Sect 1.5 - Multiplication and Division of Real Numbers

Concept \#1 Multiplication of Real Numbers
Consider the following two examples.

Solve

Ex. 1 A tank is losing 3 gallons of water a day. How many gallons will it lose in 5 days?
Solution:
To find the answer, we multiply three by five. Thus, $3(5)=15$. So, the tank will lose 15 gallons.

Now, let's solve these problems using real numbers:
Losing 3 gallons is written as $-3,5$ days is written as 5 , and a 15 gallon lost can be written as -15 gallon. So, the problem can be written as $-3(5)=-15$.
This example shows that a negative number times a positive number yields a negative answer.

Ex. 2 On a savings account, a bank accidentally charges a monthly service fee of $\$ 3$ for four months. How much did the bank have to adjust the balance to correct the error?

Solution:

To find the answer, we need to multiply 3 and $4: 3(4)=12$. The bank had to add $\$ 12$ to the account to correct the error.

Now, let's solve this problem using real numbers:
A monthly service fee of $\$ 3$ can be written as $-\$ 3$, deleting four transactions can be written as -4 , and adding $\$ 12$ to the account can be written as 12 . So, the problem becomes $-3(-4)=12$.

This says that a negative number times a negative number is a positive number. So, let's write down the rules:

Multiplication of Real Numbers

1. The product of two real numbers with the same signs is positive.

$$
(-\#) \bullet(-\#)=+ \text { Ans. } \quad(+\#) \bullet(+\#)=+ \text { Ans. }
$$

2. The product of two real numbers with the different signs is negative.

$$
(-\#) \bullet(+\#)=- \text { Ans. } \quad(+\#) \bullet(-\#)=- \text { Ans. }
$$

3. The product of any real number and zero is zero.

Simplify:

Ex. 3a -7(-5)
Ex. 3b 8.7(-0.056)
Ex. 3c -18(3)
Ex. 3d $\quad 0\left(-6 \frac{2}{3}\right)$
Ex. 3e $\quad\left(-7 \frac{7}{8}\right)\left(-3 \frac{5}{9}\right)$
Solution:
a) $-7(-5)=35$

Ex. $3 \mathrm{f} \quad\left(-6 \frac{3}{4}\right)\left(4 \frac{2}{3}\right)$
b) $\quad 8.7(-0.056)=-0.4872$
((-\#)•(-\#) = + Ans.)
c) $-18(3)=-54$
((+ \#)•(-\#) = - Ans.)
d) $0\left(-6 \frac{2}{3}\right)=0$
e) $\left(-7 \frac{7}{8}\right)\left(-3 \frac{5}{9}\right)$
(change to improper fractions)

$$
=\left(-\frac{63}{8}\right)\left(-\frac{32}{9}\right)
$$

(reduce)
$=\left(-\frac{7}{8}\right)\left(-\frac{32}{1}\right)=\left(-\frac{7}{1}\right)\left(-\frac{4}{1}\right) \quad$ (simplify)
$=(-7)(-4)=28$
((-\#)•(-\#) = + Ans.)
f) $\left(-6 \frac{3}{4}\right)\left(4 \frac{2}{3}\right)$ (change to improper fractions)

$$
=\left(-\frac{27}{4}\right)\left(\frac{14}{3}\right)
$$

(reduce)
$=\left(-\frac{9}{4}\right)\left(\frac{14}{1}\right)$
$=\left(-\frac{9}{2}\right)\left(\frac{7}{1}\right)=-\frac{63}{2}=-31 \frac{1}{2} \quad((-\#) \bullet(+\#)=-$ Ans. $)$
Concept \#2 Exponential Expressions

Simplify the following:

Ex. $4 \begin{array}{r}25-4^{2} \\ \text { Solution: }\end{array}$

$$
\begin{array}{ll}
25-4^{2} & \text { (\#2-Exponents) } \\
=25-16 & \text { (\#4-subtraction) } \\
=9 .
\end{array}
$$

Now, let's try it using the techniques developed in this chapter.

$$
\begin{aligned}
& 25-4^{2}= \\
& =25+-4^{2} \quad \text { (add the opposite) } \\
& \text { consistent with our prior results, } \text { Koep in mind o }-4^{2}=-16 \text {) } \\
& =25+-16 \quad \text { (\#4-Addition) } \\
& =9
\end{aligned}
$$

$$
=25+-4^{2} \quad \text { (\#2-Exponents) Keep in mind our results have to }
$$

This says that $-4^{2}=-16$. The negative does not get squared, only the number. If we want to write -4 the quantity squared, we will need to use parenthesis and write $(-4)^{2}$.
So, $-4^{2}=-4 \bullet 4=-16$ and $(-4)^{2}=(-4)(-4)=16$.

