Sect 3.5 - Point-Slope Formula

Concept #1 Writing the Equation of the Line Using the Point-Slope Formula

To see where the point-slope form comes from, let us examine the formula for calculating the slope:

$$\begin{split} m &= \frac{y_2 - y_1}{x_2 - x_1} & (\text{rewrite the formula}) \\ \frac{y_2 - y_1}{x_2 - x_1} &= m & (\text{replace } (x_2, y_2) \text{ with the variables x and y}) \\ \frac{y - y_1}{x - x_1} &= m & (\text{clear fractions by multiply both sides by } (x - x_1)) \\ \frac{y - y_1}{x - x_1} & (x - x_1) &= m(x - x_1) \\ \frac{y - y_1}{x - x_1} & \frac{(x - x_1)}{1} &= m(x - x_1) & (\text{reduce}) \\ y - y_1 &= m(x - x_1) \text{ This is a point-slope formula.} \end{split}$$

A linear equation in two variables is said to be written in **point-slope form** if it is in the form: $y - y_1 = m(x - x_1)$, where m is the slope and (x_1, y_1) is any known point on the line.

<u>Given the following information, find and write the equation in</u> <u>a) point-slope form, b) slope-intercept form, and c) standard form.</u>

Ex. 1 A line with slope of 6
passing through the
point (9, 5).
Solution:

$$m = 6; (x_1, y_1) = (9, 5)$$

 $y - y_1 = m(x - x_1)$
a) $y - 5 = 6(x - 9)$ pt -slope
 $y - 5 = 6x - 54$
b) $y = 6x - 49$ slope-int
Ex. 2 A line with slope of $-\frac{2}{3}$
passing through the
point (-8, 4).
Solution:
 $m = -\frac{2}{3}; (x_1, y_1) = (-8, 4)$
 $y - y_1 = m(x - x_1)$
a) $y - 4 = -\frac{2}{3}(x - (-8))$ pt-slope
 $y - 4 = -\frac{2}{3}(x + 8)$
 $y - 4 = -\frac{2}{3}x - \frac{16}{3}$
b) $y = 6x - 49$ slope-int
b) $y = -\frac{2}{3}x - \frac{4}{3}$ slope-int

y =
$$6x - 49$$

 $-6x = -6x$
 $-6x + y = -49$
 -1 -1
c) $6x - y = 49$ std form
 $3(y) = 3\left(-\frac{2}{3}x\right) - 3\left(\frac{4}{3}\right)$
 $3y = -2x - 4$
 $+2x = +2x$
c) $2x + 3y = -4$ std form

/riting the Equation of the Line Through Two Points

Ex. 3 A line that passes Ex. through the points (2, -3) and (-5, -1). Solution: First, find the slope: $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - (-3)}{-5 - 2}$ $=\frac{2}{7}=-\frac{2}{7}$. Now, pick one of the points. $m = -\frac{2}{7}; (x_1, y_1) = (2, -3)$ $y - y_1 = m(x - x_1)$ a) $y - (-3) = -\frac{2}{7}(x - 2)$ $\frac{y+3 = -\frac{2}{7}x + \frac{4}{7}}{-3 = -\frac{21}{7}}$ b) $y = -\frac{2}{7}x - \frac{17}{7}$ $7y = 7\left(-\frac{2}{7}x\right) - 7\left(\frac{17}{7}\right)$ 7y = -2x - 17 $\frac{+2x = +2x}{c} = -17$

4 A line that passes
through the points
(7, -10) and (5, -14).
Solution:
First, find the slope:
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-14 - (-10)}{5 - 7}$$

 $= \frac{-4}{-2} = 2$.
Now, pick one of the points.
 $m = 2$; $(x_1, y_1) = (7, -10)$
 $y - y_1 = m(x - x_1)$
a) $y - (-10) = 2(x - 7)$
 $y + 10 = 2x - 14$
 $-10 = -10$
b) $y = 2x - 24$
 $-2x = -2x$
 $-2x + y = -24$
 -1 -1
c) $2x - y = 24$

Concept #3 Writing an Equation of a Line Parallel or Perpendicular to Another Line.

Write the equation of the line in slope-intercept form:

- Ex. 5 Find the equation of the line passing through (-2, 6)
 - a) parallel to y = 3x 2.
 - b) perpendicular to y = 3x 2.

Solution:

a) Parallel lines have the same slope, so $m_{\parallel} = 3$.

$$y - y_1 = m(x - x_1)$$

$$y - 6 = 3(x - (-2)) = 3(x + 2) = 3x + 6$$

$$y - 6 = 3x + 6$$

$$\frac{+6 = +6}{y = 3x + 12}$$

b) The slope of the line perpendicular is the negative reciprocal of 3. So, $m_{\perp} = -\frac{1}{3}$. $y - y_1 = m(x - x_1)$ $y - 6 = -\frac{1}{3}(x - (-2)) = -\frac{1}{3}(x + 2) = -\frac{1}{3}x - \frac{2}{3}$

$$y - 6 = -\frac{1}{3}x - \frac{2}{3}$$

+ 6 = + $\frac{18}{3}$
 $y = -\frac{1}{3}x + \frac{16}{3}$

- Ex. 6 Find the equation of the line passing through (4, 0)
 - a) parallel to $y = \frac{1}{6}x 3$.
 - b) perpendicular to $y = \frac{1}{6}x 3$.

