Sect 7.1 - Introduction to Rational Expressions

Concept #1 Definition of a Rational Expression.

Recall that a rational number is any number that can be written as the ratio of two integers where the integer in the denominator can not be 0.

Rational Numbers: { $\frac{a}{b}$ | a and b are integers and b \neq 0 }

When we discuss "algebraic fractions", we can define them in a similar fashion:

Rational Expression ("algebraic fractions")

A **Rational Expression** is the ratio of two polynomials $\frac{P}{\Omega}$ such that the

polynomial Q in the denominator is not 0 (Q \neq 0).

Some examples of rational expressions include:

 $\frac{2x-5}{3x+9}$, $\frac{5}{11}$, and $\frac{9x^2-126xy+49y^2}{x^3-27y^3}$

Concept #2 Evaluating Rational Expressions

Evaluate the following for the given values of x: $\frac{2x-5}{3x+9}$ x = 5 Ex. 1b x = -6Ex. 1d x = -3Ex. 1a x = 2.5Ex. 1c Solution: $\frac{2x-5}{3x+9}$ (replace x by (5)) a) $=\frac{2(5)-5}{3(5)+9}=\frac{10-5}{15+9}=\frac{5}{24}$ $\frac{2x-5}{3x+9}$ (replace x by (-6)) b) $= \frac{2(-6)-5}{3(-6)+9} = \frac{-12-5}{-18+9} = \frac{-17}{-9} = \frac{17}{9}$ $\frac{2x-5}{3x+9}$ (replace x by (2.5)) C) $=\frac{2(2.5)-5}{3(2.5)+9}=\frac{5-5}{7.5+9}=\frac{0}{16.5}=0$ $\frac{2x-5}{3x+0} \qquad (replace x by (-3))$ d) $=\frac{2(-3)-5}{3(-3)+9}=\frac{-6-5}{-9+9}=\frac{-11}{0}$ undefined

Concept #3 Domain of a Rational Expression

In example one, the rational expression $\frac{2x-5}{3x+9}$ was undefined when x = -3. But, x = -3 is the only value that will give us division by zero. This means that the rational expression $\frac{2x-5}{3x+9}$ is defined for all real numbers except when x = -3. The values for which a rational expression is defined is called the **domain** of the rational expression. Thus, the domain of $\frac{2x-5}{3x+9}$ is { x | x is a real number and $x \neq -3$ }.

Informal Definition of the Domain of an Algebraic Expression

The **domain** of an algebraic expression is the values for which the expression is defined (i.e., it is all the values of x that we can plug into the expression and get a number for an answer).

To Find the Domain of a Rational Expression

1. Set the denominator of the expression equal to zero and solve.

2. The domain is all real numbers *except* those values find in part 1.

Find the domain of the following:

Ex. 2a	<u>19</u> 3x	Ex. 2b	$\frac{t-4}{t+7}$
Ex. 2c	$\frac{p^2-9}{p^2-7p+10}$	Ex. 2d	$\frac{x^2-3x+2}{2x^2+32}$
Solution:			
a)	Set the denominator equal to zero and solve:		
	$3x = 0 \implies x = 0$		
	Now, exclude $x = 0$ from the real numbers.		
	Thus, the domain is $\{x \mid x \text{ is a real number and } x \neq 0\}$.		
b)	Set the denominator equal to zero and solve: $t + 7 = 0 \implies t = -7$ Now, exclude t = -7 from the real numbers.		
	Thus, the domain is { t t is a real number and t \neq – 7}.		
c)	c) Set the denominator equal to zero and solve: $p^2 - 7p + 10 = 0$ (factor) (p - 5)(p - 2) = 0 (set each factor equal to 0 and solve) p - 5 = 0 or $p - 2 = 0p = 5$ or $p = 2$ Now, exclude those values. Thus, the domain is { p p is a real number and p $\neq 2$, p $\neq 5$ }.		

d) Set the denominator equal to zero and solve: $2x^2 + 32 = 0$ (factor out 2) $2(x^2 + 16) = 0$ ($x^2 + 16$ is prime) Set each factor equal to zero and solve: 2 = 0 or $x^2 + 16 = 0$ No Solution No real solution since $x^2 \neq -16$ Hence, there are no values to exclude. Thus, the domain is { x | x is a real number}.

Sometimes the symbol \mathbb{R} is used to denote the set of all real numbers. So, we could have said the domain for part d was \mathbb{R} .

