Sect 1.5 - Multiplication and Division of Real Numbers

Concept #1 Multiplication of Real Numbers

Consider the following two examples.

<u>Solve</u>

Ex. 1 A tank is losing 3 gallons of water a day. How many gallons will it lose in 5 days?

Solution:

To find the answer, we multiply three by five. Thus, 3(5) = 15. So, the tank will lose 15 gallons.

Now, let's solve these problems using real numbers:

Losing 3 gallons is written as -3, 5 days is written as 5, and a 15 gallon lost can be written as -15 gallon. So, the problem can be written as -3(5) = -15.

This example shows that a negative number times a positive number yields a negative answer.

Ex. 2 On a savings account, a bank accidentally charges a monthly service fee of \$3 for four months. How much did the bank have to adjust the balance to correct the error? Solution:

To find the answer, we need to multiply 3 and 4: 3(4) = 12. The bank had to add \$12 to the account to correct the error.

Now, let's solve this problem using real numbers:

A monthly service fee of \$3 can be written as - \$3, deleting four transactions can be written as -4, and adding \$12 to the account can be written as 12. So, the problem becomes -3(-4) = 12.

This says that a negative number times a negative number is a positive number. So, let's write down the rules:

Multiplication of Real Numbers

- **1.** The product of two real numbers with the same signs is positive. $(-\#)\bullet(-\#) = +$ Ans. $(+\#)\bullet(+\#) = +$ Ans.
- 2. The product of two real numbers with the different signs is negative. $(-\#)\bullet(+\#) = -Ans.$ $(+\#)\bullet(-\#) = -Ans.$
- **3.** The product of any real number and zero is zero.

Simplify: -7(-5)Ex. 3b 8.7(-0.056) Ex. 3a Ex. 3d $0(-6\frac{2}{3})$ Ex. 3c - 18(3) Ex. 3e $\left(-7\frac{7}{8}\right)\left(-3\frac{5}{9}\right)$ Ex. 3f $(-6\frac{3}{4})(4\frac{2}{3})$ Solution: a) -7(-5) = 35 $((-\#)\bullet(-\#) = + Ans.)$ b) 8.7(-0.056) = -0.4872 ((+ #)•(- #) = - Ans.) c) - 18(3) = - 54 $((-\#)\bullet(+\#) = -Ans.)$ d) $0(-6\frac{2}{2}) = 0$ e) $\left(-7\frac{7}{8}\right)\left(-3\frac{5}{6}\right)$ (change to improper fractions) $=\left(-\frac{63}{8}\right)\left(-\frac{32}{9}\right)$ (reduce) $= \left(-\frac{7}{8}\right) \left(-\frac{32}{1}\right) = \left(-\frac{7}{1}\right) \left(-\frac{4}{1}\right)$ (simplify) ((− #)●(− #) = + Ans.) = (-7)(-4) = 28f) $(-6\frac{3}{4})(4\frac{2}{2})$ (change to improper fractions) $=\left(-\frac{27}{4}\right)\left(\frac{14}{3}\right)$ (reduce) $= \left(-\frac{9}{4}\right)\left(\frac{14}{1}\right)$ $= \left(-\frac{9}{2}\right)\left(\frac{7}{1}\right) = -\frac{63}{2} = -31\frac{1}{2}$ ((-#)•(+#) = - Ans.)

Concept #2 Exponential Expressions

Simplify the following:

 $25 - 4^2$ Ex. 4 Solution: (#2-Exponents) (#4-subtraction $25 - 4^2$ (#4-subtraction) = 25 – 16 = 9. Now, let's try it using the techniques developed in this chapter. (add the opposite) $25 - 4^2 =$ $= 25 + -4^2$ (#2-Exponents) Keep in mind our results have to consistent with our prior results, so $-4^2 = -16$) = 25 + - 16 (#4-Addition) = 9

This says that $-4^2 = -16$. The negative does not get squared, only the number. If we want to write -4 the quantity squared, we will need to use parenthesis and write $(-4)^2$. So, $-4^2 = -4 \cdot 4 = -16$ and $(-4)^2 = (-4)(-4) = 16$.

