Sect 10.5 - Order of Operations with Real Numbers

Objective a: Applying the Order of Operations to Real Numbers.
Recall the order of operations:

Order of Operations

1) Parentheses - Do operations inside of Parentheses (), [], \{ \}, | |
2) Exponents including square roots.
3) Multiplication or Division as they appear from left to right.
4) Addition or Subtraction as they appear from left to right.

Simplify the following:

Ex. $1 \quad(-2)^{3} \div \sqrt{16}(-2)+3$
Solution:
$(-2)^{3} \div \sqrt{16}(-2)+3$ (\#2-exponents)
$=-8 \div 4(-2)+3 \quad$ (\#3-division)
$=-2(-2)+3 \quad$ (\#3-multiplication)
$=4+3 \quad$ (\#4-addition)
$=7$
Ex. $2 \quad 3|0.5-0.3(4)|^{2} \div(-0.4-0.3)$
Solution:

$$
\begin{array}{ll}
3|0.5-0.3(4)|^{2} \div(-0.4-0.3) & \text { (\#1-parentheses, \#3-multiplication) } \\
=3|0.5-1.2|^{2} \div(-0.4-0.3) & \begin{array}{ll}
\text { (change to addition \& change the } \\
\text { sign to the right) }
\end{array} \\
=3|0.5+(-1.2)|^{2} \div(-0.4+(-0.3)) \text { (\#1-parentheses, \#3-addition) } \\
=3|-0.7|^{2} \div(-0.7) & \text { (absolute value of }-0.7 \text { is } 0.7) \\
=3(0.7)^{2} \div(-0.7) & \text { (\#2-exponents) } \\
=3(0.49) \div(-0.7) & \text { (\#3-multiplication) } \\
=1.47 \div(-0.7) & \text { (\#3-division) } \\
=-2.1 &
\end{array}
$$

Ex. $3 \frac{3 \bullet(-3)^{2}-5\left(\frac{27}{3}-2\right)}{-4+4(\sqrt{9} \bullet 5 \cdot 1)+(-6 \bullet 9)}$
Solution:

Let's first work out the numerator:

$$
\begin{array}{ll}
3 \bullet(-3)^{2}-5\left(\frac{27}{3}-2\right) & \text { (\#1-parentheses, \#3-division) } \\
=3 \bullet(-3)^{2}-5(9-2) & (\# 1 \text {-parentheses, \#3-subtraction) } \\
=3 \bullet(-3)^{2}-5(7) & \text { (\#2-exponents) } \\
=3 \bullet(9)-5(7) & \text { (\#3-multiplication) } \\
=27-5(7) & \text { (\#3-multiplication) } \\
=27-35 & \text { (change to addition, change the sign to the right) } \\
=27+(-35) & \text { (\#4-addition) } \\
=-8 &
\end{array}
$$

Now, let's work the denominator:

$$
\begin{array}{ll}
-4+4(3 \bullet 5 \bullet 1)+(-6 \bullet 9) & \\
=-4+4(15 \bullet 1)+(-6 \bullet 9) & \\
=-41 \text {-parentheses, \#3-multiplication) } \\
=-4+4(15)+(-6 \bullet 9) & \\
=-4+4(15)+(-54) & \text { (\#3-parentheses, \#3-multipliplicationes, \#3-multiplication) } \\
=-4+60+(-54) & \\
=56+(-54) & \text { (\#4-addition) } \\
=2 & \text { (\#4-addition) } \\
&
\end{array}
$$

Thus, $\frac{3 \bullet(-3)^{2}-5\left(\frac{27}{3}-2\right)}{-4+4(\sqrt{9} \cdot 5 \cdot 1)+(-6 \bullet 9)}=\frac{-8}{2}=-4$
Ex. $4 \quad-4.2(2.4) \div\left(-\frac{7}{10}\right)\left(\frac{3}{10}\right)-18 \cdot 3 \div 6$
Solution:
Since $\frac{7}{10}=0.7$ and $\frac{3}{10}=0.3$, replace the fractions by their decimal equivalents:
$-4.2(2.4) \div\left(-\frac{7}{10}\right)\left(\frac{3}{10}\right)-18 \cdot 3 \div 6$
$=-4.2(2.4) \div(-0.7)(0.3)-18 \bullet 3 \div 6 \quad$ (\#3-multiplication)
$=-10.08 \div(-0.7)(0.3)-18 \cdot 3 \div 6 \quad$ (\#3-division)
$=14.4(0.3)-18 \cdot 3 \div 6$
$=4.32-18 \bullet 3 \div 6 \quad$ (\#3-multiplication)
$=4.32-54 \div 6 \quad$ (\#3-division)
$=4.32-9 \quad$ (change to addition, change the sign to the right)
$=4.32+(-9) \quad$ (\#4-addition)
$=-4.68$

Ex. $5 \quad-\left(-\frac{2}{3}\right)^{2}-\left[2 \frac{1}{3}-3 \frac{5}{6}\right]-\frac{-5}{18}-1.5$

