Sect 6.2 \& The Rest of Sect 6.3 - Factoring Trinomials Using Trial-and-Error

Section 6.2 Concept \#1 and Section 6.3 Concepts \#1 \& 3:
Factoring Trinomials Using Trial and Error.
Recall a problem we have worked previously:

Simplify the following:

Ex. $1 \quad(3 x-5)(2 x+7)$
Solution:

$$
\begin{gathered}
\text { F. O. I. . L. } \\
(3 x-5)(2 x+7)=6 x^{2}+21 x-10 x-35=6 x^{2}+11 x-35 .
\end{gathered}
$$

In this section, we want to go backwards. Notice that the first term in the trinomial is the product of the first terms of the two binomials that we foiled. Also, the last term in the trinomial is the product of the last terms of two binomials that we foiled. If we are factoring a trinomial, we can look at the factors of the first term and that will give us the possible first terms for the two binomials and we can look at the factors of the last term and that we give us the possible last terms for the two binomials. Then, just check the outer and the inner part of FOIL to see if we get the correct middle term. If so, then we are done. If not, then we will need to try a different combination. So, let's try factoring $6 x^{2}+11 x-35$.

Factor the following:

Ex. $2 \quad 6 x^{2}+11 x-35$
Solution:
The possible factors of $6 x^{2}$ are $x \cdot 6 x$ and $2 x \cdot 3 x$ and the possible factors of -35 are $-1 \bullet 35$ and $-5 \bullet 7$.

$6 x^{2}+11 x-35$	The possible combinations are $(x-1)(6 x+35),(x+35)(6 x-1)$, $(x-5)(6 x+7),(x+7)(6 x-5)$,
$x \bullet 6 x$ $-1 \bullet 35$ $2 x \bullet 3 x$ $-5 \bullet 7$	$(2 x-1)(3 x+35),(2 x+35)(3 x-1)$, $(2 x-5)(3 x+7), \&(2 x+7)(3 x-5)$

In terms of where we start, there is a higher probability that the correct combination will involve the factors that are closest to each other in value. We should therefore try the combinations involving $2 x \cdot 3 x$ and $-5 \bullet 7$. To find the correct combination, compute the 0 . and I. part of F.O.I.L. to see which one yields 11 x as a middle term.

$$
\begin{array}{ll}
(2 x-5)(3 x+7) & (2 x+7)(3 x-5) \\
\text { O. } 14 x & \text { O. }-10 x \\
\text { I. }-15 x \\
\hline
\end{array}
$$

Therefore, $6 x^{2}+11 x-35=(2 x+7)(3 x-5)$.
You might ask how do we know which number to give the negative sign to. Actually, it does not matter. If we had put the negative sign on the 7 instead of the five, we would have computed - 11x as our middle term on the second trial. If we get the correct middle term, but with the wrong sign, we just change each sign.

Ex. $2 \quad y^{2}+11 y+24$
Solution:

$2 \cdot 12$
$3 \cdot 8$
$4 \bullet 6$
$(y+4)(y+6)$
O. $6 y$
I. $\quad 4 y$

10y No

The factors of $y^{2}=y \bullet y$. The factors of $24=1 \bullet 24,2 \bullet 12$, $3 \cdot 8$, and $4 \bullet 6$. Try 4 and 6 first, then 3 and 8 and continue until you get the correct middle term.

So, $y^{2}+11 y+24=(y+3)(y+8)$.
You may have notice that if we add the factors of the last term, we get the coefficient of the middle term. That works if the coefficient of the first or last term is one. We will use that to help us find the combination quickly, but we will still verify it using the O . and I. part of F.O.I.L.
Ex. $3 \quad x^{2}-13 x y+36 y^{2}$
Solution:

$\bigwedge^{x^{2}}-13 x y+36 y^{2}$		Since $4+9=13$, then $4 y, 9 y$ is the combination we want to try;	
$\mathrm{x} \bullet \times$	$\mathrm{y} \cdot 36 \mathrm{y}$	$(x+4 y)(x+9 y)$	
	$2 \mathrm{y} \cdot 18 \mathrm{y}$	O. $9 x y$	
	$3 \mathrm{y} \cdot 12 \mathrm{y}$	I. $4 x y$	
	$4 \mathrm{y} \cdot 9 \mathrm{y}$	13xy	We have
	6 y •6y	wrong sig	ange the

Thus, $x^{2}-13 x y+36 y^{2}=(x-4 y)(x-9 y)$

Ex. $4 \quad 25 x^{2}-225 x+75$
Solution:
G.C.F. $=25$, so $25 x^{2}-225 x+75=25\left(x^{2}-9 x+3\right)$

There is only one combination to try, but $1+3=4 \neq-9$
So $(x+3)(x+1)$ will yield a middle term of $4 x$. This means that $x^{2}-9 x+3$ is prime.
So, $25\left(x^{2}-9 x+3\right)$ is our answer.
Ex. 5

$$
y^{2}-11 y z-42 z^{2}
$$

Solution:
When we list the factors of $-42 z^{2}$, we will need to make one of them negative.

