Rest of Sect 6.4 - Factoring Trinomials Using the AC-Method

Concept \#1 Factoring Trinomials: AC-Method
An alternate method to factoring trinomials is called the AC method. With this method, you "uncombine" the middle term and then factor the problem by grouping. Here is the procedure:

Product-Sum Method

1) Multiply the coefficient of the first and last term $\left(a^{\circ} \mathrm{c}\right)$.
2) List all pairs of factors of that result until you find a pair whose sum is the coefficient of the middle term (b).
3) Rewrite the middle term as the sum of two terms using the factors found in step \#2 as the coefficients.
4) Factor by grouping.

Factor:

Ex. $1 \quad 3 x^{2}-5 x-12$
Solution:
The G.C.F. $=1$. Let's go through our steps:

1) The coefficients of the first and last terms are 3 and - 12.

Their product is -36 .
2)

Product $=\mathbf{- 3 6}$	Sum $=\mathbf{- 5}$
$-1 \bullet 36$	$-1+36=35$ No
$-2 \bullet 18$	$-2+18=16$ No
$-3 \bullet 12$	$-3+12=9$ No
$-4 \bullet 9$	$-4+9=5$ Yes, change the signs
$-6 \bullet 6$	

3) Thus, $-5 x=4 x-9 x$, so $3 x^{2}-5 x-12$
$=3 x^{2}+4 x-9 x-12$
4) Factor by grouping:
$=\left(3 x^{2}+4 x\right)+(-9 x-12)$
(factor out an x and $a-3$)
$=x(3 x+4)-3(3 x+4) \quad$ (factor out $(3 x+4))$
$=(3 x+4)(x-3)$

Ex. $2 \quad 14 x^{2}+31 x+15$

Solution:
The G.C.F. = 1. Let's go through our steps:

1) The coefficients of the first and last terms are 14 and 15. Their product is 210.
2)

Product $=\mathbf{2 1 0}$	Sum $=\mathbf{3 1}$
$1 \cdot 210$	$1+210=211 \mathrm{No}$
$2 \bullet 105$	$2+105=107 \mathrm{No}$
$3 \bullet 70$	$3+70=73 \mathrm{No}$
$5 \bullet 42$	$5+42=47 \mathrm{No}$
$6 \bullet 35$	$6+35=41 \mathrm{No}$
$7 \bullet 30$	$7+30=37 \mathrm{No}$
$10 \bullet 21$	$10+21=31 \mathrm{Yes}$

3) Thus, $31 x=10 x+21 x$, so $14 x^{2}+31 x+15$

$$
=14 x^{2}+10 x+21 x+15
$$

4) Factor by grouping:

$$
\begin{array}{lr}
\left.=\left(14 x^{2}+10 x\right)+(21 x+15) \quad \quad \text { (factor out } 2 x \text { and } 3\right) \\
=2 x(7 x+5)+3(7 x+5) \quad \text { (factor out }(7 x+5)) \\
=(7 x+5)(2 x+3)
\end{array}
$$

Ex. $3 \quad-4 a^{3} b-5 a^{2} b^{2}+30 a b^{3}$
Solution:
G.C.F. $=-a b$, so $-4 a^{3} b-5 a^{2} b^{2}+30 a b^{3}=-a b\left(4 a^{2}+5 a b-30 b^{2}\right)$

Let's go through our steps:

1) The coefficients of the first and last terms are 4 and - 30 .

Their product is $\mathbf{- 1 2 0}$.
2)

Product $=\mathbf{- 1 2 0}$	Sum $=\mathbf{5}$
$-1 \bullet \cdot 120$	$-1+120=119$ No
$-2 \bullet 60$	$-2+60=58$ No
$-3 \bullet 40$	$-3+40=37$ No
$-4 \bullet 30$	$-4+30=26$ No
$-5 \cdot 24$	$-5+24=19$ No
$-6 \cdot 20$	$-6+20=14$ No
$-8 \bullet 15$	$-8+15=7$ No
$-10 \cdot 12$	$-10+12=2$ No

Since there are no pairs that yield a sum of 5 , the trinomial is prime.
Thus, our answer is $-a b\left(4 a^{2}+5 a b-30 b^{2}\right)$.
Ex. $4 \quad-135 x^{2}+9 x y+54 y^{2}$
Solution:
The G.C.F. $=-9$, so $-135 x^{2}+9 x y+54 y^{2}=-9\left(15 x^{2}-x y-6 y^{2}\right)$.
Let's go through our steps:

1) The coefficients of the first and last terms are 15 and - 6 . Their product is -90 .
2)

Product $=\mathbf{- 9 0}$	Sum $=\mathbf{- 1}$
$-1 \bullet 90$	$-1+90=89$ No
$-2 \bullet 45$	$-2+45=43$ No
$-3 \bullet 30$	$-3+30=27$ No
$-5 \bullet 18$	$-5+18=13$ No
$-6 \bullet 15$	$-6+15=9$ No
$-9 \bullet 10$	$-9+10=1$ Almost, change the signs

3) Thus, $-x y=9 x y-10 x y$, so $-9\left(15 x^{2}-x y-6 y^{2}\right)$
$=-9\left(15 x^{2}+9 x y-10 x y-6 y^{2}\right)$
4) Factor by grouping:
$=-9\left(\left[15 x^{2}+9 x y\right]+\left[-10 x y-6 y^{2}\right]\right)$ (factor out $3 x$ and $-2 y$)
$=-9(3 x[5 x+3 y]-2 y[5 x+3 y]) \quad$ (factor out $[5 x+3 y])$
$=-9(5 x+3 y)(3 x-2 y)$

Ex. $5 \quad 12 x^{3}-43 x^{2}+35 x$

Solution:

The G.C.F. $=x$, so $12 x^{3}-43 x^{2}+35=x\left(12 x^{2}-43 x+35\right)$.
Let's go through our steps:

1) The coefficients of the first and last terms are 12 and 35.

Their product is 420 .
2)

Product $=\mathbf{4 2 0}$	Sum $=\mathbf{- 4 3}$
$1 \bullet 420$	$1+420=421$
$2 \bullet 210$	$2+210=212$
$3 \bullet 140$	$3+140=143$
$4 \bullet 105$	$4+105=109$
$5 \bullet 84$	$5+84=89$
$6 \bullet 70$	$6+70=76$
$7 \bullet 60$	$7+60=67$
$10 \bullet 42$	$10+42=52$
$12 \bullet 35$	$12+35=47$
$14 \bullet 30$	$14+30=44$
$15 \bullet 28$	$15+28=43$ Almost, change the signs
$20 \bullet 21$	$20+21=41$

3) Thus, $-43 x=-15 x-28 x$, so $x\left(12 x^{2}-43 x+35\right)$
$=x\left(12 x^{2}-15 x-28 x+35\right)$
4) Factor by grouping:
$=x\left(\left[12 x^{2}-15 x\right]+[-28 x+35]\right)$ (factor out $3 x$ and -7$)$
$=x(3 x[4 x-5]-7[4 x-5]) \quad$ (factor out $[4 x-5])$
$=x(4 x-5)(3 x-7)$
