Sect 11.7 - Radical Equations

Concept \#1 Solutions to Radical Equations.

Definition of a Radical Equation

Any equation that has one or more radicals containing a variable is called a Radical Equation.

For example, $\sqrt[3]{x}=4$ and $\sqrt{x}=5$ are radical equations. To solve each equation, we first raise each side to the power of the index of the radical and solve:

$$
\begin{array}{ll}
\sqrt[3]{x}=4 & \sqrt{x}=5 \\
(\sqrt[3]{x})^{3}=4^{3} & (\sqrt{x})^{2}=5^{2}
\end{array}
$$

But, if $\sqrt[n]{a}$ is a real number, then $(\sqrt[n]{a})^{n}=a$. So,

$$
\begin{array}{ll}
(\sqrt[3]{x})^{3}=4^{3} & (\sqrt{x})^{2}=5^{2} \\
x=64 & x=25
\end{array}
$$

Check

$$
\begin{aligned}
& \sqrt[3]{x}=4 \\
& \sqrt[3]{64}=4 ?
\end{aligned}
$$

$$
4 \text { = } 4 \text { True }
$$

Check

$$
\begin{aligned}
& \sqrt{x}=5 \\
& \sqrt{25}=5 ? \\
& 5=5 \text { True }
\end{aligned}
$$

The property we are using in each case is called the Power Property.

Power Property

If P and Q are algebraic expressions and n is a natural number, then every solution to the equation $P=Q$ will also be a solution to the equation $P^{n}=Q^{n}$.

Note, the converse is not true. In other words, a solution to $P^{n}=Q^{n}$ is not necessarily a solution to $P=Q$. To see why, consider the following equation: $x=5$

$$
\begin{aligned}
& x^{2}=5^{2} \\
& x^{2}=25 \\
& x^{2}-25=0 \\
& (x-5)(x+5)=0 \\
& x=5 \text { or } x=-5
\end{aligned}
$$

Clearly, $x=-5$ is a false solution or an extraneous solution.

This means that whenever we use the power property and solve, we will need to check all the proposed answers in the original equation.

Concept \#2 Solving a Radical Equation with One Radical.

Steps in Solving Radical Equations

1) Isolate a radical containing a variable on one side of the equation.
2) Raise both sides of the equation to the power of the index.
3) If the resulting equation still has a radical containing a variable, repeat steps \#1 and \#2. If not, solve the resulting equation.
4) Check all the proposed solutions in the original equation.

Solve the following:

Ex. 1a $\quad \sqrt{\mathrm{u}}-6=7 \quad$ Ex. $1 \mathrm{~b} \quad(3 \mathrm{x}-4)^{1 / 2}+7=9$
Ex. ic $\quad 5-\sqrt[3]{2 x-7}=9$
Ex. Td $\sqrt{6 x+7}-1=x+1$
Ex. 1e $\quad \sqrt{4 x+5}-13=2 x-18$
Ex. If

$$
x-\sqrt{28-3 x}=0
$$

Ex. $1 \mathrm{~g} \quad \sqrt[4]{5 x^{2}+36}=x$
Solution:
a)

$$
\begin{array}{ll}
\sqrt{u}-6=7 & \text { (isolate } \sqrt{u} \text {) } \\
\sqrt{u}=13 & \text { (square both sides) } \\
(\sqrt{u})^{2}=(13)^{2} & \text { (simplify) } \\
u=169 &
\end{array}
$$

Check: u=169

$$
\begin{aligned}
& \sqrt{u}-6=7 \\
& \sqrt{169}-6=7 ? \\
& 13-6=7 ? \\
& 7=7 \text { True }
\end{aligned}
$$

The solution is $\{169\}$.
b) $\quad(3 x-4)^{1 / 2}+7=9 \quad$ (isolate $\left.(3 x-4)^{1 / 2}\right)$