	$y z-42 z^{2}$	Sin
\wedge	^	the combination
$\mathrm{y} \bullet \mathrm{y}$	- z•42z	we will need
	- 2z•21z	$(y+3 z)(y-14 z$
	$-3 z \cdot 14 z$	O. -14 yz
	$-6 z \cdot 7 z$	I. $3 y z$
		-11yz

Thus, $y^{2}-11 y z-42 z^{2}=(y+3 z)(y-14 z)$
Ex. $6 \quad x^{4}-5 x^{2}+4$
Solution:

$2 \cdot 2$

Since $1+4=5$, that is the combination we want except we will have to change the signs: $\quad\left(x^{2}-4\right)\left(x^{2}-1\right)$
O. $-x^{2}$

O.	$-x^{2}$	
I.	$-4 x^{2}$	
	$-5 x^{2}$	Yes

Thus, $x^{4}-5 x^{2}+4=\left(x^{2}-4\right)\left(x^{2}-1\right)$

But, $x^{2}-1$ and $x^{2}-4$ are both a difference of squares, so
$x^{2}-1=(x-1)(x+1)$ and $x^{2}-4=(x-2)(x+2)$.
Hence, our answer is $(x-1)(x+1)(x-2)(x+2)$.
Ex. $7 \quad 10 x^{2}(3 x-2)+10 x(3 x-2)-120(3 x-2)$
Solution:
G.C.F. $=10(3 x-2)$, so
$10 x^{2}(3 x-2)+10 x(3 x-2)-120(3 x-2)$
$=10(3 x-2)\left(x^{2}+x-12\right)$

$$
=10(3 x-2)\left(x^{2}+x-12\right) \quad \begin{array}{ll}
\bigwedge_{x \bullet x}
\end{array} \begin{aligned}
& \text { Since }-3 x+4 x=x, \text { that is } \\
& \text { the combination we want } \\
& (x-3)(x+4) \\
& -2 x \bullet 6 x \\
& -3 x \bullet 4 x
\end{aligned} \quad \begin{aligned}
& \text { O. }-3 x
\end{aligned}
$$

Thus, $10(3 x-2)\left(x^{2}+x-12\right)=10(3 x-2)(x-3)(x+4)$
Ex. $8 \quad 30 m^{2}-11 m+1$
Solution:

$30 m^{2}-11 m+1$		Since $5 m+6 m=11 m$ combination we want
\wedge	\wedge	
m•30m	$1 \cdot 1$	will need to change th
$2 \mathrm{~m} \cdot 15 \mathrm{~m}$		$(5 m-1)(6 m-1)$
$3 \mathrm{~m} \cdot 10 \mathrm{~m}$		O. $-5 m$
$5 \mathrm{~m} \bullet$ 6m		I. -6 m
		-11m Yes

Thus, $30 m^{2}-11 m+1=(5 m-1)(6 m-1)$.
Ex. 9

$$
9 x^{2}+9 x y-10 y^{2}
$$

Solution:
Since neither the coefficients of first nor the coefficient of the last term are one, we cannot just see which factors add up to $9 x y$. We will have to try out combinations to see which one gives us the correct middle term:

So, $9 x^{2}+9 x y-10 y^{2}=(3 x-2 y)(3 x+5 y)$
Ex. $10 \quad 20 x^{2}-130 x y+60 x$
Solution:
G.C.F. $=10 x$, so $20 x y^{2}-130 x y+60 x=10 x\left(2 y^{2}-13 y+6\right)$

The combinations with 2 and 3 did not work so let's try 1 and 6.

$$
(y+1)(2 y+6) \quad(y+6)(2 y+1)
$$

No, since the G.C.F. of $2 \mathrm{y}+6 \neq 1$. O.