Simplify the following:

Ex. 5a
$(-3)^{2}$
Ex. 5d $\quad(-4)^{3}$
Ex. 5b
-3^{2}
Ex. 5c $\quad-4^{3}$
Ex. 5e $\quad(-2)^{4}$

Solution:

a) $(-3)^{2}=(-3)(-3)=9$.
b) $-3^{2}=-3 \cdot 3=-9$.
c) $-4^{3}=-4 \bullet 4 \bullet 4=-16 \bullet 4=-64$.
d) $(-4)^{3}=(-4)(-4)(-4)=16(-4)=-64$.
e) $(-2)^{4}=(-2)(-2)(-2)(-2)=4(-2)(-2)=-8(-2)=16$.
f) $-2^{4}=-2 \cdot 2 \cdot 2 \cdot 2=-4 \cdot 2 \cdot 2=-8 \cdot 2=-16$.

Ex. 6 a

$\begin{array}{ll}\text { Ex. 6d } & (-1)^{5} \\ \text { Ex. 6e } & (-1)^{7643} \\ \text { Ex. } 6 \mathrm{f} & (-1)^{4652}\end{array}$
Solution:
a) $(-1)^{2}=(-1)(-1)=1$.
b) $(-1)^{3}=(-1)(-1)(-1)=-1$.
c) $(-1)^{4}=(-1)(-1)(-1)(-1)=1$.
d) $(-1)^{5}=(-1)(-1)(-1)(-1)(-1)=-1$.

Notice a pattern: $(-\#)^{\text {even power }}=+$ Answer $\&(-\#)^{\text {odd power }}=-$ Answer.
e) $(-1)^{7643}=-1$ since 7643 is odd.
f) $(-1)^{4652}=1$ since 4652 is even.

In general, the product of an even number of negative factors is positive and the product of an odd number of negative factors is negative.

Concept \#3 Division of Real Numbers
Two numbers are reciprocals if their product is one. Thus, $\frac{2}{3}$ and $\frac{3}{2}$ are reciprocals since $\frac{2}{3} \bullet \frac{3}{2}=1$.
In general, if $a \neq 0$, then the reciprocal of a is $\frac{1}{a}$.

Division of Real Numbers

Let a and b be real numbers such that $b \neq 0$. Then, $a \div b=a \bullet \frac{1}{b}$.
This means that $28 \div 7=4$ is equivalent to $28 \bullet \frac{1}{7}=4$.
Thus, the rules for dividing two real non-zero numbers is the same as in multiplication:

Division of Non-zero Real Numbers

1. The quotient of two non-zero real numbers with the same signs is positive. $(-\#) \div(-\#)=+$ Ans. $\quad(+\#) \div(+\#)=+$ Ans.
2. The quotient of two non-zero real numbers with the different signs is negative. $(-\#) \div(+\#)=-$ Ans.

$$
(+\#) \div(-\#)=- \text { Ans. }
$$

Simplify the following:

Ex. 7a $\quad-32 \div 8$
Ex. 7b $\quad - 9 . 5 \longdiv { - 1 . 2 5 4 }$
Ex. 7c $\quad \frac{-15}{-35}$
Ex. $7 \mathrm{~d} \quad\left(5 \frac{1}{4}\right) \div\left(-7 \frac{7}{8}\right)$
Ex. $7 \mathrm{e} \quad \frac{4.2}{-6.8}$
Ex. $7 \mathrm{f} \quad \frac{-6 \frac{3}{4}}{-7 \frac{1}{2}}$
Solution:
a) $-32 \div 8=-4$
$((-\#) \div(+\#)=-$ Ans. $)$
b) $-1.254 \div(-9.5)=0.132$
$((-\#) \div(-\#)=+$ Ans. $)$
c) $\frac{-15}{-35}=\frac{15}{35}=\frac{3}{7}$
$((-\#) \div(-\#)=+$ Ans. $)$
d) $\left(5 \frac{1}{4}\right) \div\left(-7 \frac{7}{8}\right)$
(change into improper fractions)
$\begin{array}{lr}=\left(\frac{21}{4}\right) \div\left(-\frac{63}{8}\right) & \text { (multiply by } \\ =\left(\frac{21}{4}\right) \cdot\left(-\frac{8}{63}\right) & \text { (reduce) }\end{array}$
$=\left(\frac{1}{4}\right) \cdot\left(-\frac{8}{3}\right)$
$=\left(\frac{1}{1}\right) \cdot\left(-\frac{2}{3}\right)=-\frac{2}{3} \quad((+\#) \cdot(-\#)=-$ Ans. $)$
e) $\frac{4.2}{-6.8}=-\frac{4.2}{6.8}$
$((\#) \div(-\#)=-$ Ans. $)$
$4.2 \div 6.8=0.61764705 \ldots$ on a calculator which is messy.
We can write this in fractional form by moving the decimal point one place to the right. (We are multiplying top and bottom by 10)