Simplify the following:

 $(-3)^2$ -3^2 Ex. 5d $(-4)^3$ Ex. 5e $(-2)^4$ Ex. 5f -2^4 Ex. 5a Ex. 5b **- 4**³ Ex. 5c Solution: \overline{a} $(-3)^2 = (-3)(-3) = 9.$ b) $-3^2 = -3 \cdot 3 = -9$. c) $-4^3 = -4 \cdot 4 \cdot 4 = -16 \cdot 4 = -64$. d) $(-4)^3 = (-4)(-4)(-4) = 16(-4) = -64.$ e) $(-2)^4 = (-2)(-2)(-2)(-2) = 4(-2)(-2) = -8(-2) = 16.$ f) $-2^4 = -2 \cdot 2 \cdot 2 \cdot 2 = -4 \cdot 2 \cdot 2 = -8 \cdot 2 = -16$. Ex. 6a $(-1)^2$ Ex. 6b $(-1)^3$ Ex. 6c $(-1)^4$ Ex. 6d (- 1)⁵ Ex. 6e (- 1)⁷⁶⁴³ Ex. 6f (- 1)⁴⁶⁵² Solution: a) $(-1)^2 = (-1)(-1) = 1.$ b) $(-1)^3 = (-1)(-1)(-1) = -1.$ c) $(-1)^4 = (-1)(-1)(-1)(-1) = 1$. d) $(-1)^5 = (-1)(-1)(-1)(-1)(-1) = -1$. Notice a pattern: $(-\#)^{\text{even power}} = +$ Answer & $(-\#)^{\text{odd power}} = -$ Answer. e) $(-1)^{7643} = -1$ since 7643 is odd. f) $(-1)^{4652} = 1$ since 4652 is even.

In general, the product of an even number of negative factors is positive and the product of an odd number of negative factors is negative.

Concept #3 Division of Real Numbers

Two numbers are reciprocals if their product is one. Thus, $\frac{2}{3}$ and $\frac{3}{2}$ are reciprocals since $\frac{2}{3} \cdot \frac{3}{2} = 1$. In general, if a $\neq 0$, then the **reciprocal** of a is $\frac{1}{a}$.

Division of Real Numbers

Let a and b be real numbers such that $b \neq 0$. Then, $a \div b = a \bullet \frac{1}{b}$.

This means that $28 \div 7 = 4$ is equivalent to $28 \bullet \frac{1}{7} = 4$.

Thus, the rules for dividing two real non-zero numbers is the same as in multiplication:

Division of Non-zero Real Numbers

The quotient of two non-zero real numbers with the same signs is 1. $(-\#) \div (-\#) = +$ Ans. $(+ \#) \div (+ \#) = +$ Ans. positive. The quotient of two non-zero real numbers with the different signs is 2. negative. $(-\#) \div (+\#) = -$ Ans. $(+ \#) \div (- \#) = -$ Ans.

Simplify the following:

<u>ompiny no renowing.</u>			
Ex. 7a	- 32 ÷ 8	Ex. 7b	- 9.5 <u>)</u> -1.254
Ex. 7c	<u>-15</u> -35	Ex. 7d	$\left(5\frac{1}{4}\right) \div \left(-7\frac{7}{8}\right)$
Ex. 7e	$\frac{4.2}{-6.8}$	Ex. 7f	$\frac{-6\frac{3}{4}}{-7\frac{1}{2}}$

Solution:

a) $-32 \div 8 = -4$

e) $\frac{4.2}{-6.8} = -\frac{4.2}{6.8}$

- b) $-1.254 \div (-9.5) = 0.132$ ((-#) \div (-#) = + Ans.) c) $\frac{-15}{35} = \frac{15}{35} = \frac{3}{7}$
- d) $\left(5\frac{1}{4}\right) \div \left(-7\frac{7}{8}\right)$ $=\left(\frac{21}{4}\right)\div\left(-\frac{63}{8}\right)$ $=\left(\frac{21}{4}\right) \cdot \left(-\frac{8}{63}\right)$ $=\left(\frac{1}{4}\right) \cdot \left(-\frac{8}{3}\right)$

