Sect 7.1 - Introduction to Rational Expressions

Concept \#1 Definition of a Rational Expression.
Recall that a rational number is any number that can be written as the ratio of two integers where the integer in the denominator can not be 0 .
Rational Numbers: $\left\{\left.\frac{a}{b} \right\rvert\, a\right.$ and b are integers and $\left.b \neq 0\right\}$
When we discuss "algebraic fractions", we can define them in a similar fashion:

Rational Expression ("algebraic fractions")
A Rational Expression is the ratio of two polynomials $\frac{P}{Q}$ such that the polynomial Q in the denominator is not $0(Q \neq 0)$.

Some examples of rational expressions include:

$$
\frac{2 x-5}{3 x+9}, \frac{5}{11}, \text { and } \frac{9 x^{2}-126 x y+49 y^{2}}{x^{3}-27 y^{3}}
$$

Concept \#2 Evaluating Rational Expressions
Evaluate the following for the given values of $\mathbf{x}: \frac{2 x-5}{3 x+9}$
Ex. 1a $\quad x=5$
Ex. 1b $\quad x=-6$
Ex. 1c $\quad x=2.5$
Ex. 1d $\quad x=-3$
Solution:
a) $\frac{2 x-5}{3 x+9} \quad($ replace x by (5))

$$
=\frac{2(5)-5}{3(5)+9}=\frac{10-5}{15+9}=\frac{5}{24}
$$

b) $\quad \frac{2 x-5}{3 x+9} \quad$ (replace x by (-6))
$=\frac{2(-6)-5}{3(-6)+9}=\frac{-12-5}{-18+9}=\frac{-17}{-9}=\frac{17}{9}$
c) $\quad \frac{2 x-5}{3 x+9} \quad$ (replace x by (2.5))
$=\frac{2(2.5)-5}{3(2.5)+9}=\frac{5-5}{7.5+9}=\frac{0}{16.5}=0$
d) $\frac{2 x-5}{3 x+9} \quad($ replace x by $(-3))$
$=\frac{2(-3)-5}{3(-3)+9}=\frac{-6-5}{-9+9}=\frac{-11}{0}$ undefined

Concept \#3 Domain of a Rational Expression
In example one, the rational expression $\frac{2 x-5}{3 x+9}$ was undefined when
$x=-3$. But, $x=-3$ is the only value that will give us division by zero. This means that the rational expression $\frac{2 x-5}{3 x+9}$ is defined for all real numbers except when $x=-3$. The values for which a rational expression is defined is called the domain of the rational expression. Thus, the domain of $\frac{2 x-5}{3 x+9}$ is $\{x \mid x$ is a real number and $x \neq-3\}$.

Informal Definition of the Domain of an Algebraic Expression

The domain of an algebraic expression is the values for which the expression is defined (i.e., it is all the values of x that we can plug into the expression and get a number for an answer).

To Find the Domain of a Rational Expression

1. Set the denominator of the expression equal to zero and solve.
2. The domain is all real numbers except those values find in part 1.

Find the domain of the following:

Ex. 2a $\quad \frac{19}{3 x}$
Ex. 2b $\quad \frac{\mathrm{t}-4}{\mathrm{t}+7}$
Ex. 2c $\frac{p^{2}-9}{p^{2}-7 p+10}$
Ex. 2d $\frac{x^{2}-3 x+2}{2 x^{2}+32}$

Solution:
a) Set the denominator equal to zero and solve:
$3 x=0 \quad \Rightarrow \quad x=0$
Now, exclude $x=0$ from the real numbers.
Thus, the domain is $\{x \mid x$ is a real number and $x \neq 0\}$.
b) Set the denominator equal to zero and solve:
$t+7=0 \quad \Rightarrow \quad t=-7$
Now, exclude $t=-7$ from the real numbers.
Thus, the domain is $\{t \mid t$ is a real number and $t \neq-7\}$.
c) Set the denominator equal to zero and solve:
$p^{2}-7 p+10=0 \quad$ (factor)
$(p-5)(p-2)=0$ (set each factor equal to 0 and solve)
$p-5=0$ or $p-2=0$
$p=5$ or $p=2 \quad$ Now, exclude those values.
Thus, the domain is $\{p \mid p$ is a real number and $p \neq 2, p \neq 5\}$.
d) Set the denominator equal to zero and solve:

$$
\begin{array}{ll}
2 x^{2}+32=0 & (\text { factor out } 2) \\
2\left(x^{2}+16\right)=0 & \left(x^{2}+16 \text { is prime }\right)
\end{array}
$$

Set each factor equal to zero and solve:
$2=0 \quad$ or $\quad x^{2}+16=0$
No Solution \quad No real solution since $x^{2} \neq-16$
Hence, there are no values to exclude.
Thus, the domain is $\{x \mid x$ is a real number $\}$.
Sometimes the symbol \mathbb{R} is used to denote the set of all real numbers. So, we could have said the domain for part d was \mathbb{R}.