Solution:

a) Parallel lines have the same slope, so $m_{\parallel} = \frac{1}{6}$.

$$y - y_1 = m(x - x_1)$$

$$y - 0 = \frac{1}{6}(x - 4) = \frac{1}{6}x - \frac{4}{6} = \frac{1}{6}x - \frac{2}{3}$$

$$y = \frac{1}{6}x - \frac{2}{3}$$

- b) The slope of the line perpendicular is the negative reciprocal of $\frac{1}{6}$. So, $m_{\perp} = -6$. $y - y_1 = m(x - x_1)$ y - 0 = -6(x - 4) = -6x + 24y = -6x + 24
- Ex. 7 Find the equation of the line passing through (8, -3)
 - a) parallel to x = 5.
 - b) perpendicular to x = 5.

Solution:

- a) A line parallel to x = 5 is a vertical line and it passes through (8, -3). So, the equation is x = 8.
- b) A line perpendicular to x = 5 is a horizontal line and it passes through (8, -3). So, the equation is y = -3.

Solve the following:

Ex. 8 In 1999, there were about 2.8 million high speed lines in the U.S. By 2003, that number had risen to 28.2 million. (source: www.fcc.gov). a) Write the equation of the line in slope-intercept form with x corresponding to the number of years after 1999 and y being the number of high speed lines measured in millions. b) Use your result to predict the number of high speed lines in 2005. <u>Solution:</u>

a) The slope is $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{28.2 - 2.8}{2003 - 1999} = \frac{25.4}{4} = 6.35$ million per year. Since x is the number of years after 1999, then 2.8 million is the y-coordinate of the y-intercept. Thus, m = 6.35 and b = 2.8. So, our equation is y = 6.35x + 2.8 b) Since 2005 corresponds to x = 6, evaluate y = 6.35x + 2.8 for x = 6: y = 6.35(6) + 2.8 = 38.1 + 2.8 = 40.9 So, the number of high speed lines in 2005 should be 40.9 million.

Use the information given to sketch the graph:

Ex. 9 m = $-\frac{2}{3}$ and the line passes through (-1, 4).

Solution:

Plot the point (– 1, 4). Then from that point fall 2 units and run 3 units to get another point. From that new point fall another 2 units and run 3 more units to get the third point. Now, draw the graph.

Ex. 10 m = 2 and the line passes through (1, -5). Solution:

Plot the point (1, -5). Then from that point rise 2 units and run 1 unit to get another point. From that new point rise another 2 units and run 1 more unit to get the third point. Now, draw the graph.

Given the graph below, find <u>a) the intercepts</u> <u>b) the slope if applicable</u> <u>c) the equation of the line if applicable:</u>

Solution:

- 11a) x-int: (-4, 0) y-int: (0, -2)
- 11b) From (-4, 0) to (0, -2), fall 2 units and run 4 units. So, $m = \frac{"rise"}{"run"} = \frac{-2}{4} = -\frac{1}{2}.$

11c)
$$m = -\frac{1}{2}$$
 and $b = -2$, so the equation is $y = -\frac{1}{2}x - 2$.

- 12a) x-int: None y-int: (0, 3)
- 12b) The slope of a horizontal line is 0, so m = 0.
- 12c) The equation of a horizontal line is in the form y = #, so the equation is y = 3.
- 13a) x-int: (0, 0) y-int: (0, 0) 13b) From (0, 0) to (1, 3), rise 3 units and run 1 unit. So, $m = \frac{\text{"rise"}}{\text{"run"}} = \frac{3}{1} = 3.$ 13c) m = 3 and b = 0, so the equation is y = 3x.
- 14a) x-int: (- 3, 0) and (2, 0)y-int: (0, 4) and (0, 4) 14b & c) N/A
- 15a) x-int: (– 5, 0) y-int: None
- 15b) The slope of a vertical line is undefined, so m is undefined.
- 15c) The equation of a vertical line is in the form x = #, so the equation is x = -5.

16a) x-int: (- 5, 0) y-int: (0, 4)

16b & c) N/A

Concept #4 Different Forms of Linear Equations: A Summary

Form	Example	Notes
Standard Form		A and B are integers &
Ax + By = C	5x – 3y = 17	must not both be 0.
Horizontal Line		m = 0,
y = constant	y = - 2.3	y-int: (0, constant)
Vertical Line		m is undefined
x = constant	x = 3	x-int: (constant, 0)
Slope-Intercept Form	m = 3, (0, b) = (0, -5)	m is the slope,
y = mx + b	y = 3x - 5	(0, b) is the y-int.
Point-Slope Formula	$m = -4, (x_1, y_1) = (2, 3)$	m is the slope, (x_1, y_1)
$y - y_1 = m(x - x_1)$	y - 3 = -4(x - 2)	is any point on the line.