$$
(3 x-4)^{1 / 2}=2 \quad \text { (square both sides) }
$$

$$
\left((3 x-4)^{1 / 2}\right)^{2}=(2)^{2} \quad \text { (simplify) }
$$

$3 x-4=4$
(solve)
$3 x=8$
$x=\frac{8}{3}$

Check: $\quad x=\frac{8}{3}$
$(3 x-4)^{1 / 2}+7=9$
$\left(3\left(\frac{8}{3}\right)-4\right)^{1 / 2}+7=9$?
$(8-4)^{1 / 2}+7=9$?
$(4)^{1 / 2}+7=9$?
$2+7=9$?
$9=9$ True
The solution is $\left\{\frac{8}{3}\right\}$.
c) $5-\sqrt[3]{2 x-7}=9 \quad$ (isolate $\sqrt[3]{2 x-7}$)
$-\sqrt[3]{2 x-7}=4$
$\sqrt[3]{2 x-7}=-4 \quad$ (cube both sides)
$(\sqrt[3]{2 x-7})^{3}=(-4)^{3} \quad$ (simplify)
$2 x-7=-64 \quad$ (solve)
$2 x=-57$
$x=-28.5$
Check: $\quad x=-28.5$
$5-\sqrt[3]{2 x-7}=9$
$5-\sqrt[3]{2(-28.5)-7}=9$?
$5-\sqrt[3]{-57-7}=9$?
$5-\sqrt[3]{-64}=9$?
$5-(-4)=9$?
$9=9$ True
The solution is $\{-28.5\}$.
d) $\sqrt{6 x+7}-1=x+1 \quad$ (isolate $\sqrt{6 x+7}$)
$\sqrt{6 x+7}=x+2 \quad$ (square both sides)
$(\sqrt{6 x+7})^{2}=(x+2)^{2} \quad$ (simplify)
$6 x+7=x^{2}+4 x+4 \quad$ (solve)
$0=x^{2}-2 x-3$
(factor)
$0=(x-3)(x+1)$
$x-3=0$ or $x+1=0$
$x=3$ or $x=-1$

Check: $\quad x=3$
$\sqrt{6 x+7}-1=x+1$
$\sqrt{6(3)+7}-1=(3)+1 ?$
$\sqrt{25}-1=(3)+1 ?$
$5-1=(3)+1 ?$
$4=4$ True
The solutions are $\{-1,3\}$.
e) $\sqrt{4 x+5}-13=2 x-18 \quad$ (isolate $\sqrt{4 x+5}$)

Check: $\quad x=1$
$\sqrt{4 x+5}-13=2 x-18$
$\sqrt{4(1)+5}-13=2(1)-18$?

$$
x=5
$$

$\sqrt{9}-13=2-18$?
$3-13=2-18$?

$$
5-13=10-18 ?
$$

$-10=-16$ False
The solution is $\{5\}$.
e)

$$
\begin{array}{ll}
\sqrt{4 x+5}=2 x-5 & \text { (square both sides) } \\
(\sqrt{4 x+5})^{2}=(2 x-5)^{2} & \text { (simplify) } \\
4 x+5=4 x^{2}-20 x+25 & \text { (solve) } \\
0=4 x^{2}-24 x+20 & \text { (factor) } \tag{factor}\\
0=4\left(x^{2}-6 x+5\right) & \\
0=4(x-1)(x-5) \\
4=0 \text { or } x-1=0 \text { or } x-5=0 \\
\text { No Soln, or } x=1 \text { or } x=5 &
\end{array}
$$

$$
-8=-8 \text { True }
$$

$$
x=-1
$$

$$
\sqrt{6 x+7}-1=x+1
$$

$$
\sqrt{6(-1)+7}-1=(-1)+1 ?
$$

$\sqrt{1}-1=(-1)+1$?
$1-1=(-1)+1$?
0 = 0 True

$$
\sqrt{4 x+5}-13=2 x-18
$$

$$
\sqrt{4(5)+5}-13=2(5)-18 ?
$$

$$
\sqrt{25}-13=10-18 ?
$$

$$
\text { f) } \begin{array}{ll}
x-\sqrt{28-3 x}=0 & \text { (isolate } \sqrt{28-3 x} \text {) } \\
-\sqrt{28-3 x}=-x & \\
\sqrt{28-3 x}=x & \text { (square both sides) } \\
(\sqrt{28-3 x})^{2}=(x)^{2} & \text { (simplify) } \\
28-3 x=x^{2} & \text { (solve) } \\
0=x^{2}+3 x-28 & \text { (factor) } \tag{solve}\\
0=(x+7)(x-4) & \\
x+7=0 \text { or } x-4=0 & \\
x=-7 \text { or } x=4 &
\end{array}
$$