Concept \#4 Simplifying Rational Expressions to Lowest Terms

To reduce fractions to lowest terms, we first rewrote the numerator and denominator as a product and then divided out the common factors:

$$
\frac{36}{20}=\frac{4 \cdot 9}{4 \cdot 5}=\frac{4 \cdot 9}{4 \cdot 5}=(1) \frac{9}{5}=\frac{9}{5} .
$$

We can do the same thing with rational expressions. We first factor the numerator and denominator to make the numerator and denominator into a product. Let's see how an example works:

Given the following expression, a) factor the numerator and denominator, b) find the domain, and c) simplify:
Ex. 3

$$
\frac{9 x^{2}-4}{9 x^{2}+9 x-10}
$$

Solution:
a) Factor the numerator: $9 x^{2}-4=(3 x-2)(3 x+2)$

Factor the denominator: $\quad 9 x^{2}+9 x-10=(3 x-2)(3 x+5)$
Thus, $\frac{9 x^{2}-4}{9 x^{2}+9 x-10}=\frac{(3 x-2)(3 x+2)}{(3 x-2)(3 x+5)}$
b) Setting the denominator equal to zero and solving yields:

$$
\begin{aligned}
& (3 x-2)(3 x+5)=0 \\
& 3 x-2=0 \text { or } 3 x+5=0 \\
& 3 x=2 \quad \text { or } \quad 3 x=-5 \\
& x=\frac{2}{3} \quad \text { or } \quad x=-\frac{5}{3} \quad \text { (exclude from } \mathbb{R} \text {) }
\end{aligned}
$$

The domain is $\left\{x \mid x\right.$ is a real number and $\left.x \neq-\frac{5}{3}, x \neq \frac{2}{3}\right\}$
c) $\frac{9 x^{2}-4}{9 x^{2}+9 x-10}=\frac{(3 x-2)(3 x+2)}{(3 x-2)(3 x+5)}=\frac{-(3 x-2)(3 x+2)}{(3 x-2)(3 x+5)}=\frac{3 x+2}{3 x+5}, x \neq-\frac{5}{3}, \& \frac{2}{3}$

It is important to emphasis that $\frac{9 x^{2}-4}{9 x^{2}+9 x-10}=\frac{3 x+2}{3 x+5}$ only if $x \neq-\frac{5}{3}$ and $x \neq \frac{2}{3}$. Though $\frac{3 x+2}{3 x+5}$ is only undefined at $-\frac{5}{3}$, the original function $\frac{9 x^{2}-4}{9 x^{2}+9 x-10}$ was undefined at $x \neq-\frac{5}{3}$ and $x \neq \frac{2}{3}$. We are only allowed to reduce $\frac{3 x-2}{3 x-2}$ to one provided that $3 x-2 \neq 0$. This leads to our fundamental principle of rational expressions:

Fundamental Principle of Rational Expressions

Let p, q, and r be polynomials such that $q \neq 0$ and $r \neq 0$, then

$$
\frac{p \bullet r}{q \bullet r}=\frac{p}{q}(1)=\frac{p}{q}
$$

Simplify the following:

Ex. $4 \quad \frac{76 a^{5}}{24 a^{3}}$
Solution:
Since the numerator and denominator are already a product, we can reduce directly:

$$
\frac{76 a^{5}}{24 a^{3}}=\frac{19 a^{2}\left(4 a^{3}\right)}{6\left(4 a^{3}\right)}=\frac{19 a^{2}}{6} .
$$

Ex. $5 \quad \frac{4 \mathrm{x}-12}{4 \mathrm{x}}$
Solution:
We cannot reduce the 4 x's since the numerator is not written as a product. To write it as a product, we need to factor:

$$
4 x-12=4(x-3)
$$

Thus, $\frac{4 x-12}{4 x}=\frac{4(x-3)}{4(x)}=\frac{(x-3)(4)}{(x)(4)}=\frac{x-3}{x}$.
Ex. $6 \quad \frac{2 T^{2}+6 \mathrm{~T}+4}{4 \mathrm{~T}^{2}-12 \mathrm{~T}-16}$
Solution:
We need to factor both the numerator and denominator to write them as a product:
Numerator: $2 \mathrm{~T}^{2}+6 \mathrm{~T}+4=2\left(\mathrm{~T}^{2}+3 \mathrm{~T}+2\right)=2(\mathrm{~T}+2)(\mathrm{T}+1)$
Denominator: $\quad 4 \mathrm{~T}^{2}-12 \mathrm{~T}-16=4\left(\mathrm{~T}^{2}-3 \mathrm{~T}-4\right)=4(\mathrm{~T}-4)(\mathrm{T}+1)$

