Sect 1.6 - Division of Whole Numbers

Objective a: Understanding Division.
Let's start with an example:

Solve the following:

Ex. 1 Leroy wants to make dress shirts. Each shirt requires 6 feet of material. If he has 24 feet of material, how many shirts can he make? Solution:
We can do this by repeatedly subtracting 6 feet for every shirt created:

24	feet of material	
$\begin{array}{r}\text { - } 6 \\ \hline 18\end{array}$	\leftarrow first shirt	So, since 6 gets subtracted four times, then Leroy can
- 6	\leftarrow second shirt	make four shirts. This is like
12		asking how many times
- 6	\leftarrow third shirt	does six go into 24 or
6		$24 \div 6$. This means that
- 6	\leftarrow fourth shirt	division can be thought of
0		as a shortcut for repeated

There are several ways to write this problem:
$24 \div 6=4$ "Twenty-four divided by 6 equals 4 ."
$\frac{24}{6}=4 \quad$ "The quotient of 24 and 6 is $4 . "$
$6 \longdiv { 2 4 } \quad$ " 6 divided into 24 is $4 . "$
The number 6 that we are dividing by is called the divisor. The number 24 that we are divided into is called the dividend and the answer 4 is called the quotient.

Objective b: Properties involving division.
Is Division commutative and/or associative? To determine this, let's try some examples.

Find how much donut each person gets:

Ex. 2a 10 donuts $\div 5$ people
Solution:
$10 \div 5=2$, so each person gets 2 donuts.
Ex. 2b 5 donuts $\div 10$ people
Solution:
In this problem, you have to cut each donut in half to divide the 5 donuts among 10 people. So, each person gets a half of a donut.

Clearly, the results in example 2a and 2 b are not the same so division is not commutative. Let's see if division is associative.

Find the following:

Ex. $3 \mathrm{a} \quad(12 \div 6) \div 2$
Ex. 3b $\quad 12 \div(6 \div 2)$
Solution:

$$
(12 \div 6) \div 2
$$

Solution:
$=(2) \div 2=1$
$12 \div(6 \div 2)$
$=12 \div(3)=4$

Since the results are not the same, division is not associative.
Objective c: Dividing Whole Numbers

Find the following:

Ex. $4 \mathrm{a} \quad 14 \div 7$
Solution
7 goes into 14 twice so,
$14 \div 7=2$.

Ex. 4b $31 \div 1$
Solution:
1 goes into 31
thirty-one times
so, $31 \div 1=31$.

Ex. 4c $\quad 19 \div 19$
Solution:
19 goes into 19 one time so, $19 \div 19=1$.

Ex. 5a $24 \div 3$
Solution
3 goes into 24
eight times so, $24 \div 3=8$.

Ex. 5b $\quad 0 \div 7$
Solution:
7 goes into 0 zero times so,
$0 \div 7=0$.

Ex. 5c $6 \div 0$
Solution:
0 does not go into 6 so, $6 \div 0$ is Undefined.

Let's examine example five more carefully to be sure we understand the difference between 5 b and 5 c . Any division question can be rephrased as a multiplication question. In example 5 a , asking $24 \div 3=$? is the same as asking "what do you have to multiply 3 by to get 24 :" $3 \cdot ?=24$. The answer is eight. In example 5 b , asking $0 \div 7=$? is the same as asking "what do you have to multiply 7 by to get 0 :" $7 \bullet$? $=0$. The answer is zero. In example 5 c , asking $6 \div \mathbf{0}=$? is the same as asking "what do you have to multiply 0 by to get $6: " 0 \cdot ?=6$. There is no number that works since 0 times any number is 0 . The problem is undefined.

Objective d: Long division
We begin by dividing the divisor into the leftmost digit(s) of the dividend being careful enough to ensure we are using enough digits in the dividend to do the division. We write down the number of times the divisor goes into the left part of the dividend above the last digit used in the dividend. Multiply this number with the divisor and subtract it from the digits used in the dividend. Bring down the next digit of the dividend and repeat the process. Continue until all the digits of the dividend are used. If you have anything left over, that will be the remainder and we write " R " and that number to the right of the quotient. Here are some key words that impliy division:

7 divided into 21
7 divided by 21
the quotient of 15 and 3
the ratio of 4 to 11
8 split into 4 equal parts

$$
\begin{aligned}
& \left.21 \div 7=\frac{21}{7} \text { or } 7\right) \sqrt{21} \\
& \left.7 \div 21=\frac{7}{21} \text { or } 21\right) 7 \\
& \left.(15 \div 3)=\frac{15}{3} \text { or } 3\right) \overline{15} \\
& 4 \div 11=\frac{4}{11} \\
& \left.8 \div 4=\frac{8}{4} \text { or } 4\right) 8
\end{aligned}
$$

Find the following:

$$
\text { Ex. } 6 \quad 73168 \div 8
$$

Solution:

$\frac{9}{8}$
$\frac{-72}{73168}$

8 does not go into 7, but it does go into 73 nine times. We write 9 above the 3 and multiply 8 and 9 to get 72 . Subtract 72 from 73 and bring down the 1. Now, repeat the process.

