Sect 6.6 - General Factoring Summary

Concept #1 Factoring Strategy

The flow chart on the previous page gives us a visual picture of how to attack a factoring problem. We first start at the top and work our way down the chart:

- **1.** Factor out the G.C.F. (top of the flow chart).
- 2. Determine whether the polynomial has two, three, or four or more terms.
- **3.** If the polynomial has four or more terms, factor by grouping (left side of the chart).
- **4.** If the polynomial has three terms, first check to see if it is a perfect square trinomial. If not, then factor it either using the trial-and-error method or the AC-method (middle part of the chart).
- 5. If the polynomial has two terms, first check to see if it is a difference of squares (remember the sum of squares is prime). If not, check to see if it is a sum or difference of cubes (right side of the chart).
- 6. Always check to see if everything is completely factored (bottom of the flow chart). If not, go through the flow chart again.

Concept #2 Mixed Practice

Factor the Following Completely:

- Ex. 1 $64x^3y + 112x^2y^2 32xy^3$
 - Solution:
 - **1.** The G.C.F. is 16xy. Factoring out 16xy, we get: $64x^{3}y + 112x^{2}y^{2} - 32xy^{3}$ = 16xy(4x² + 7xy - 2y²)
 - **2.** The polynomial inside the parentheses has 3 terms.
 - **4.** Since $-2y^2$ is not a perfect square, then the trinomial is not a perfect square trinomial. We will factor it using trial-and-error: $16xy(4x^2 + 7xy - 2y^2)$

$$\int_{x \neq 4x} - \frac{1}{x \neq 2y} = 2y^2$$

$$2x \cdot 2x$$

 $2x \cdot 2x$
 $16xy(2x - y)(2x + 2y)$
No, G.C.F. $\neq 1$

16xy(x - y)(4x + 2y)No, G.C.F. \neq 1 16xy(x + 2y)(4x - y)O. -xyI. 8xy 7xy Yes

6. Everything is factored, so the answer is 16xy(x + 2y)(4x - y).

Ex. 2 $54m^2 - 24z^2$

Solution:

- **1.** The G.C.F. is 6. Factoring out 6, we get: $54m^2 - 24z^2$ = 6(9m² - 4z²)
- 2. The polynomial inside the parentheses has 2 terms.
- 5. $9m^2 4z^2$ is a difference of squares, so we get: $6(9m^2 - 4z^2)$ $F^2 - L^2 = (F - L)(F + L); F = 3m, L = 2z$ = 6(3m - 2z)(3m + 2z)
- **6.** Everything is factored, so the answer is 6(3m 2z)(3m + 2z).

Ex. 3
$$x^5 - 36x^3 - x^2 + 36$$

- **1.** The G.C.F. is 1.
- 2. The polynomial inside the parentheses has 4 terms.
- 3. We will group the first two and the last two terms: $x^5 - 36x^3 - x^2 + 36 = (x^5 - 36x^3) + (-x^2 + 36)$ (factor out $x^3 \& 1$) $= x^3(x^2 - 36) - 1(x^2 - 36)$ (factor out $x^2 - 36$) $= (x^2 - 36)(x^3 - 1)$
- 6. We can break down both factors:
 - 5) $x^2 36$ has two terms and it is a difference of squares: $x^2 - 36 F^2 - L^2 = (F - L)(F + L); F = x, L = 6$ = (x - 6)(x + 6)
 - 5) $x^{3} 1$ has two terms and it is a difference of cubes: $x^{3} - 1$ $F^{3} - L^{3} = (F - L)(F^{2} + FL + L^{2}); F = x, L = 1$ $= (x - 1)(x^{2} + x + 1)$

Thus, $(x^2 - 36)(x^3 - 1) = (x - 6)(x + 6)(x - 1)(x^2 + x + 1)$ 6) Since $x^2 + x + 1$ has degree of 2, it is prime. Thus, everything is completely factored. Our answer is $(x - 6)(x + 6)(x - 1)(x^2 + x + 1)$.

- Ex. 4 $125m^4n^3 400m^3n^3 + 200m^3n^4$
 - Solution:
 - **1.** The G.C.F. is $25m^3n^3$. Factoring out $25m^3n^3$, we get: $125m^4n^3 - 400m^3n^3 + 200m^3n^4$ = $25m^3n^3(5m - 16 + 8n)$
 - 2. The polynomial inside the parentheses has 3 terms.
 - **4.** Since 5m is not a perfect square, then the trinomial is not a perfect square trinomial. Also, since the degree of the trinomial is one, it cannot be factored using the trial-&-error or the AC method. So, our answer is $25m^3n^3(5m 16 + 8n)$.

Ex. 5 $405r^5 - 80rs^4$

Solution:

- **1.** The G.C.F. is 5r. Factoring out 5r, we get: $405r^5 - 80rs^4$ $= 5r(81r^4 - 16s^4)$
- **2.** The polynomial inside the parentheses has 2 terms.
- 5. $81r^4 16s^4$ is a difference of squares, so we get: $5r(81r^4 - 16s^4)$ $F^2 - L^2 = (F - L)(F + L); F = 9r^2, L = 4s^2$ $= 5r(9r^2 - 4s^2)(9r^2 + 4s^2)$
- 6. We can break down the first binomial:
 - 5) $9r^2 4s^2$ has two terms and it is a difference of squares: $9r^2 - 4s^2$ $F^2 - L^2 = (F - L)(F + L); F = 3r, L = 2s$ = (3r - 2s)(3r + 2s)
 - 5) $9r^2 + 4s^2$ has two terms, but it is a sum of squares so it is prime.