$$
\begin{array}{ll}
\text { Thus, }-\frac{4.2}{6.8}=-\frac{42}{68} & \text { (reduce) } \\
=-\frac{21}{34} \\
\text { f) } & \begin{array}{ll}
-6 \frac{3}{4} \\
-7 \frac{1}{2} & \\
& \\
=\left(-\frac{27}{4}\right) \div\left(-\frac{3}{4}\right) \div\left(-7 \frac{1}{2}\right) & \text { (change into improper fractions) } \\
& \text { (multiply by the reciprocal of } \left.-\frac{15}{2}\right) \\
& =\left(-\frac{27}{4}\right)\left(-\frac{2}{15}\right) \\
& \text { (reduce) } \\
& \left(-\frac{9}{2}\right)\left(-\frac{2}{5}\right) \\
& \\
& \\
& \\
& \left(\left(-\frac{1}{5}\right)=\frac{9}{10} .\right.
\end{array}
\end{array}
$$

The following are equivalent:
$-\frac{3}{4}=\frac{-3}{4}=\frac{3}{-4}=-\frac{-3}{-4} \quad\left(-\frac{3}{4}\right.$ is the most simplified form $)$
But $\frac{-3}{-4} \neq-\frac{3}{4}$, since $\frac{-3}{-4}=\frac{3}{4}$.
Also, the following are equivalent:

$$
\frac{3}{4}=-\frac{-3}{4}=-\frac{3}{-4}=\frac{-3}{-4} \quad\left(\frac{3}{4} \text { is the most simplified form }\right)
$$

Some notes on division involving zero:
If a is any real number except for zero, then
A) $\frac{0}{a}=0$
B) $\frac{a}{0}$ is undefined.
C) $\frac{0}{0}$ is undetermined. (It can be equal to any number).

To see why, consider the following:
Any division question can be rephrased as a multiplication question. For example, if we have the problem $24 \div 3=$?, we can rephrase the problem as "what do you have to multiply 3 by to get $24:$ " $3 \cdot ?=24$. The answer is eight. In the problem $0 \div 7=$?, we can ask "what do you have to multiply 7 by to get $0: " 7 \bullet ?=0$. The answer is zero. But in the problem $6 \div \mathbf{0}=$?, we run into trouble when we ask "what do you have to multiply 0 by to get $6: " 0 \cdot ?=6$. There is no number that works since 0 times any number is 0 . The problem is undefined.

Concept \#4 Order of Operations

Ex. $8 \quad 6(0.7-0.2(8))^{2} \div(-1.3-0.5)$
Solution:

$$
\begin{aligned}
& 6(0.7-0.2(8))^{2} \div(-1.3-0.5) \quad \text { (\#1-parentheses, \#3-multiplication) } \\
& =6(0.7-1.6)^{2} \div(-1.3-0.5) \quad \text { (rewrite as addition) } \\
& =6(0.7+(-1.6))^{2} \div(-1.3+(-0.5)) \quad \text { (\#1-parentheses, \#4-addition) } \\
& =6(-0.9)^{2} \div(-1.8) \\
& \text { (\#2-exponents) } \\
& =6(0.81) \div(-1.8) \quad \text { (\#3-multiplication) } \\
& =4.86 \div(-1.8) \quad \text { (\#3-division) } \\
& =-2.7
\end{aligned}
$$