Concept #4 Simplifying Rational Expressions to Lowest Terms

To reduce fractions to lowest terms, we first rewrote the numerator and denominator as a product and then divided out the common factors:

$$\frac{36}{20} = \frac{4 \cdot 9}{4 \cdot 5} = \frac{4 \cdot 9}{4 \cdot 5} = (1)\frac{9}{5} = \frac{9}{5}.$$

 $9x^2 - 4$

We can do the same thing with rational expressions. We first factor the numerator and denominator to make the numerator and denominator into a product. Let's see how an example works:

<u>Given the following expression, a) factor the numerator and</u> <u>denominator, b) find the domain, and c) simplify:</u>

Ex. 3 $\frac{3x^{-4}}{9x^{2}+9x-10}$ Solution: a) Factor the Factor the Thus, $\frac{9x}{9x^{2}}$ b) Setting the (3x - 2)(3x)3x - 2 = 0

Factor the numerator:
$$9x^2 - 4 = (3x - 2)(3x + 2)$$

Factor the denominator: $9x^2 + 9x - 10 = (3x - 2)(3x + 5)$
Thus, $\frac{9x^2 - 4}{9x^2 + 9x - 10} = \frac{(3x - 2)(3x + 2)}{(3x - 2)(3x + 5)}$

b) Setting the denominator equal to zero and solving yields:

$$(3x - 2)(3x + 5) = 0$$

$$3x - 2 = 0 \text{ or } 3x + 5 = 0$$

$$3x = 2 \text{ or } 3x = -5$$

$$x = \frac{2}{3} \text{ or } x = -\frac{5}{3} \text{ (exclude from } \mathbb{R})$$

The domain is { x| x is a real number and $x \neq -\frac{5}{3}$, $x \neq \frac{2}{3}$ }

C)
$$\frac{9x^2-4}{9x^2+9x-10} = \frac{(3x-2)(3x+2)}{(3x-2)(3x+5)} = \frac{(3x-2)(3x+2)}{(3x-2)(3x+5)} = \frac{3x+2}{3x+5}, x \neq -\frac{5}{3}, \& \frac{2}{3}$$

It is important to emphasis that $\frac{9x^2-4}{9x^2+9x-10} = \frac{3x+2}{3x+5}$ only if $x \neq -\frac{5}{3}$ and $x \neq \frac{2}{3}$. Though $\frac{3x+2}{3x+5}$ is only undefined at $-\frac{5}{3}$, the original function $\frac{9x^2-4}{9x^2+9x-10}$ was undefined at $x \neq -\frac{5}{3}$ and $x \neq \frac{2}{3}$. We are only allowed to reduce $\frac{3x-2}{3x-2}$ to one provided that $3x - 2 \neq 0$. This leads to our fundamental principle of rational expressions:

Fundamental Principle of Rational Expressions

Let p, q, and r be polynomials such that $q \neq 0$ and $r \neq 0$, then

 $\frac{p \bullet r}{q \bullet r} = \frac{p}{q}(1) = \frac{p}{q}$

Simplify the following:

Ex. 4 $\frac{76a^5}{24a^3}$

Solution:

Since the numerator and denominator are already a product, we can reduce directly:

$$\frac{76a^5}{24a^3} = \frac{19a^2(4a^3)}{6(4a^3)} = \frac{19a^2}{6}.$$

Ex. 5

Solution:

 $\frac{4x-12}{4x}$

We cannot reduce the 4x's since the numerator is not written as a product. To write it as a product, we need to factor:

$$4x - 12 = 4(x - 3)$$

Thus, $\frac{4x - 12}{4x} = \frac{4(x - 3)}{4(x)} = \frac{(x - 3)(4)}{(x)(4)} = \frac{x - 3}{x}.$

Ex. 6

$$\frac{2T^2 + 6T + 4}{4T^2 - 12T - 16}$$

Solution:

We need to factor both the numerator and denominator to write them as a product:

Numerator: $2T^2 + 6T + 4 = 2(T^2 + 3T + 2) = 2(T + 2)(T + 1)$ Denominator: $4T^2 - 12T - 16 = 4(T^2 - 3T - 4) = 4(T - 4)(T + 1)$ Thus,

$$\frac{2\mathsf{T}^2 + 6\mathsf{T} + 4}{4\mathsf{T}^2 - 12\mathsf{T} - 16} = \frac{2(\mathsf{T} + 2)(\mathsf{T} + 1)}{4(\mathsf{T} - 4)(\mathsf{T} + 1)} = \frac{(\mathsf{T} + 2)[2(\mathsf{T} + 1)]}{2(\mathsf{T} - 4)[2(\mathsf{T} + 1)]} = \frac{\mathsf{T} + 2}{2(\mathsf{T} - 4)}.$$

