Sect 1.7 - Exponents, Square Roots and the Order of Operations

Objective a: Understanding and evaluating exponents.
We have seen that multiplication is a shortcut for repeated addition and division is a shortcut for repeated subtraction. Exponential notation is a shortcut for repeated multiplication. Consider the follow:

$$
5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5
$$

Here, we are multiplying six factors of five. We will call the 5 our base and the 6 the exponent or power. We will rewrite this as 5 to the $6^{\text {th }}$ power:

$$
5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5=5^{6}
$$

The number that is being multiplied is the base and the number of factors of that number is the power. Let's try some examples:

Write the following in exponential form:

Ex. 1a $\quad 8 \bullet 8 \bullet 8 \bullet 8$
 Solution:
 Since there are four factors of 8 , we write 8^{4}.
 Simplify the following:

Ex. 1b $7 \bullet 7 \bullet 7 \bullet 7 \bullet 7$
Solution:
Since there are five factors of 7 , we write 7^{5}.

Ex. 2a $\quad 3^{4}$
Solution:
Write 3^{4} in expanded form
and multiply:
$3^{4}=3 \cdot 3 \cdot 3 \cdot 3=9 \bullet 3 \cdot 3=27 \cdot 3=81$
Ex. $3 \mathrm{a} \quad 1^{5}$
Solution:
Write 1^{5} in expanded form
and multiply:
$1^{5}=1 \cdot 1 \cdot 1 \cdot 1 \cdot 1=1 \cdot 1 \cdot 1 \cdot 1$
$=1 \bullet 1 \bullet 1=1 \bullet 1=1$
Ex. $4 \mathrm{a} \quad 10^{1}$
Solution:
$10^{1}=10$

Ex. 2b $\quad 7^{3}$
Solution:
Write 7^{3} in expanded form and multiply:
$7^{3}=7 \bullet 7 \bullet 7=49 \bullet 7=343$

Ex. $3 \mathrm{~b} \quad 2^{3} \cdot 6^{2}$
Solution:
Write $2^{3} \cdot 6^{2}$ in expanded form and multiply:
$2^{3} \cdot 6^{2}=(2 \cdot 2 \cdot 2) \bullet(6 \bullet 6)$
$=8 \bullet 36=288$
Ex. 4b $\quad 10^{2}$
Solution:
$10^{2}=10 \cdot 10=100$

Ex. 4c $\quad 10^{3}$ Solution:

$$
10^{3}=10 \cdot 10 \cdot 10=100 \cdot 10=1000
$$

Notice with powers of ten, we get a one followed by the numbers of zeros equal to the exponent.

> Ex. 4d 10^{6} Solution:
> This will be equal to 1 followed by 6 zeros:
> $1,000,000$

Ex. $4 \mathrm{e} \quad 10^{100}$
Solution:
This will be equal to
1 followed by 100 zeros:
10.
|-100 zeros-|

The number 10^{100} is called a "googol." The mathematician that was first playing around with this number asked his nine-year old nephew to give it a name. There are even larger numbers like $10^{\text {googol }}$. This is a 1 followed by a googol number of zeros. If you were able to write 1 followed a googol number of zeros on a piece of paper, that paper could not be stuffed in the known universe!

Objective b: Understanding and applying square roots.
The square of a whole number is called a perfect square. So, $1,4,9,16$, 25 are perfect squares since $1=1^{2}, 4=2^{2}, 9=3^{2}, 16=4^{2}$, and $25=5^{2}$. We use the idea of perfect squares to simplify square roots. The square root of a number a asks what number times itself is equal to a. For example, the square root of 25 is 5 since 5 times 5 is 25 .

The square root of a number a , denoted $\sqrt{\mathrm{a}}$, is a number whose square is a. So, $\sqrt{25}=5$.

Simplify the following:

Ex. 5a	$\sqrt{49}$	Ex. 5b	$\sqrt{144}$
Ex. 5c	$\sqrt{0}$	Ex. 5 d	$\sqrt{625}$

Solution:
a) $\sqrt{49}=7$ since $7^{2}=49$.
b) $\sqrt{144}=12$ since $12^{2}=144$.
c) $\quad \sqrt{0}=0$ since $0^{2}=0$.
d) $\sqrt{625}=25$ since $25^{2}=625$.

Objective c: Understanding and applying the Order of Operations
If you ever have done some cooking, you know how important it is to follow the directions to a recipe. An angel food cake will not come out right if you just mix all the ingredients and bake it in a pan. Without separating the egg whites from the egg yolks and whipping the eggs whites and so forth, you will end up with a mess. The same is true in mathematics; if you just mix the operations up without following the order of operations, you will have a mess. Unlike directions for making a cake that differ from recipe to recipe, the order of operations always stays the same. The order of operations are:

Order of Operations

1) Parentheses - Do operations inside of Parentheses (), [], \{ \}, | |
2) Exponents including square roots.
3) Multiplication or Division as they appear from left to right.
4) Addition or Subtraction as they appear from left to right.

A common phrase people like to use is:

Please
Excuse
My Dear
Aunt Sally
(Be careful with the My Dear and the Aunt Sally part. Multiplication does not precede Division and Division does not precede multiplication; they are done as they appear from left to right. The same is true for addition and subtraction.)

