Objective a: Understanding and evaluating exponents.

We have seen that multiplication is a shortcut for repeated addition and division is a shortcut for repeated subtraction. Exponential notation is a shortcut for repeated multiplication. Consider the follow:

5•5•5•5•5•5

Here, we are multiplying six factors of five. We will call the 5 our base and the 6 the exponent or power. We will rewrite this as 5 to the 6th power:

 $5 \bullet 5 \bullet 5 \bullet 5 \bullet 5 \bullet 5 = 5^6$

The number that is being multiplied is the base and the number of factors of that number is the power. Let's try some examples:

Write the following in exponential form:

Ex. 1a 8•8•8•8 Solution: Since there are for

Since there are four factors of 8, we write 8^4 .

Ex. 1b 7•7•7•7•7 Solution: Since there are five factors

of 7, we write 7^5 .

Simplify the following:

Ex. 2a 3^4 <u>Solution:</u> Write 3^4 in expanded form and multiply: $3^4 = 3 \cdot 3 \cdot 3 \cdot 3 = 9 \cdot 3 \cdot 3 = 27 \cdot 3 = 81$

Ex. 3a 1^{5} <u>Solution:</u> Write 1^{5} in expanded form and multiply: $1^{5} = 1 \cdot 1 \cdot 1 \cdot 1 = 1 \cdot 1 \cdot 1 \cdot 1$ $= 1 \cdot 1 \cdot 1 = 1 \cdot 1 = 1$

Ex. 4a 10¹ <u>Solution:</u> 10¹ = 10

Write 7^3 in expanded form and multiply: $7^3 = 7 \cdot 7 \cdot 7 = 49 \cdot 7 = 343$

Ex. 3b $2^3 \cdot 6^2$ Solution:

> Write $2^3 \cdot 6^2$ in expanded form and multiply: $2^3 \cdot 6^2 = (2 \cdot 2 \cdot 2) \cdot (6 \cdot 6)$ $= 8 \cdot 36 = 288$

Ex. 4b 10^{2} Solution: $10^{2} = 10 \cdot 10 = 100$ Ex. 4c 10³ Solution:

 $10^3 = 10 \bullet 10 \bullet 10 = 100 \bullet 10 = 1000$

Notice with powers of ten, we get a one followed by the numbers of zeros equal to the exponent.

Ex. 4d 10 ⁶	Ex. 4e 10 ¹⁰⁰
Solution:	Solution:
This will be equal to	This will be equal to
1 followed by 6 zeros:	1 followed by 100 zeros:
1,000,000	100
	I-100 zeros-l

The number 10¹⁰⁰ is called a "googol." The mathematician that was first playing around with this number asked his nine-year old nephew to give it a name. There are even larger numbers like 10^{googol}. This is a 1 followed by a googol number of zeros. If you were able to write 1 followed a googol number of zeros on a piece of paper, that paper could not be stuffed in the known universe!

Objective b: Understanding and applying square roots.

The square of a whole number is called a **perfect square**. So, 1, 4, 9, 16, 25 are perfect squares since $1 = 1^2$, $4 = 2^2$, $9 = 3^2$, $16 = 4^2$, and $25 = 5^2$. We use the idea of perfect squares to simplify square roots. The square root of a number a asks what number times itself is equal to a. For example, the square root of 25 is 5 since 5 times 5 is 25.

The <u>square root</u> of a number a, denoted \sqrt{a} , is a number whose square is a. So, $\sqrt{25} = 5$.

Simplify the following:

Ex. 5a	$\sqrt{49}$	Ex. 5b	$\sqrt{144}$
Ex. 5c	$\sqrt{0}$	Ex. 5d	$\sqrt{625}$
<u>Solı</u>	<u>ution:</u>		
a)	$\sqrt{49} = 7$ since $7^2 = 49$.		
b)	$\sqrt{144}$ = 12 since 12^2 = 2	144.	

c) $\sqrt{0} = 0$ since $0^2 = 0$. d) $\sqrt{625} = 25$ since $25^2 = 625$.

Objective c: Understanding and applying the Order of Operations

If you ever have done some cooking, you know how important it is to follow the directions to a recipe. An angel food cake will not come out right if you just mix all the ingredients and bake it in a pan. Without separating the egg whites from the egg yolks and whipping the eggs whites and so forth, you will end up with a mess. The same is true in mathematics; if you just mix the operations up without following the order of operations, you will have a mess. Unlike directions for making a cake that differ from recipe to recipe, the order of operations always stays the same. The order of operations are:

Order of Operations

- 1) Parentheses Do operations inside of Parentheses (), [], { }, []
- 2) Exponents including square roots.
- 3) Multiplication or Division as they appear from left to right.
- 4) Addition or Subtraction as they appear from left to right.