Thus, $5r(9r^2 - 4s^2)(9r^2 + 4s^2) = 5r(3r - 2s)(3r + 2s)(9r^2 + 4s^2)$ 6) Everything is now completely factored. Our answer is $5r(3r - 2s)(3r + 2s)(9r^2 + 4s^2)$.

Ex. 6
$$ax^2 - 3ax - 4a + 6x^2 - 18x - 24$$

Solution:

- **1.** The G.C.F. is 1.
- **2.** The polynomial has more than 4 terms.
- 3. We will group the first three and the last three terms: $ax^2 - 3ax - 4a + 6x^2 - 18x - 24$ = $(ax^2 - 3ax - 4a) + (6x^2 - 18x - 24)$ (factor out a and 6) = $a(x^2 - 3x - 4) + 6(x^2 - 3x - 4)$ (factor out $x^2 - 3x - 4$) = $(x^2 - 3x - 4)(a + 6)$
- 6. We can break the trinomial:
 - 4) Since -4 is not a perfect square, then $x^2 3x 4$ is not a perfect square trinomial. Using trial-&-error:

$$\bigwedge^{x^2-3x-4}$$

We quickly see that we want to use -1 and 4 though we need to switch the signs.

 $x^{2} - 3x - 4 = (x + 1)(x - 4)$

 \bigwedge \bigwedge \times $-1 \cdot 4$

-2•2

Thus, $(x^2 - 3x - 4)(a + 6) = (x + 1)(x - 4)(a + 6)$

6) Everything is completely factored.

Our answer is (x + 1)(x - 4)(a + 6).

Ex. 7 $3000a^4b + 81ab^4$

Solution:

- **1.** The G.C.F. is 3ab. Factoring out 3ab, we get: $3000a^4b + 81ab^4$ = 3ab(1000a³ + 27b³)
- **2.** The polynomial inside the parentheses has 2 terms.
- 5. $1000a^{3} + 27b^{3}$ is not a difference of squares, but is a sum of cubes: $1000a^{3} + 27b^{3}$ = $(10a)^{3} + (3b)^{3}$ $F^{3} + L^{3} = (F + L)(F^{2} - FL + L^{2})$ = $(10a + 3b)(100a^{2} - 30ab + 9b^{2})$ Thus, $3ab(1000a^{3} + 27b^{3})$ = $3ab(10a + 3b)(100a^{2} - 30ab + 9b^{2})$
- 6. Since $100a^2 30ab + 9b^2$ is degree 2, it is prime. Everything is completely factored. Our answer is $3ab(10a + 3b)(100a^2 - 30ab + 9b^2)$.

Ex. 8 $6w^2(4w^2 + 49) + 6w(4w^2 + 49) - 72(4w^2 + 49)$ Solution:

- **1.** The G.C.F. is $6(4w^2 + 49)$. Factoring out $6(4w^2 + 49)$, we get: $6w^2(4w^2 + 49) + 6w(4w^2 + 49) - 72(4w^2 + 49)$ $= 6(4w^2 + 49)(w^2 + w - 12)$
- **2.** The polynomial $4w^2 + 49$ has 2 terms. The polynomial $w^2 + w 12$ is a trinomial.
- 4. Since 12 is not a perfect square, then the trinomial is not a perfect square trinomial. We will factor it using trial-and-error:

$$w^{2} + w - 12$$

$$\bigwedge$$

$$w \cdot w - 1 \cdot 12$$

$$- 2 \cdot 6$$

$$- 3 \cdot 4$$

We quickly see that we want to use – 3 and 4

Thus, $w^2 + w - 12 = (w - 3)(w + 4)$ So, $6(4w^2 + 49)(w^2 + w - 12) = 6(4w^2 + 49)(w - 3)(w + 4)$

- 5. $4w^2 + 49$ is not a difference of squares, but is a sum of squares and hence it is prime.
- 6. Everything is completely factored. Our answer is $6(4w^2 + 49)(w - 3)(w + 4)$.

Ex. 9 $162x^2y - 243x^2 - 252xy^2 + 378xy + 98y^3 - 147y^2$ Solution: **1.** The G.C.F. is 1. **2.** The polynomial has more than 4 terms. **3.** We will group the first two, the middle two and the

3. We will group the first two, the middle two and the last two terms:

$$162x^2y - 243x^2 - 252xy^2 + 378xy + 98y^3 - 147y^2$$

 $= (162x^2y - 243x^2) + (-252xy^2 + 378xy) + (98y^3 - 147y^2)$
Factor out $81x^2$, $-126xy$, and $49y^2$:
 $= 81x^2(2y - 3) - 126xy(2y - 3) + 49y^2(2y - 3)$
Factor out $(2y - 3)$:
 $= (2y - 3)(81x^2 - 126xy + 49y^2)$
4. Both $81x^2$ and $49y^2$ are perfect squares where F = 9x and L = 7y. We need to check the middle term:
 $-2FL = -2(9x)(7y) = -126xy$ which is a match.
Hence, the trinomial is a perfect square trinomial:
 $81x^2 - 126xy + 49y^2$
 $= (9x - 7y)^2F^2 - 2FL + L^2 = (F - L)^2$; F = 9x, L = 7y
Thus, $(2y - 3)(81x^2 - 126xy + 49y^2)$
 $= (2y - 3)(9x - 7y)^2$
5. $2y - 3$ is not a difference of squares nor is it a sum and difference of a where a perime

- difference of cubes, so it is prime.6. Everything is completely factored.
- Our answer is = $(2y 3)(9x 7y)^2$,