Ex. $9 \quad \frac{4 \bullet(-4)^{2}-4\left(\frac{125}{5}-8\right)}{-3+3(4 \bullet 7 \bullet 1)+(-9 \bullet 7)}$
Solution:
Let's first work out the numerator:
$4 \bullet(-4)^{2}-4\left(\frac{125}{5}-8\right)$ (\#1-parentheses, \#3-division)
$=4 \bullet(-4)^{2}-4(25-8)$ (\#1-parentheses, \#4-subtraction)
$=4 \bullet(-4)^{2}-4(17) \quad$ (\#2-exponents)
$=4 \bullet(16)-4(17) \quad$ (\#3-multiplication)
$=64-4(17) \quad$ (\#3-multiplication)
$=64-68 \quad$ (rewrite as addition)
$=64+(-68)=-4 \quad$ (\#4-addition)
Now, let's work the denominator:
$-3+3(4 \bullet 7 \bullet 1)+(-9 \bullet 7) \quad$ (\#1-parentheses, \#3-multiplication)
$=-3+3(28 \bullet 1)+(-9 \bullet 7) \quad$ (\#1-parentheses, \#3-multiplication)
$=-3+3(28)+(-9 \bullet 7) \quad$ (\#1-parentheses, \#3-multiplication)
$=-3+3(28)+(-63) \quad$ (\#3-multiplication)
$=-3+84+(-63) \quad$ (\#4-addition)
$=81+(-63)=18 \quad$ (\#4-addition)
Thus, $\frac{4 \bullet(-4)^{2}-4\left(\frac{125}{5}-8\right)}{-3+3(4 \bullet 7 \bullet 1)+(-9 \bullet 7)}=\frac{-4}{18}=-\frac{2}{9}$

Ex. 10

$$
-3.3 \sqrt{5-(0.4)^{2}} \div\left(-\frac{11}{10}\right)\left(\frac{3}{10}\right)-|30-45| \cdot 6 \div 9
$$

Solution:
Since $\frac{11}{10}=1.1$ and $\frac{3}{10}=0.3$, replace the fractions by their decimal equivalents:

$$
\begin{aligned}
& -3.3 \sqrt{5-(0.4)^{2}} \div\left(-\frac{11}{10}\right)\left(\frac{3}{10}\right)-|30-45| \cdot 6 \div 9 \\
& =-3.3 \sqrt{5-(0.4)^{2}} \div(-1.1)(0.3)-|30-45| \cdot 6 \div 9
\end{aligned}
$$

(\#1-radical, \#2-exponents)

$$
=-3.3 \sqrt{5-0.16} \div(-1.1)(0.3)-|30-45| \cdot 6 \div 9
$$

(rewrite as addition inside of the grouping symbols)

$$
=-3.3 \underline{\sqrt{5+(-0.16)}} \div(-1.1)(0.3)-|30+(-45)| \bullet 6 \div 9
$$

(\#1-radical \& absolute value, \#4-addition)
$=-3.3 \sqrt{4.84} \div(-1.1)(0.3)-|-15| \bullet 6 \div 9$ (\#1-absolute value)
$=-3.3 \sqrt{4.84} \div(-1.1)(0.3)-15 \bullet 6 \div 9$ (\#2-exponents)
$=-3.3(2.2) \div(-1.1)(0.3)-15 \bullet 6 \div 9$ (\#3-multiplication)
$=-7.26 \div(-1.1)(0.3)-15 \bullet 6 \div 9 \quad$ (\#3-division)
$=6.6(0.3)-15 \bullet 6 \div 9 \quad$ (\#3-multiplication)
$=1.98-15 \bullet 6 \div 9 \quad$ (\#3-multiplication)
$=1.98-90 \div 9 \quad$ (\#3-division)
$=1.98-10$ (change to addition, change the sign to the right)
$=1.98+(-10) \quad$ (\#4-addition)
$=-8.02$

Given $r=-8$, evaluate the following:

Ex. 11a r^{2}
Ex.11c $\quad r^{2}-r$

Ex. 11b $-r^{2}$
Ex. 11d $-r-|r|$

Solution:
a) $\mathrm{r}^{2}=(-8)^{2}=(-8)(-8)=64$
b) $\quad-r^{2}=-(-8)^{2}=-(-8)(-8)=-64$
c) $r^{2}-r=(-8)^{2}-(-8)=64-(-8)=64+8=72$
d) $\quad-r-|r|=-(-8)-|-8|=-(-8)-8=8-8=0$