Check: $\quad x=-7$

$$
x=4
$$

$$
x-\sqrt{28-3 x}=0
$$

$$
x-\sqrt{28-3 x}=0
$$

$$
(-7)-\sqrt{28-3(-7)}=0 \quad ?
$$

$$
(4)-\sqrt{28-3(4)}=0 ?
$$

$$
(-7)-\sqrt{49}=0 \quad ?
$$

$$
-7-7=0 ?
$$

$$
(4)-\sqrt{16}=0 \quad ?
$$

$$
4-4=0 ?
$$

- 14 = 0 False
$0=0$ True

The solution is $\{4\}$.
g) $\sqrt[4]{5 x^{2}+36}=x \quad$ (raise both sides to the fourth power)

$$
\begin{array}{ll}
\left(\sqrt[4]{5 x^{2}+36}\right)^{4}=(x)^{4} & \text { (simplify) } \\
5 x^{2}+36=x^{4} & \text { (solve) } \\
x^{4}-5 x^{2}-36=0 &
\end{array}
$$

This equation is in the form of a quadratic. Let $u=x^{2}$, then $x^{4}-5 x^{2}-36=0$
$\left(x^{2}\right)^{2}-5 x^{2}-36=0$
$u^{2}-5 u-36=0 \quad$ (factor)
$(u-9)(u+4)=0$
$u-9=0$ or $u+4=0$
Substitute x^{2} back in for u :

$$
\begin{aligned}
& x^{2}-9=0 \text { or } \quad x^{2}+4=0 \\
& (x-3)(x+3)=0 \text { or No real solution } \\
& x-3=0 \text { or } x+3=0 \\
& x=3 \text { or } x=-3
\end{aligned}
$$

Check: $\quad x=3$
$\sqrt[4]{5 x^{2}+36}=x$
$\sqrt[4]{5(3)^{2}+36}=(3) \quad ?$
$\sqrt[4]{45+36}=3$?

$$
\sqrt[4]{81}=3 ?
$$

$$
\begin{aligned}
& x=-3 \\
& \sqrt[4]{5 x^{2}+36}=x \\
& \sqrt[4]{5(-3)^{2}+36}=(-3) ? \\
& \sqrt[4]{45+36}=-3 ? \\
& \sqrt[4]{81}=-3 ? \\
& 3=-3 \text { False }
\end{aligned}
$$

$3=3$ True
The solution is $\{3\}$.
Concept \#3 Solving Radical Equations Involving More than One Radical.
To solve a radical equation with more than one radical containing a variable, we simply isolate one radical and apply steps one and two of our procedure and then repeat the process for the other radical.

Solve the following:

Ex. 2a $\sqrt{4 x+1}-\sqrt{x-1}=2 \quad$ Ex. $2 b \quad \sqrt[3]{5 x^{2}-8 x-2}-\sqrt[3]{x}=0$
Ex. 2c $\quad \sqrt{3 \sqrt{2 x+3}}-\sqrt{5 x-6}=0 \quad$ Ex. 2d $\quad-\sqrt{x-7}=2 \sqrt{x-4}+3$
Solution:
a) $\sqrt{4}$

$$
\begin{array}{ll}
\sqrt{4 x+1}=\sqrt{x-1}+2 & \text { (square both sides) } \\
(\sqrt{4 x+1})^{2}=(\sqrt{x-1}+2)^{2} & \left(\text { simplify }\left\{(F+L)^{2}=F^{2}+2 F L+L^{2}\right\}\right) \\
4 x+1=(\sqrt{x-1})^{2}+2(\sqrt{x-1})(2)+(2)^{2} \\
4 x+1=(x-1)+4 \sqrt{x-1}+4 \\
4 x+1=x+3+4 \sqrt{x-1} & \text { (isolate } 4 \sqrt{x-1}) \\
3 x-2=4 \sqrt{x-1} & \text { (square both sides) } \\
(3 x-2)^{2}=(4 \sqrt{x-1})^{2} & \text { (simplify } \left.\left\{(F-L)^{2}=F^{2}-2 F L+L^{2}\right\}\right) \\
9 x^{2}-12 x+4=16(x-1) \\
9 x^{2}-12 x+4=16 x-16 & \\
9 x^{2}-28 x+20=0 & \text { (solve) } \\
(9 x-10)(x-2)=0 & \text { (factor) } \\
9 x-10=0 \quad \text { or } \quad x-2=0 \\
x=\frac{10}{9} \quad \text { or } \quad x=2
\end{array}
$$

