Sect 3.4 - The Slope-Intercept Form

Concepts \#1 and \#2 Slope-Intercept Form of a line
Recall the following definition from the beginning of the chapter:
Let a, b, and c be real numbers where a and b are not both zero. Then an equation that can be written in the form:
$a x+b y=c$ is called a linear equation in two variables
If a, b, and c happen to integers with $a>0$, then we call this the standard form of a linear equation.

A linear equation in two variables is said to be written in standard form if it is in the form: $A x+B y=C$, where A, B, and C are integers and both A and B cannot be zero.

We also saw that if the linear equation is solved for y, the constant term was the y-coordinate of the y-intercept. In other words, if $y=m x+b$, then $(0, b)$ is the y-intercept. Now, let us find the slope of the line. The y intercept, $(0, b)$, is one point on the line. If we let $x=1$, then $y=m(1)+b$ $=m+b$. So, $(1, m+b)$ is a second point on the line. The slope is equal to $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{m+b-b}{1-0}=\frac{m}{1}=m$. Thus, the coefficient of the x-term is m.

Slope-intercept form

A linear equation in two variables is said to be written in slope-intercept form if it is in the form $y=m x+b$ where m is the slope of the line and the point $(0, b)$ is the y-intercept.

Given the graph below, find a) the slope, b) y-intercept, and c) the

 equation of the line:
Ex. 1

Ex. 2

Solution:
a) The graph cross the y-axis at -1 , so the y-intercept is $(0,-1)$.
b) Moving from the point $(0,-1)$ to $(3,0)$, we have to rise 1 unit and run 3 units. So, the slope is $\frac{\text { "rise" }}{\text { "run" }}=\frac{1}{3}$.
c) Since $m=\frac{1}{3}$ and $b=-1$, the equation is $y=\frac{1}{3} x-1$.
Ex. 3

Solution:
a) The graph cross the y-axis at -4 , so the y-intercept is $(0,-4)$.
b) Moving from the point $(0,-4)$ to $(3,-6)$, we have to fall 2 units and run 3 units. So, the slope is $\frac{\text { "rise" }}{\text { "run" }}=\frac{-2}{3}=-\frac{2}{3}$.
c) Since $m=-\frac{2}{3}$ and $b=-4$,

Solution:
a) The graph cross the y-axis at 1 , so the y-intercept is $(0,1)$.
b) Moving from the point
$(0,1)$ to $(1,-1)$, we have to fall 2 units and run 1 unit. So, the slope is $\frac{\text { "rise" }}{\text { "run" }}=\frac{-2}{1}=-2$.
c) Since $m=-2$ and $b=1$, the equation is $\mathrm{y}=-2 \mathrm{x}+1$.

Ex. 4

Solution:
a) The graph cross the y-axis at 2 , so the y-intercept is $(0,2)$.
b) Moving from the point $(0,2)$ to $(6,3)$, we have to rise 1 unit and run 6 units. So, the slope is $\frac{\text { "rise" }}{\text { "run" }}=\frac{1}{6}$.
the equation is $y=-\frac{2}{3} x-4$. the equation is $y=\frac{1}{6} x+2$.
We can also go "backwards" to find the slope. In example \#3, if we move from $(0,-4)$ to $(-3,-2)$, we would rise 2 units and run 3 units backwards, So, our slope would be $\frac{\text { "rise" }}{\text { "run" }}=\frac{2}{-3}=-\frac{2}{3}$. Likewise, in example \#4, if we went from $(0,2)$ to $(-6,1)$, we would fall 1 unit and run 6 units backwards. So, our slope would be $\frac{\text { "rise" }}{\text { "run" }}=\frac{-1}{-6}=\frac{1}{6}$.

Ex. 5

Solution:
a) The graph cross the y-axis at 4 , so the y-intercept is $(0,4)$.
b) This is a horizontal line so, $\mathrm{m}=0$.
c) The equation of a horizontal line is in the form $\mathrm{y}=\#$. Since the line crosses the y-axis at 4, then the equation is $y=4$.

Ex. 6

Solution:
a) The graph does not cross the y-axis, so there is no y-intercept.
b) This is a vertical line so, m is undefined.
c) The equation of a vertical line is in the form $x=\#$. Since the line crosses the x-axis at -2 , then the equation is $x=-2$.

Find the slope and y-intercept and sketch the graph:
Ex. $7 \quad-3 x+y=-5$

Solution:

First solve the equation for y :

$$
\begin{aligned}
&-3 x+y=-5 \\
&+3 x \quad=+3 x \\
& \hline y=3 x-5
\end{aligned}
$$

The slope is $3=\frac{3}{1}=\frac{\text { "rise" }}{\text { "run" }}$ and the y-intercept is $(0,-5)$. Plot the point $(0,-5)$. Then from that point rise 3 units and run 1 unit to get another point.
From that new point, rise another 3 units and run 1 more unit to get the third point. Now, draw the graph.

Ex. $8 \quad 2 x-6 y=12$
Solution:
First solve the equation for y :

$$
\begin{aligned}
& 2 x-6 y=12 \\
& -2 x \quad=-2 x \\
& \hline \frac{-6 y}{-6}=\frac{-2 x+12}{-6} \\
& y=\frac{1}{3} x-2
\end{aligned}
$$

The slope is $\frac{1}{3}=\frac{\text { "rise" }}{\text { "run" }}$ and the y-intercept is $(0,-2)$. Plot the point $(0,-2)$. Then from that point rise 1 unit and run 3 units to get another point. From that new point, rise
 another 1 unit and run 3 more units to get the third point. Now, draw the graph.

