x – 16 + 12  x−4  + 9 

  x – 7 = 4x – 7 + 12  x−4   (isolate 12  x−4 ) 

  – 3x = 12  x−4    (square both sides) 

  (– 3x)2 = (12  x−4 )2 

  9x2 = 144(x – 4) 
  9x2 = 144x – 576   (solve) 
  9x2 – 144x + 576 = 0  (factor)  
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  9(x2 – 16x + 64) = 0 
  9(x – 8)2 = 0 
  9 = 0   or   x – 8 = 0 
  No Soln or  x = 8 
  Check: x = 8 

  –   x−7  = 2  x−4  + 3 

  –   (8)−7  = 2  (8)−4  + 3   ? 

  –   1  = 2  4  + 3   ? 

  – 1 = 2(2) + 3 ? 
  – 1 = 7 False 
  The solution is {   }. 
 
Concept #4  Applications 

Solve the following: 
Ex. 3  The approximate time t (in seconds) required for a pendulum  

 to make one complete swing back and forth is given by t ≈ 2π
  

L

9.8

 where L is the length of the pendulum in meters. 
 a) Find the time (to the nearest tenth) it take a 0.8 meter  
  pendulum to swing back and forth. 
 b) Find the length of a pendulum that takes 1.5 seconds to swing  
  back and forth. (round to the nearest hundredth meter). 
 Solution: 
 a) Replace L by 0.8 meters and evaluate: 

  t ≈ 2π
  

0.8

9.8
 = 2π

  

8

98
 = 2π

  

4

49
 = 2π(

  
2

7
) = 

  
4

7
π ≈ 1.795... ≈ 1.8 

  It will take about 1.8 seconds. 
 b) Replace t by 1.5 and solve: 

  1.5 ≈ 2π
  

L

9.8
 (isolate 

  

L

9.8
) 

  
  
1.5

2π
= 

  

L

9.8
 (square both sides) 

  (
  
1.5

2π
)

2

  = (
  

L

9.8
)

2

  (simplify) 

  
  

2.25

4π2
 = 

  
L

9.8
  (solve) 

  L = 
  

2.25•9.8

4π2
 ≈ 0.558... ≈ 0.56 meters 

  The pendulum is approximately 0.56 meters. 