Check: $\quad x=\frac{10}{9}$
$\sqrt{4 x+1}-\sqrt{x-1}=2$
$x=2$
$\sqrt{4\left(\frac{10}{9}\right)+1}-\sqrt{\frac{10}{9}-1}=2$?
$\sqrt{4 x+1}-\sqrt{x-1}=2$
$\sqrt{4(2)+1}-\sqrt{(2)-1}=2$?
$\sqrt{\frac{40}{9}+1}-\sqrt{\frac{1}{9}}=2$?
$\sqrt{9}-\sqrt{1}=2$?
$\sqrt{\frac{49}{9}}-\sqrt{\frac{1}{9}}=2$?
$3-1=2$?
$\frac{7}{3}-\frac{1}{3}=2$?
$2=2$ True
The solutions are $\left\{\frac{10}{9}, 2\right\}$.
b) $\sqrt[3]{5 x^{2}-8 x-2}-\sqrt[3]{x}=0$
(isolate $\sqrt[3]{5 x^{2}-8 x-2}$)

$$
\sqrt[3]{5 x^{2}-8 x-2}=\sqrt[3]{x}
$$

(cube both sides)

$$
\begin{array}{ll}
\left(\sqrt[3]{5 x^{2}-8 x-2}\right)^{3}=(\sqrt[3]{x})^{3} & \begin{array}{l}
\text { (simplify) } \\
\text { (solve) }
\end{array} \\
5 x^{2}-8 x-2=x & \text { (factor) } \\
5 x^{2}-9 x-2=0 & \\
(5 x+1)(x-2)=0 & \\
5 x+1=0 \quad \text { or } \quad x-2=0 & \\
x=-0.2 \quad \text { or } \quad x=2 & \\
\text { Check: } x=-0.2 \\
\sqrt[3]{5 x^{2}-8 x-2}-\sqrt[3]{x}=0 \\
\sqrt[3]{5(-0.2)^{2}-8(-0.2)-2}-\sqrt[3]{(-0.2)}=0 \quad ? \\
\sqrt[3]{5(0.04)-8(-0.2)-2}-\sqrt[3]{(-0.2)}=0 \quad ? \\
\sqrt[3]{0.2+1.6-2}-\sqrt[3]{-0.2}=0 \quad ? \\
\sqrt[3]{-0.2}-\sqrt[3]{-0.2}=0 \quad ? & \\
0=0 \text { True }
\end{array}
$$

Check: $\quad x=2$

$$
\sqrt[3]{5 x^{2}-8 x-2}-\sqrt[3]{x}=0
$$

$$
\sqrt[3]{5(2)^{2}-8(2)-2}-\sqrt[3]{(2)}=0 ?
$$

$$
\sqrt[3]{5(4)-8(2)-2}-\sqrt[3]{2}=0 ?
$$

$$
\sqrt[3]{20-16-2}-\sqrt[3]{2}=0 ?
$$

$$
\sqrt[3]{2}-\sqrt[3]{2}=0 ?
$$

$0=0$ True
The solutions are $\{-0.2,2\}$.
c) $\sqrt{3 \sqrt{2 x+3}}-\sqrt{5 x-6}=0 \quad$ (isolate $\sqrt{3 \sqrt{2 x+3}}$)

$$
\sqrt{3 \sqrt{2 x+3}}=\sqrt{5 x-6} \quad \text { (square both sides) }
$$

$(\sqrt{3 \sqrt{2 x+3}})^{2}=(\sqrt{5 x-6})^{2}$ (simplify)
$3 \sqrt{2 x+3}=5 x-6$ (square both sides)

$$
(3 \sqrt{2 x+3})^{2}=(5 x-6)^{2} \quad\left(\text { simplify }\left\{(F-L)^{2}=F^{2}-2 F L+L^{2}\right\}\right)
$$