Simplify the following:

Ex. $6 \quad 99-12+3-14+5$
Solution:
We need to add and subtract as they appear from left to right:
$99-12+3-14+5$ (\#4-subtraction)
$=87+3-14+5$ (\#4-addition)
$=90-14+5$
(\#4-subtraction)
$=76+5$
$=81$
(\#4-addition)

Ex. $7 \quad 72 \div 9(4) \div \sqrt{4}(5)$
Solution:
$72 \div 9(4) \div \sqrt{4}(5) \quad$ (\#2-exponents)
We need to multiply and divide as they appear from left to right:

$$
\begin{array}{ll}
=72 \div 9(4) \div 2(5) & \\
=8(4) \div 2(5) & \\
=32 \text {-division) } \\
=2(5) & \\
=16(5) & \\
=80 & \text { (\#3-divivision) } \\
=2(5) &
\end{array}
$$

Ex. $8 \quad 8 \bullet 3+4 \bullet 2$

Solution:

Since there are no parentheses or exponents, we start with step \#3, multiply or divide as they appear from left to right:

$$
\begin{array}{ll}
8 \bullet 3+4 \bullet 2 & \text { (\#3-multiplication) } \\
=24+8 & \text { (\#4-addition) } \\
=32 &
\end{array}
$$

Ex. $9 \quad 18 \div 3^{2} \cdot \sqrt{16}+4 \cdot 5^{2}$

Solution:
Since there are no parentheses, we start with step \#2, exponents:

$$
\begin{array}{ll}
18 \div 3^{2} \bullet \sqrt{16}+4 \bullet 5^{2} & \\
=18 \div 9 \cdot 4+4 \bullet 25 & \\
=2 \bullet 4+4 \cdot 25 & \\
=8+\text {-division) } \\
=8+4 \bullet 25 & \\
=8+100 & \\
=108 & \text { (\#3-multiplicatiplication) } \\
=8 &
\end{array}
$$

Ex. $10 \quad(\sqrt{81}-8)^{3}+3 \cdot 2^{4}+0 \cdot 5^{2}$
Solution:

$$
\begin{array}{ll}
(\sqrt{81}-8)^{3}+3 \cdot 2^{4}+0 \cdot 5^{2} & \\
=(\# 1-\text {-parentheses, \#2-exponents) } \\
=(9-8)^{3}+3 \cdot 2^{4}+0 \cdot 5^{2} & \\
=(1)^{3}+3 \cdot 2^{4}+0 \cdot 5^{2} & \\
=1+3 \cdot 16+0 \cdot 25 & \\
=1+42 \text {-exponenentheses, \#4-subtraction) } \\
=1+48+0 \cdot 25 & \\
=1+48+0 & \text { (\#3-multiplication) } \\
=49 &
\end{array}
$$

Ex. $11 \quad 9^{2}-(24-12 \div 3)+3 \bullet(5-2)^{2}$
Solution:

$$
\begin{array}{ll}
9^{2}-(24-12 \div 3)+3 \bullet(5-2)^{2} & \text { (\#1-parentheses, \#3-division) } \\
=9^{2}-(24-4)+3 \bullet(5-2)^{2} & \\
=\text { (\#1-parentheses, \#4-subtraction) }^{2}-20+3 \bullet(3)^{2} & \\
=81-20+3 \bullet 9 & \text { (\#3-exponents) } \\
=81-20+27 & \text { (\#4-subtiplication) } \\
=61+27 & \text { (\#4-addition) }
\end{array}
$$

$$
=88
$$

Ex. $12 \quad 9^{1}+6(7-2) \div 3-\left\{8-\left[3^{2}-\sqrt{16}\right]\right\}$
Solution:
When there is a grouping symbol inside of another grouping symbol, work out the innermost set. So, we will work out [$\left.3^{2}-\sqrt{16}\right]$ first:
$9^{1}+6(7-2) \div 3-\left\{8-\left[3^{2}-\sqrt{16}\right]\right\}$ (\#1-parent., \#1-parent., \#2-exp.)
$=9^{1}+6(7-2) \div 3-\{8-[9-4]\} \quad$ (\#1-parent., \#1-parent., \#4-subt.)
$=9^{1}+6(7-2) \div 3-\{8-[5]\}$
Notice that we can drop the [] since they are not needed.

$$
\begin{array}{ll}
=9^{1}+6(7-2) \div 3-\{8-5\} & \quad \text { (\#1-parent., \#4-su } \\
=9^{1}+6(5) \div 3-\{3\} & \\
=9^{1}+6(5) \div 3-3 & \\
\text { We can drop \{\} but not the (). } \\
=9+6(5) \div 3-3 & \\
=9+3 \text {-multiplication) } \\
=9+30 \div 3-3 & \\
=19+10-3 & \\
=16-3 & \\
=164 \text {-division) } \\
\text { (\#4-subtrition) } \\
&
\end{array}
$$

(\#1-parent., \#4-subt.)

Objective d: Computing the mean (average).
To find the average or mean of a set a numbers, we first add the numbers and then divided by the number of numbers.
Ex. 13 Find the average of $79,83,91,78$, and 64.
Solution:
To find the average of a set of numbers, we add the numbers and then divide by the number of numbers:
$(79+83+91+78+64) \div 5=(395) \div 5=79$
So, the average is 79 .