So, we need to change the signs.
Thus, $10 x\left(2 y^{2}-13 y+6\right)=10 x(y-6)(2 y-1)$
Ex. $11 \quad 8 x^{2}+18 x y-35 y^{2}$
Solution:

$(2 x-5 y)(4 x+7 y)$
O. $14 x y$
I. $-20 x y$
$-6 x y$ No

Since the G.C.F. of $8 x^{2}+18 x y-35 y^{2}$ is 1 , we can eliminate the combinations that have a G.C.F. not equal to 1.
Make one of the last factors negative.
$(2 x+7 y)(4 x-5 y)$
O. $-10 x y$
I. $28 x y$ 18xy Yes

So, $8 x^{2}+18 x y-35 y^{2}=(2 x+7 y)(4 x-5 y)$.
Ex. $12 \quad 40 x^{3} y-84 x^{2} y^{2}-40 x y^{3}$

Solution:

G.C.F. $=4 x y$, so $40 x^{3} y-84 x^{2} y^{2}-40 x y^{3}$
$=4 x y\left(10 x^{2}-21 x y-10 y^{2}\right) \quad$ Since the G.C.F. of $10 x^{2}-21 x y-10 y^{2}$

$\bigwedge_{x \bullet 10 x}$	$\bigwedge_{-y \bullet 10 y}$	is 1, we can eliminate the combinations $2 x \cdot 5 x$
that have a G.C.F. not equal to 1.		
$-2 y \bullet 5 y$	Make one of the last factors negative.	

$(2 x-2 y)(5 x+5 y)$
$(2 x+5 y)(5 x-2 y)$

No, G.C.F. $=1$.
O. $-4 x y$
I. $25 x y$

21xy Yes, change signs.
So, $4 x y\left(10 x^{2}-21 x y-10 y^{2}\right)=4 x y(2 x+5 y)(5 x-2 y)$

Ex. $13 \quad 14 x^{2}+41 x+15$
Solution:
$\bigwedge_{\substack{x \bullet 14 x \\ 2 x \bullet 7 x}}^{14 x^{2}}+41 x+15$

Since the G.C.F. of $14 x^{2}+41 x+15$ is 1, we can eliminate the combinations that have a G.C.F. not equal to 1 .
$(2 x+3)(7 x+5)$
O. 10 x
l. 21 x 31x No
$(2 x+5)(7 x+3)$
O. $6 x$
I. $\quad 35 x$

41x Yes

So, $14 x^{2}+41 x+15=(2 x+5)(7 x+3)$.
Ex. $14-2 x y^{2}-17 x y+24 x$
Solution:
Since G.C.F. $=-x$, then $-2 x y^{2}-17 x y+24 x=-x\left(2 y^{2}+17 y-24\right)$

$2 y^{2}+17 y-24$	Since the G.C.F. of $2 y^{2}+17 y-24$ is
\wedge 入	1, we can eliminate the combinations
$\mathrm{y} \cdot 2 \mathrm{y}$ - $-1 \cdot 24$	that have a G.C.F. not equal to 1.
-2•12	Make one of the last factors negative.
-3•8	
$-4 \bullet 6$	
$(y-4)(2 y+6)$	$(y+6)(2 y-4)$
No, G.C.F. $=1$.	No, G.C.F. $=1$.

Try - 3 and 8 :
$(y-3)(2 y+8)$
$\left.\begin{array}{l}(y+8)(2 y-3) \\ \text { O. } \quad-3 y \\ \text { I. } \quad 16 y \\ \hline\end{array} \begin{array}{l}13 y\end{array}\right)$
Try -2 and 12 :
$(y-2)(2 y+12)$
No, G.C.F. $=1$.
Try - 1 and 24 :
$(y-1)(2 y+24)$
No, G.C.F. $=1$.
$(y+12)(2 y-2)$
No, G.C.F. $=1$.

$$
\begin{aligned}
& (y+24)(2 y-1) \\
& 0 . \quad 48 y
\end{aligned}
$$

I. $\quad-y$

Thus, $2 y^{2}+17 y-24$ is prime. So, our answer is $-x\left(2 y^{2}+17 y-24\right)$.
Notice by using the G.C.F. argument, we eliminated six combinations.