$$
9(2 x+3)=(5 x)^{2}-2(5 x)(6)+(6)^{2}
$$

$$
\begin{equation*}
18 x+27=25 x^{2}-60 x+36 \tag{solve}
\end{equation*}
$$

$$
0=25 x^{2}-78 x+9
$$

$0=(25 x-3)(x-3)$
$25 x-3=0$ or $x-3=0$
$x=\frac{3}{25} \quad x=3$
Check: $\quad x=\frac{3}{25}$
$\sqrt{3 \sqrt{2 x+3}}-\sqrt{5 x-6}=0$
$\sqrt{3 \sqrt{2\left(\frac{3}{25}\right)+3}}-\sqrt{5\left(\frac{3}{25}\right)-6}=0$?
$\sqrt{3 \sqrt{\frac{6}{25}+3}}-\sqrt{\frac{3}{5}-6}=0 \quad$?
But $\sqrt{\frac{3}{5}-6}$ is the square root of a negative number, which is undefined. Hence, the check fails.
Check: $\quad x=3$
$\sqrt{3 \sqrt{2 x+3}}-\sqrt{5 x-6}=0$
$\sqrt{3 \sqrt{2(3)+3}}-\sqrt{5(3)-6}=0$?
$\sqrt{3 \sqrt{9}}-\sqrt{9}=0$?
$\sqrt{3 \cdot 3}-\sqrt{9}=0$?
$3-3=0$?
$0=0$ True
The solution is $\{3\}$.
d) $-\sqrt{x-7}=2 \sqrt{x-4}+3$
(square both sides)

$$
\begin{aligned}
& (-\sqrt{x-7})^{2}=(2 \sqrt{x-4}+3)^{2} \quad\left(\text { simplify }\left\{(F+L)^{2}=F^{2}+2 F L+L^{2}\right\}\right) \\
& x-7=(2 \sqrt{x-4})^{2}+2(2 \sqrt{x-4})(3)+(3)^{2} \\
& x-7=4(x-4)+12 \sqrt{x-4}+9 \\
& x-7=4 x-16+12 \sqrt{x-4}+9 \\
& x-7=4 x-7+12 \sqrt{x-4} \\
& \begin{array}{ll}
-3 x=12 \sqrt{x-4} & \quad \text { (isolate } 12 \sqrt{x-4}) \\
(-3 x)^{2}=(12 \sqrt{x-4})^{2} & \\
9 x^{2}=144(x-4) & \\
9 x^{2}=144 x-576 & \text { (square both sides) } \\
9 x^{2}-144 x+576=0 & \text { (factor) }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 9\left(x^{2}-16 x+64\right)=0 \\
& 9(x-8)^{2}=0 \\
& 9=0 \text { or } x-8=0 \\
& \text { No Soln or } x=8 \\
& \text { Check: } x=8 \\
& -\sqrt{x-7}=2 \sqrt{x-4}+3 \\
& -\sqrt{(8)-7}=2 \sqrt{(8)-4}+3 \quad ? \\
& -\sqrt{1}=2 \sqrt{4}+3 ? \\
& -1=2(2)+3 \quad ? \\
& -1=7 \quad \text { False }
\end{aligned}
$$

The solution is $\}$.

Concept \#4

Applications

Solve the following:

Ex. 3 The approximate time t (in seconds) required for a pendulum to make one complete swing back and forth is given by $t \approx 2 \pi \sqrt{\frac{L}{9.8}}$ where L is the length of the pendulum in meters.
a) Find the time (to the nearest tenth) it take a 0.8 meter pendulum to swing back and forth.
b) Find the length of a pendulum that takes 1.5 seconds to swing back and forth. (round to the nearest hundredth meter).
Solution:
a) Replace L by 0.8 meters and evaluate:
$\mathrm{t} \approx 2 \pi \sqrt{\frac{0.8}{9.8}}=2 \pi \sqrt{\frac{8}{98}}=2 \pi \sqrt{\frac{4}{49}}=2 \pi\left(\frac{2}{7}\right)=\frac{4}{7} \pi \approx 1.795 \ldots \approx 1.8$
It will take about 1.8 seconds.
b) Replace t by 1.5 and solve:

$$
\begin{aligned}
& \left.1.5 \approx 2 \pi \sqrt{\frac{L}{9.8}} \quad \text { (isolate } \sqrt{\frac{L}{9.8}}\right) \\
& \frac{1.5}{2 \pi}=\sqrt{\frac{L}{9.8}}(\text { square both sides }) \\
& \left(\frac{1.5}{2 \pi}\right)^{2}=\left(\sqrt{\frac{L}{9.8}}\right)^{2} \quad(\text { simplify }) \\
& \frac{2.25}{4 \pi^{2}}=\frac{L}{9.8} \quad \text { (solve) } \\
& L=\frac{2.25 \cdot 9.8}{4 \pi^{2}} \approx 0.558 \ldots \approx 0.56 \text { meters }
\end{aligned}
$$

The pendulum is approximately 0.56 meters.