A common phrase people like to use is:

Please	(Be careful with the My Dear and the
Excuse	Aunt Sally part. Multiplication does not
My Dear	precede Division and Division does not
Aunt Sally	precede multiplication; they are done
	as they appear from left to right. The
	same is true for addition and
	subtraction.)

Simplify the following:

Ex. 6	99 - 12 + 3 - 14	+ 5
	Solution:	
	We need to add and s	ubtract as they appear from left to right:
	99 - 12 + 3 - 14 + 5	(#4-subtraction)
	= 87 + 3 – 14 + 5(#4-a	iddition)
	= 90 - 14 + 5	(#4-subtraction)
	= 76 + 5	(#4-addition)
	= 81	

 $72 \div 9(4) \div \sqrt{4}$ (5) Ex. 7 Solution: $72 \div 9(4) \div \sqrt{4}$ (5) (#2-exponents) We need to multiply and divide as they appear from left to right: $= 72 \div 9(4) \div 2(5)$ (#3-division) $= 8(4) \div 2(5)$ (#3-multiply) $= 32 \div 2(5)$ (#3-division) = 16(5)(#3-multiply) = 80 Ex. 8 8•3 + 4•2 Solution: Since there are no parentheses or exponents, we start with step #3, multiply or divide as they appear from left to right: (#3-multiplication) 8•3 + 4•2 = 24 + 8 (#4-addition) = 32 $18 \div 3^2 \bullet \sqrt{16} + 4 \bullet 5^2$ Ex. 9 Solution: Since there are no parentheses, we start with step #2, exponents: $18 \div 3^2 \bullet \sqrt{16} + 4 \bullet 5^2$ (#2-exponents) = 18 ÷ 9•4 + 4•25 (#3-division) = 2•4 + 4•25 (#3-multiplication) = 8 + 4•25 (#3-multiplication) = 8 + 100 (#4-addition) = 108 $(\sqrt{81}-8)^3 + 3 \cdot 2^4 + 0 \cdot 5^2$ Ex. 10 Solution: $(\sqrt{81}-8)^3 + 3 \cdot 2^4 + 0 \cdot 5^2$ (#1-parentheses, #2-exponents) = $(9-8)^3 + 3 \cdot 2^4 + 0 \cdot 5^2$ (#1-parentheses, #4-subtraction) $= (1)^3 + 3 \cdot 2^4 + 0 \cdot 5^2$ (#2-exponents) $= 1 + 3 \cdot 16 + 0 \cdot 25$ (#3-multiplication) $= 1 + 48 + 0 \cdot 25$ (#3-multiplication) = 1 + 48 + 0(#4-addition)

= 49

$9^2 - (24 - 12 \div 3) + 3 \cdot (5 - 2)^2$ Ex. 11 Solution: $9^2 - (24 - 12 \div 3) + 3 \cdot (5 - 2)^2$ (#1-parentheses, #3-division) $= 9^{2} - (24 - 4) + 3 \cdot (5 - 2)^{2}$ (#1-parentheses, #4-subtraction) $= 9^{2} - 20 + 3 \cdot (3)^{2}$ (#2-exponents) = 81 - 20 + 3•9 (#3-multiplication) = 81 – 20 + 27 (#4-subtraction) = 61 + 27(#4-addition) = 88 $9^{1} + 6(7 - 2) \div 3 - \{8 - [3^{2} - \sqrt{16}]\}$ Ex. 12 Solution: When there is a grouping symbol inside of another grouping symbol, work out the innermost set. So, we will work out $[3^2 - \sqrt{16}]$ first: $9^{1} + 6(7 - 2) \div 3 - \{8 - [3^{2} - \sqrt{16}]\}$ (#1-parent., #1-parent., #2-exp.) $= 9^{1} + 6(7 - 2) \div 3 - \{8 - [9 - 4]\}$ (#1-parent., #1-parent., #4-subt.) $= 9^{1} + 6(7 - 2) \div 3 - \{8 - [5]\}$ Notice that we can drop the [] since they are not needed. $= 9^{1} + 6(7 - 2) \div 3 - \{8 - 5\}$ (#1-parent., #4-subt.) $= 9^{1} + 6(5) \div 3 - \{3\}$ We can drop $\{\}$ but not the (). $= 9^{1} + 6(5) \div 3 - 3$ (#2-exponents) $= 9 + 6(5) \div 3 - 3$ (#3-multiplication) $= 9 + 30 \div 3 - 3$ (#3-division) = 9 + 10 - 3 (#4-addition) (#4-subtraction) = 16

Objective d: Computing the mean (average).

To find the average or mean of a set a numbers, we first add the numbers and then divided by the number of numbers.

Ex. 13 Find the average of 79, 83, 91, 78, and 64. Solution: To find the average of a set of numbers, we add the numbers and then divide by the number of numbers: $(79 + 83 + 91 + 78 + 64) \div 5 = (395) \div 5 = 79$ So, the average is 79.