Ex. $16\left(25 x^{2}-70 x+49\right)-\left(4 x^{2}-4 x+1\right)$

Solution:

There are at least two ways to work this problem:

Method One:

$=25 x^{2}-70 x+49-4 x^{2}+4 x-1$
$=21 x^{2}-66 x+48$
$=3\left(7 x^{2}-22 x+16\right)$
(factor out the G.C.F. of 3)
(trial and error)
$(\mathrm{x}+4)(7 \mathrm{x}+4)$
0. $\quad 4 \mathrm{x}$
I. $\quad 28 x$
$32 x$ No

$$
(x+2)(7 x+8)
$$

$$
\text { O. } \quad 8 \mathrm{x}
$$

I. $14 x$
$22 x$ Yes, change the signs.

So, the answer is $3(x-2)(7 x-8)$.

Method Two:

$\left(25 x^{2}-70 x+49\right)-\left(4 x^{2}-4 x+1\right) \quad$ (perfect square trinomials)
$\mathrm{F}_{1}=5 \mathrm{x} \quad \mathrm{L}_{1}=7 \quad \mathrm{~F}_{2}=2 \mathrm{x} \quad \mathrm{L}_{2}=1$
$-2 F L=-2(5 x)(7) \quad-2 F L=-2(2 x)(1)$
$=-70 x$ match $\quad=-4 x$ match
Since $F^{2}-2 F L+L^{2}=(F-L)^{2}$, then
$\left(25 x^{2}-70 x+49\right)-\left(4 x^{2}-4 x+1\right)$
$=(5 x-7)^{2}-(2 x-1)^{2} \quad$ (difference of squares)

$$
F=(5 x-7) \quad L=(2 x-1)
$$

Since $F^{2}-L^{2}=(F-L)(F+L)$, then

$$
(5 x-7)^{2}-(2 x-1)^{2}
$$

$$
=[(5 x-7)-(2 x-1)][(5 x-7)+(2 x-1)] \text { (distribute) }
$$

$=[5 x-7-2 x+1][5 x-7+2 x-1]$ (combine like terms)
$=(3 x-6)(7 x-8)($ factor out the G.C.F. of 3$)$
$=3(x-2)(7 x-8)$
So, the answer is $3(x-2)(7 x-8)$.
Notice that we get the same answer though the problem was factored in vastly different ways.

Ex. $16 \quad 6(x+3 y)^{2}-(x+3 y)-1$
Solution:
We could first try expanding and combining like terms:

$$
6(x+3 y)^{2}-(x+3 y)-1
$$

$$
=6(x+3 y)(x+3 y)-(x+3 y)-1 \quad \text { (multiply) }
$$

$=6\left(x^{2}+6 x y+9 y^{2}\right)-(x+3 y)-1 \quad$ (distribute)
$=6 x^{2}+36 x y+54 y^{2}-x-3 y-1$
Unfortunately, there are no like terms so we have reached a dead end. Let's start again and see if we can work this in a different direction.
$6(x+3 y)^{2}-(x+3 y)-1$
"Squared "Variable "Constant
Term" Term" Term"
Notice that this is in the form of a second degree trinomial. To make it easier to work with, let's let $\mathbf{B}=(x+3 y)$. So, our problem becomes:
$6(x+3 y)^{2}-(x+3 y)-1$
$=6 B^{2}-B-1 \quad$ Now, use trial and error.
$(2 B-1)(3 B+1)$
O. $\quad 2 B$

2B•3B

$$
\begin{aligned}
& \text { I. } \quad-3 B \\
& \hline-B
\end{aligned}
$$

So, $6 B^{2}-B-1=(2 B-1)(3 B+1)$
Now, replace B by ($x+3 y$):
$(2 B-1)(3 B+1)=(2(x+3 y)-1)(3(x+3 y)+1) \quad$ (distribute)
$=(2 x+6 y-1)(3 x+9 y+1)$
Ex. $17 \quad x^{2}(x+10)-2 x(x-8)$
Solution:
We could first try expanding and combining like terms:
$x^{2}(x+10)-2 x(x-8) \quad$ (distribute)
$=x^{3}+10 x^{2}-2 x^{2}+16 x \quad$ (combine like terms)
$=x^{3}+8 x^{2}+16 x \quad$ (factor out the G.C.F. of x)
$=x\left(x^{2}+8 x+16\right) \quad$ (perfect square trinomial)
$F=x \quad L=4$
$2 F L=2(x)(4)=8 x$ match
Since $F^{2}+2 F L+L^{2}=(F+L)^{2}$, then
$x^{2}+8 x+16=(x+4)^{2}$.
Thus, $x\left(x^{2}+8 x+16\right)=x(x+4)^{2}$.