Solution:

$$
\begin{align*}
& -\left(-\frac{2}{3}\right)^{2}-\left[2 \frac{1}{3}-3 \frac{5}{6}\right]-\frac{-5}{18}-1.5 \text { (change to an improper fraction) } \\
& =-\left(-\frac{2}{3}\right)^{2}-\left[\frac{7 \cdot 2}{3 \cdot 2}-\frac{23}{6}\right]-\frac{-5}{18}-1.5 \quad \text { (L.C.D. }=6 \text {, build fractions) } \\
& =-\left(-\frac{2}{3}\right)^{2}-\left[\frac{14}{6}-\frac{23}{6}\right]-\frac{-5}{18}-1.5 \quad \text { (change to addition, change } \\
& \text { the sign to the right) } \\
& =-\left(-\frac{2}{3}\right)^{2}-\left[\frac{14}{6}+\left(-\frac{23}{6}\right)\right]-\frac{-5}{18}-1.5 \text { (\#1-parentheses, \#4-add.) } \\
& =-\left(-\frac{2}{3}\right)^{2}-\left[-\frac{9}{6}\right]-\frac{-5}{18}-1.5 \tag{reduce}\\
& =-\left(-\frac{2}{3}\right)^{2}-\left[-\frac{3}{2}\right]-\frac{-5}{18}-1.5 \quad \text { (\#2-exponents) }
\end{align*}
$$

Since $\left(-\frac{2}{3}\right)^{2}=\left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right)=\frac{4}{9}$, then $-\left(-\frac{2}{3}\right)^{2}=-\frac{4}{9}$

$$
\text { So, }=-\left(-\frac{2}{3}\right)^{2}-\left[-\frac{3}{2}\right]-\frac{-5}{18}-1.5=-\frac{4}{9}-\left[-\frac{3}{2}\right]-\frac{-5}{18}-1.5
$$

Now, change 1.5 into a fraction: $1.5=1 \frac{5}{10}=1 \frac{1}{2}=\frac{3}{2}$
Thus, $-\frac{4}{9}-\left[-\frac{3}{2}\right]-\frac{-5}{18}-1.5$
$=-\frac{4}{9}-\left[-\frac{3}{2}\right]-\frac{-5}{18}-\frac{3}{2} \quad$ (change to addition, change the sign to the right)
$=-\frac{4 \bullet 2}{9 \bullet 2}+\frac{3 \cdot 9}{2 \cdot 9}+\frac{5}{18}+\left(-\frac{3 \cdot 9}{2 \cdot 9}\right) \quad$ (L.C.D. $=18$, build fractions)
$=-\frac{8}{18}+\frac{27}{18}+\frac{5}{18}+\left(-\frac{27}{18}\right) \quad$ (\#4-addition)
$=\frac{19}{18}+\frac{5}{18}+\left(-\frac{27}{18}\right)$
(\#4-addition)
$=\frac{24}{18}+\left(-\frac{27}{18}\right)$
(\#4-addition)
$=-\frac{3}{18} \quad$ (reduce)
$=-\frac{1}{6}$
Ex. $6 \quad 19-3 \div 0+4$
Solution:
Since division by zero is undefined, the problem is undefined.

Ex. $7 \frac{-9.6-1.6 \div 8(-0.2)-(-0.82)^{1}}{(0.4-\sqrt{5.29})^{2}}$
Solution:
First, work out the expression on the top (numerator):

$$
\begin{array}{ll}
-9.6-1.6 \div 8(-0.2)-(-0.82)^{1} & \text { (\#2-exponents) } \\
=-9.6-1.6 \div 8(-0.2)-(-0.82) & \text { (\#3-division) } \\
=-9.6-0.2(-0.2)-(-0.82) & \text { (\#3-multiplicatio } \\
=-9.6-(-0.04)-(-0.82) & \text { (change to addition, c } \\
=-9.6+(0.04)+(0.82) & \text { sign to the right) } \\
=-9.56+0.82 & \text { (\#4-addition) } \\
=-8.74 &
\end{array}
$$

Now, work out the expression on the bottom (denominator):

$$
\begin{array}{ll}
(0.4-\sqrt{5.29})^{2} & (\# 1 \text {-parentheses, \#4-exponents) } \\
=(0.4-2.3)^{2} & (\text { change to addition, change the sign to the right }) \\
=(0.4+[-2.3])^{2} & (\# 1 \text {-parentheses, \#4-addition) } \\
=(-1.9)^{2} & (\# 2 \text {-exponents) } \\
=3.61 & \\
\begin{array}{ll}
\text { So, } \frac{-9.6-1.6 \div 8(-0.2)-(-0.82)^{1}}{(0.4-\sqrt{5.29})^{2}}=\frac{-8.74}{3.61}=-2.421052631 \ldots .
\end{array}
\end{array}
$$

This is too messy to write as decimal so let's write it as a fraction.
To make $\frac{-8.74}{3.61}$ into a fraction, both the numerator and denominator need to be whole numbers. Slide the decimal point two places to the right and reduce: $\frac{-8.74}{3.61}=-\frac{874}{361}=-\frac{19 \bullet 46}{19 \cdot 19}=-\frac{46}{19}=-2 \frac{8}{19}$.

Ex. $8-(-2)+0 \div(-4.3)-6-[4.5-0.91(-2.3)](0)$
Solution:
Since anything times zero is zero, then the expression in brackets times zero is zero. So, [4.5-0.91(-2.3)](0) = 0. Also, 0 divided by any nonzero number is zero, so $0 \div(-4.3)=0$. Thus, our problem becomes:
$-(-2)+0 \div(-4.3)-6-[4.5-0.91(-2.3)](0)=-(-2)+0-6-0$
$=-(-2)-6 \quad$ (change to addition, change the sign to the right)
$=2+(-6) \quad$ (\#4-addition)
$=-4$