((- #) ÷ (+ #) = - Ans.) $((-\#) \div (-\#) = + Ans.)$

> (change into improper fractions) (multiply by the reciprocal of $-\frac{63}{8}$) (reduce)

```
=\left(\frac{1}{1}\right) \bullet \left(-\frac{2}{3}\right) = -\frac{2}{3} ((+ #) • (- #) = - Ans.)
                                          ((#) ÷ (– #) = – Ans.)
```

4.2 \div 6.8 = 0.61764705... on a calculator which is messy. We can write this in fractional form by moving the decimal point one place to the right. (We are multiplying top and bottom by 10)

Thus,
$$-\frac{4.2}{6.8} = -\frac{42}{68}$$
 (reduce)
 $= -\frac{21}{34}$
f) $\frac{-6\frac{3}{4}}{-7\frac{1}{2}} = \left(-6\frac{3}{4}\right) \div \left(-7\frac{1}{2}\right)$ (change into improper fractions)
 $= \left(-\frac{27}{4}\right) \div \left(-\frac{15}{2}\right)$ (multiply by the reciprocal of $-\frac{15}{2}$)
 $= \left(-\frac{27}{4}\right) \left(-\frac{2}{15}\right)$ (reduce)
 $= \left(-\frac{9}{4}\right) \left(-\frac{2}{5}\right)$
 $= \left(-\frac{9}{2}\right) \left(-\frac{1}{5}\right) = \frac{9}{10}$. ((-#) • (-#) = + Ans.)

The following are equivalent:

$$-\frac{3}{4} = \frac{-3}{4} = \frac{3}{-4} = -\frac{-3}{-4} \qquad (-\frac{3}{4} \text{ is the most simplified form})$$

But $\frac{-3}{-4} \neq -\frac{3}{4}$, since $\frac{-3}{-4} = \frac{3}{4}$.

Also, the following are equivalent:

$$\frac{3}{4} = -\frac{-3}{4} = -\frac{3}{-4} = \frac{-3}{-4}$$
 ($\frac{3}{4}$ is the most simplified form)

Some notes on division involving zero: If a is any real number except for zero, then

A)
$$\frac{0}{a} = 0$$

B) $\frac{a}{0}$ is undefined.

C)
$$\frac{0}{0}$$
 is *undetermined*. (It can be equal to any number).

To see why, consider the following:

Any division question can be rephrased as a multiplication question. For example, if we have the problem $24 \div 3 = ?$, we can rephrase the problem as "what do you have to multiply 3 by to get 24:" $3 \bullet ? = 24$. The answer is eight. In the problem $0 \div 7 = ?$, we can ask "what do you have to multiply 7 by to get 0:" $7 \bullet ? = 0$. The answer is zero. But in the problem $6 \div 0 = ?$, we run into trouble when we ask "what do you have to multiply 0 by to get 6:" $0 \bullet ? = 6$. There is no number that works since 0 times any number is 0. The problem is **undefined**.