Thus,

$$
\frac{2 \mathrm{~T}^{2}+6 \mathrm{~T}+4}{4 \mathrm{~T}^{2}-12 \mathrm{~T}-16}=\frac{2(\mathrm{~T}+2)(\mathrm{T}+1)}{4(\mathrm{~T}-4)(\mathrm{T}+1)}=\frac{(\mathrm{T}+2)[2(\mathrm{~T}+1)]}{2(\mathrm{~T}-4)[2(\mathrm{~T}+1)]}=\frac{\mathrm{T}+2}{2(\mathrm{~T}-4)} .
$$

Ex. $7 \quad \frac{x^{4}+18 x^{2}+81}{x^{2}+9}$
Solution:
We need to factor both the numerator and denominator to write them as a product:
Numerator: $F=x^{2}, L=9,2 F L=2\left(x^{2}\right)(9)=18 x^{2}$
perfect square trinomial
$x^{4}+18 x^{2}+81=\left(x^{2}+9\right)^{2}=\left(x^{2}+9\right)\left(x^{2}+9\right)$
But, the sum of squares is prime.
Denominator: sum of squares is prime
Thus, $\frac{x^{4}+18 x^{2}+81}{x^{2}+9}=\frac{\left(x^{2}+9\right)\left(x^{2}+9\right)}{1\left(x^{2}+9\right)}=\frac{x^{2}+9}{1}=x^{2}+9$.
Ex. $8 \quad \frac{4 x^{2}-9}{16 x^{4}-24 x^{3}+54 x-81}$
Solution:
We need to factor both the numerator and denominator to write them as a product:
Numerator: $4 x^{2}-9=(2 x-3)(2 x+3)$
Denominator: $\quad 16 x^{4}-24 x^{3}+54 x-81$

$$
\begin{aligned}
& =\left(16 x^{4}-24 x^{3}\right)+(54 x-81) \\
& =8 x^{3}(2 x-3)+27(2 x-3) \\
& =(2 x-3)\left(8 x^{3}+27\right) \\
& =(2 x-3)\left([2 x]^{3}+[3]^{3}\right) \\
& =(2 x-3)(2 x+3)\left(4 x^{2}-6 x+9\right)
\end{aligned}
$$

Thus,

$$
\frac{4 x^{2}-9}{16 x^{4}-24 x^{3}+54 x-81}=\frac{1(2 x-3)(2 x+3)}{\left(4 x^{2}-6 x+9\right)(2 x-3)(2 x+3)}=\frac{1}{4 x^{2}-6 x+9}
$$

Concept \#5 Simplifying a Ratio of -1

In arithmetic, we saw that number divide by its opposite is -1 . This is not quite so obvious to see in algebra, but if we write our expressions in order of descending powers and factor out a - 1 if the leading term is negative, then the process will work more smoothly.

Simplify:

Ex. $9 \quad \frac{1-\mathrm{a}}{7 \mathrm{a}^{2}-7}$
Solution:
We need to factor both the numerator and denominator to write them as a product:
Numerator: $1-a=-a+1=-1(a-1)$
Denominator: $\quad 7 a^{2}-7=7\left(a^{2}-1\right)=7(a+1)(a-1)$
Hence,

$$
\frac{1-a}{7 a^{2}-7}=\frac{-1(a-1)}{7(a+1)(a-1)}=\frac{-1}{7(a+1)}=-\frac{1}{7(a+1)}
$$

Ex. $10 \quad \frac{125 b^{3}-27 a^{3}}{9 a^{2}+15 a b+25 b^{2}}$
Solution:
We need to factor both the numerator and denominator to write them as a product:
Numerator: Write in order of descending powers with respect to a:

$$
\begin{aligned}
& 125 b^{3}-27 a^{3}=-27 a^{3}+125 b^{3}=-1\left(27 a^{3}-125 b^{3}\right) \\
& =-1\left([3 a]^{3}-[5 b]^{3}\right)=-(3 a-5 b)\left(9 a^{2}+15 a b+25 b^{2}\right)
\end{aligned}
$$

Denominator: $\quad 9 a^{2}+15 a b+25 b^{2}$ is prime:

$$
\frac{125 b^{3}-27 a^{3}}{9 a^{2}+15 a b+25 b^{2}}=\frac{-1(3 a-5 b)\left(9 a^{2}+15 a b+25 b^{2}\right)}{1\left(9 a^{2}+15 a b+25 b^{2}\right)}=\frac{-1(3 a-5 b)}{1}=-1(3 a-5 b)
$$

Ex. $11 \frac{6 x^{2}+23 x+20}{2 x^{2}+5 x-12}$
Solution:
We need to factor both the numerator and denominator to write them as a product:
Numerator: $6 x^{2}+23 x+20=(3 x+4)(2 x+5)$
Denominator: $\quad 2 x^{2}+5 x-12=(2 x-3)(x+4)$
Thus, $\frac{6 x^{2}+23 x+20}{2 x^{2}+5 x-12}=\frac{(3 x+4)(2 x+5)}{(2 x-3)(x+4)}$ cannot be reduce. So our answer is: $\frac{(3 x+4)(2 x+5)}{(2 x-3)(x+4)}$.