Ex. $9 \quad 8 x+3 y=24$
Solution:
First solve the equation for y :

$$
\begin{aligned}
8 x+3 y & =24 \\
-8 x \quad & =-8 x \\
\hline \frac{3 y}{3} & =\frac{-8 x+24}{3} \\
y & =-\frac{8}{3} x+8
\end{aligned}
$$

The slope is $-\frac{8}{3}=\frac{-8}{3}=\frac{\text { "rise" }}{\text { "run" }}$ and the y-intercept is $(0,8)$.
Plot the point $(0,8)$. Then from that point fall 8 units and run 3 units to get another point. From that new point fall

another 8 units and run 3 more units to get the third point. Now, draw the graph.

Concept \#3 Determining Whether Two Lines are Parallel, Perpendicular, or Neither.

Determine if the lines are parallel, perpendicular, or neither.

Ex. 10

$$
\begin{aligned}
& 8 x-7 y=6 \\
& 8 y=-7 x+3
\end{aligned}
$$

Solution:
First, solve each equation for y to find the slope.

$$
\begin{aligned}
& 8 x-7 y=6 \\
& -8 x \quad=-8 x \\
& \frac{-7 y}{-7}=\frac{-8 x+6}{-7} \\
& y=\frac{8}{7} x-\frac{6}{7} \\
& m_{1}=\frac{8}{7} \\
& \frac{8 y}{8}=\frac{-7 x+3}{8} \\
& y=-\frac{7}{8} x+\frac{3}{8} \\
& m_{2}=-\frac{7}{8}
\end{aligned}
$$

Ex. $11 \quad 4 x-2=y$
Solution:
First, solve each equation for y to find the slope.

$$
\begin{aligned}
& 4 x-2=y \\
& y=4 x-2 \\
& m_{1}=4 \\
& 4 x+y=5 \\
& -4 x=-4 x \\
& y=-4 x+5 \\
& m_{2}=-4
\end{aligned}
$$

But, $\mathrm{m}_{1} \neq \mathrm{m}_{2}$, so they are not
parallel. Also, $m_{1} \bullet \mathrm{~m}_{2}=4(-4)$
Since $m_{1} \bullet m_{2}=\frac{8}{7}\left(-\frac{7}{8}\right)$
$=-1$, the lines are perpendicular.

Ex. $12 \quad \frac{2}{9} x-\frac{1}{6} y=1$

$$
1.2 x-0.9 y=1.8
$$

$=-16 \neq-1$, so they are not perpendicular. There the lines are neither.

Solution:
First, solve each equation for y to find the slope.

$$
\begin{array}{cc}
\frac{18}{1}\left(\frac{2}{9} x\right)-\frac{18}{1}\left(\frac{1}{6} y\right)=18(1) & 10(1.2 x)-10(0.9 y)=10(1.8) \\
\frac{2}{1}\left(\frac{2}{1} x\right)-\frac{3}{1}\left(\frac{1}{1} y\right)=18(1) & 12 x-9 y=18 \\
4 x-3 y=18 & \frac{-12 x=-12 x}{-9}=\frac{-9 y}{-9}=\frac{-12 x+18}{-9} \\
\frac{-4 x}{\frac{-3 y}{-3}=\frac{-4 x}{-3}}+18 \\
y=\frac{4}{3} x-6 & y=\frac{4}{3} x-2 \\
m_{1}=\frac{4}{3} & m_{2}=\frac{4}{3}
\end{array}
$$

Since $m_{1}=m_{2}$, then the lines are parallel.

Concept \#4 Writing the Equation of the Line Given Its Slope and y-Intercept

Use the given information to write the equation of the line:

Ex. 13 The slope of the line is $\frac{3}{8}$ and it passes through $(0,-2)$.
Solution:

$$
m=\frac{3}{8} \text { and }(0, b)=(0,-2) \text { which implies } b=-2 \text {. }
$$

Plugging into $y=m x+b$, we get:

$$
y=\frac{3}{8} x-2
$$

So, the equation is $y=\frac{3}{8} x-2$.
Ex. 14 The slope of the line is -2 and it passes through $(0,1)$ Solution:
$m=-2$ and $(0, b)=(0,1)$ which implies $b=1$.
Plugging into $y=m x+b$, we get:

$$
y=-2 x+1
$$

So, the equation is $y=-2 x+1$.
Ex. 15 The slope of the line is 0 and it passes through ($-2,5$). Solution:
$\mathrm{m}=0$, but we do not have a y -intercept. A line with a slope of 0 is a horizontal line. Recall that a horizontal is in the form of $y=$ constant.
Since it has to pass through the point $(-2,5)$, then y has to be 5 . So, the equation is $y=5$.

Ex. 16 The slope of the line is undefined and it passes through (-2,5).
Solution:
m is undefined and we do not have a y-intercept. A line with a slope that is undefined is a vertical line. Recall that a vertical is in the form of $x=$ constant. Since it has to pass through the point $(-2,5)$, then x has to be -2 .
So, the equation is $x=-2$.