Ex. 7
$$\frac{x^4 + 18x^2 + 81}{x^2 + 9}$$

Solution:

We need to factor both the numerator and denominator to write them as a product:

Numerator: F = x², L = 9, 2FL =
$$2(x^{2})(9) = 18x^{2}$$

perfect square trinomial
 $x^{4} + 18x^{2} + 81 = (x^{2} + 9)^{2} = (x^{2} + 9)(x^{2} + 9)$
But, the sum of squares is prime.

Denominator: sum of squares is prime

Thus, $\frac{x^4 + 18x^2 + 81}{x^2 + 9} = \frac{(x^2 + 9)(x^2 + 9)}{1(x^2 + 9)} = \frac{x^2 + 9}{1} = x^2 + 9.$

Ex. 8

$$\frac{4x^2-9}{16x^4-24x^3+54x-81}$$

Solution:

We need to factor both the numerator and denominator to write them as a product:

Numerator:
$$4x^2 - 9 = (2x - 3)(2x + 3)$$

Denominator: $16x^4 - 24x^3 + 54x - 81$
 $= (16x^4 - 24x^3) + (54x - 81)$
 $= 8x^3(2x - 3) + 27(2x - 3)$
 $= (2x - 3)(8x^3 + 27)$
 $= (2x - 3)([2x]^3 + [3]^3)$
 $= (2x - 3)(2x + 3)(4x^2 - 6x + 9)$
Thus

mus,

$$\frac{4x^2-9}{16x^4-24x^3+54x-81} = \frac{1(2x-3)(2x+3)}{(4x^2-6x+9)(2x-3)(2x+3)} = \frac{1}{4x^2-6x+9}.$$

Concept #5 Simplifying a Ratio of – 1

In arithmetic, we saw that number divide by its opposite is -1. This is not quite so obvious to see in algebra, but if we write our expressions in order of descending powers and factor out a - 1 if the leading term is negative, then the process will work more smoothly.

Simplify:

Ex. 9

Solution:

 $\frac{1-a}{7a^2-7}$

We need to factor both the numerator and denominator to write them as a product:

Numerator: 1 - a = -a + 1 = -1(a - 1)Denominator: $7a^2 - 7 = 7(a^2 - 1) = 7(a + 1)(a - 1)$ Hence, 1 - a - 1(a - 1) - 1 = 1

$$\frac{1-a}{7a^2-7} = \frac{-1(a-1)}{7(a+1)(a-1)} = \frac{-1}{7(a+1)} = -\frac{1}{7(a+1)}$$

Ex. 10
$$\frac{125b^3 - 27a^3}{9a^2 + 15ab + 25b^2}$$

Solution:

We need to factor both the numerator and denominator to write them as a product:

Numerator: Write in order of descending powers with respect to a:

$$125b^{3} - 27a^{3} = -27a^{3} + 125b^{3} = -1(27a^{3} - 125b^{3})$$

$$= -1([3a]^{3} - [5b]^{3}) = -(3a - 5b)(9a^{2} + 15ab + 25b^{2})$$
Denominator:

$$9a^{2} + 15ab + 25b^{2} \text{ is prime:}$$

$$\frac{125b^{3} - 27a^{3}}{9a^{2} + 15ab + 25b^{2}} = \frac{-1(3a - 5b)(9a^{2} + 15ab + 25b^{2})}{1(9a^{2} + 15ab + 25b^{2})} = \frac{-1(3a - 5b)}{1} = -1(3a - 5b)$$

$$\frac{6x^2 + 23x + 20}{2x^2 + 5x - 12}$$

Solution:

We need to factor both the numerator and denominator to write them as a product:

Numerator: $6x^2 + 23x + 20 = (3x + 4)(2x + 5)$ Denominator: $2x^2 + 5x - 12 = (2x - 3)(x + 4)$

Thus, $\frac{6x^2 + 23x + 20}{2x^2 + 5x - 12} = \frac{(3x+4)(2x+5)}{(2x-3)(x+4)}$ cannot be reduce. So our answer is: $\frac{(3x+4)(2x+5)}{(2x-3)(x+4)}$.