The answer is 9,146 .
Let's take a closer look at this problem to see what is actually happening. When we say that 8 goes into 73 nine times, we really mean that 8 goes into 73,000 nine thousand times. Likewise, when we say 8 goes into 11 one time, we really mean that 8 goes into 1100 one hundred times. The same goes for the subtraction:

9146
$-72 \leftarrow$ Here, we are really subtracting 72,000 from 73,000 .
11 That is why the 9 is in the thousands place.
$-8 \leftarrow$ Here, we are subtracting 800 from 1100.
$36 \quad$ That is why the 1 is in the hundreds place.
$-32 \leftarrow$ Here, we are subtracting 320 from 360.
That is why the 4 is in the tens place.
$-48 \leftarrow$ Here, we are subtracting 48 from 48.
That is why the 6 is in the one place.
Check: $9146 \bullet 8=73,168$.

Ex. $7 \quad 145268$ divided by 34

Solution:
4272 R. 20
$3 4 \longdiv { 1 4 5 2 6 8 }$ Take 145 divided by 34 to get 4.2...
$-136 \quad 4 \bullet 34=136,145-136=9$. Bring down the 2.
92 Take 92 divided by 34 to get 2.7...
$-68 \quad 2 \cdot 34=68,92-68=24$. Bring down the 6 .
246 Take 246 divided by 34 to get 7.2...
$\begin{array}{r}-238 \\ \hline 88 \\ -68 \\ \hline 20\end{array}$
$7 \bullet 34=238,246-238=8$, Bring down the 8 .
Take 88 divided by 34 to get 2.5...
$2 \bullet 34=68,88-68=20$. Remainder is 20 .
The answer is 4272 R. 20.
To check our answer, take the whole number part times the divisor plus the remainder. This should be equal to the dividend:

$$
4272 \cdot 34+20=145248+20=145268
$$

Ex. 8 The quotient of 785264 and 193
Solution:
4068 R. 140

$1 9 3 \longdiv { 7 8 5 2 6 4 }$	Ta
-772	$4 \cdot$
1326	Ta

Take 132 divided by 193 to get $\mathbf{0}$. Bring down the 6 .

- 1158 Take 1326 divided by 193 to get 6.8...
$1684 \quad 6 \cdot 193=1158,1326-1158=168$. Bring down the 4.
- 1544 Take 1684 divided by 193 to get 8.7...
$140 \quad 8 \bullet 193=1544,1684-1544=140$. The remainder is 140 . The answer is 4068 R. 140.

To check our answer, take the whole number part times the divisor plus the remainder. This should be equal to the dividend:

$$
4068 \cdot 193+140=785124+140=785264 .
$$

Ex. 9 In 2007, the average household credit card debt in the U.S. was $\$ 9840$ (source: Mark Brinker's article "Credit Card Debt Statistics at www.hoffmanbrinker.com). If there were about three people per household, estimate what was the average credit card debt per person?

Solution:
Take $\$ 9840$ divided by 3 :

3280
$3 \longdiv { 9 8 4 0 }$
-9
-6
-24
$-\quad 24$
0

Since the four was in the tens place, we will need to write a zero in the ones place. So, the average credit card debt was $\$ 3280$ per person in 2007.

Ex. 10 In February 2009, the Federal government passed a $\$ 787$ billion stimulus plan. According to the Census Bureau, there were 305,685,508 people in the United States as of February 2009 (www.census.gov),. Estimate how much will the stimulus plan cost per person by rounding each number to the nearest million?

Solution:

Since $\$ 787$ billion $=\$ 787,000,000,000=\$ 787,000$ million and $305,685,508 \approx 306,000,000=306$ million, we can divide 787,000 by 306 to get the answer:

2571787 divided by $306=2.787-306 \bullet 2=175$. Bring
$3 0 6 \longdiv { 7 8 7 0 0 0 }$
$-612 \quad 1750$ divided by $306=5.1750-5 \bullet 306=220$.
1750 Bring down the zero.
$-1530 \quad 2200$ divided by $306=7.2200-7 \bullet 306=58$.
2200 Bring down the zero.
$-2142 \quad 580$ divided by $306=1.580-1 \cdot 306=274$.
580 Our remainder is 274 .

So, it will cost each person over $\$ 2571$.