Ex. 8
$$6(0.7 - 0.2(8))^2 \div (-1.3 - 0.5)$$

Solution:
 $6(0.7 - 0.2(8))^2 \div (-1.3 - 0.5)$ (#1-parentheses, #3-multiplication)
 $= 6(0.7 - 1.6)^2 \div (-1.3 - 0.5)$ (rewrite as addition)
 $= 6(0.7 + (-1.6))^2 \div (-1.3 + (-0.5))$ (#1-parentheses, #4-addition)
 $= 6(-0.9)^2 \div (-1.8)$ (#2-exponents)
 $= 6(0.81) \div (-1.8)$ (#3-multiplication)
 $= 4.86 \div (-1.8)$ (#3-multiplication)
 $= -2.7$
Ex. 9 $\frac{4 \cdot (-4)^2 - 4\left(\frac{125}{5} - 8\right)}{-3 + 3(4 \cdot 7 \cdot 1) + (-9 \cdot 7)}$
Solution:
Let's first work out the numerator:
 $4 \cdot (-4)^2 - 4\left(\frac{125}{5} - 8\right)$ (#1-parentheses, #3-division)
 $= 4 \cdot (-4)^2 - 4(17)$ (#2-exponents)
 $= 4 \cdot (-4)^2 - 4(17)$ (#2-exponents)
 $= 4 \cdot (16) - 4(17)$ (#3-multiplication)
 $= 64 - 68$ (rewrite as addition)
 $= 64 - 68$ (rewrite as addition)
 $= 64 + (-68) = -4$ (#4-addition)
Now, let's work the denominator:
 $-3 + 3(28 \cdot 1) + (-9 \cdot 7)$ (#1-parentheses, #3-multiplication)
 $= -3 + 3(28 \cdot 1) + (-9 \cdot 7)$ (#1-parentheses, #3-multiplication)
 $= -3 + 3(28 \cdot 1) + (-9 \cdot 7)$ (#1-parentheses, #3-multiplication)
 $= -3 + 3(28 \cdot 1) + (-9 \cdot 7)$ (#1-parentheses, #3-multiplication)
 $= -3 + 3(28 \cdot 1) + (-9 \cdot 7)$ (#1-parentheses, #3-multiplication)
 $= -3 + 3(28 \cdot 1) + (-9 \cdot 7)$ (#1-parentheses, #3-multiplication)
 $= -3 + 3(28 \cdot 1) + (-9 \cdot 7)$ (#1-parentheses, #3-multiplication)
 $= -3 + 84 + (-63)$ (#4-addition)
Now, let's work the denominator:
 $-3 + 3(28 \cdot 1) + (-9 \cdot 7)$ (#1-parentheses, #3-multiplication)
 $= -3 + 84 + (-63)$ (#4-addition)
 $= -3 + 84 + (-63) (#4-addition)$
 $= -3 + 84 + (-63) ($

Ex. 10
$$-3.3\sqrt{5-(0.4)^2} \div (-\frac{11}{10})(\frac{3}{10}) - |30-45| \cdot 6 \div 9$$

Solution:
Since $\frac{11}{10} = 1.1$ and $\frac{3}{10} = 0.3$, replace the fractions by their decimal equivalents:
 $-3.3\sqrt{5-(0.4)^2} \div (-\frac{11}{10})(\frac{3}{10}) - |30-45| \cdot 6 \div 9$
 $= -3.3\sqrt{5-(0.4)^2} \div (-1.1)(0.3) - |30-45| \cdot 6 \div 9$
 $(#1 \cdot radical, #2 \cdot exponents)$
 $= -3.3\sqrt{5-(0.16)} \div (-1.1)(0.3) - |30-45| \cdot 6 \div 9$
(rewrite as addition inside of the grouping symbols)
 $= -3.3\sqrt{5+(-0.16)} \div (-1.1)(0.3) - |30+(-45)| \cdot 6 \div 9$
 $(#1 \cdot radical \& absolute value, #4 \cdot addition)$
 $= -3.3\sqrt{4.84} \div (-1.1)(0.3) - |-15| \cdot 6 \div 9$ (#1-absolute value)
 $= -3.3\sqrt{4.84} \div (-1.1)(0.3) - 15 \cdot 6 \div 9$ (#2 - exponents)
 $= -3.3(2.2) \div (-1.1)(0.3) - 15 \cdot 6 \div 9$ (#3-multiplication)
 $= -7.26 \div (-1.1)(0.3) - 15 \cdot 6 \div 9$ (#3-multiplication)
 $= 1.98 - 15 \cdot 6 \div 9$ (#3-multiplication)
 $= 1.98 - 10$ (change to addition, change the sign to the right)
 $= -8.02$

<u>Given r = – 8, evaluate the following:</u>

Ex. 11a
$$r^2$$
 Ex. 11b $-r^2$
Ex. 11c $r^2 - r$ Ex. 11b $-r^2$
Ex. 11c $r^2 - r$ Ex. 11d $-r - |r|$
Solution:
a) $r^2 = (-8)^2 = (-8)(-8) = 64$
b) $-r^2 = -(-8)^2 = -(-8)(-8) = -64$
c) $r^2 - r = (-8)^2 - (-8) = 64 - (-8) = 64 + 8 = 72$
d) $-r - |r| = -(-8) - |-8| = -(-8) - 8 = 8 - 8 = 0$