Sect 4.5 - Converting Fractions into Decimals

Objectives a \& b: Converting between fractions to decimals
Previously, we saw that a fraction like $\frac{1}{2}$ can be written as $1 \div 2$. Thus. we can perform the division like we did before:

$$
\begin{array}{r}
0.5 \\
21.0 \\
-10 \\
\hline 0
\end{array}
$$

In general, to convert a fraction to a decimal, divide the numerator by the denominator:
Denominator Numerator

Convert the following fractions into decimals:

Ex. $1 \quad \frac{7}{8}$
Solution:
0.875

8 | 7.0 |
| :---: |
| -64 |
| 60 |

-56
40

$\begin{array}{r}-40 \\ \hline 0\end{array}$
So, the answer is 0.875 .
Ex. $3 \quad \frac{21}{5}$
Solution:

$$
\begin{aligned}
& \begin{array}{r}
4.2 \\
21.0
\end{array} \\
& \begin{array}{r}
-20 \\
\hline 10
\end{array} \\
& \begin{array}{r}
-10 \\
\hline 0
\end{array}
\end{aligned}
$$

The answer is 4.2.

Ex. $2 \quad \frac{7}{11}$
Solution:

$0.6363 \ldots$
$11 \frac{7.0}{-66}$
40

$-\frac{33}{70}$
Repeats
So, the answer is $0 . \overline{63}$.
Ex. $4 \quad \frac{5}{9}$
Solution:

$$
\begin{aligned}
& 0.55 \ldots \\
& 9 \mid 5.0 \\
& -45 \\
& \hline 5 \\
& \text { Repeats }
\end{aligned}
$$

The answer is $0 . \overline{5}$.

To convert a mixed number to a decimal, we will change the proper fraction of the mixed number into a decimal and then add the whole number part to the result. Let's try some examples:

Convert the following into a decimal:

Ex. $5 \quad 4 \frac{2}{3}$
Solution:
Convert the proper
fraction to a decimal:

3 | $0.6666 \ldots$ |
| :--- |
| 3.0 |
| -18 |
| 20 |

Repeats

Now add 4.
So, the answer is $4 . \overline{6}$.

Ex. $7 \quad 2 \frac{4}{7}$

Ex. $6 \quad 8 \frac{5}{16}$
Solution:
Convert the proper fraction to a decimal:

0.3125
16
-4.0
48
-16
40
-32
80
-80
0

Now add 8.
So, the answer is 8.3125 .

Solution:
Convert the proper fraction to a decimal:
0.571428571428...

-35

$$
-49
$$

$$
10
$$

-7
-30
-28 20
$\begin{array}{r}-14 \\ \hline 60\end{array}$
-56
4
Repeats

Now, add 2 to our result.
Since 571428 repeats, our answer is 2.571428 .

Here are some common repeating decimals and their fractional equivalence:
$\frac{1}{9}=0 . \overline{1} \quad \frac{2}{9}=0 . \overline{2} \quad \frac{1}{3}=0 . \overline{3} \quad \frac{4}{9}=0 . \overline{4} \quad \frac{5}{9}=0 . \overline{5} \quad \frac{2}{3}=0 . \overline{6}$
$\frac{7}{9}=0 . \overline{7} \quad \frac{8}{9}=0 . \overline{8}$
Objective c: Comparing Decimals
Compare using $<,>$, or $=$:
$\begin{array}{lll}\text { Ex. } 8 & 0.778 \quad \frac{7}{9}\end{array}$
Solution:
Convert the fraction into a decimal:

$0.777 \ldots$ 91.0 -63 70 -63 $\frac{-63}{7}$

$\begin{array}{lll}\text { Ex. } 9 & 2.142 & \frac{15}{7}\end{array}$
Solution:
Convert the fraction into a decimal:
$\frac{2.1428 \ldots}{715.0}$
$\frac{-14}{10}$
$\frac{-7}{30}$
$\begin{array}{r}-28 \\ \hline 20\end{array}$
$\begin{array}{r}-14 \\ \hline 60\end{array}$
$\begin{array}{r}-56 \\ \hline 4\end{array}$
Since $2.142<2.1428$...,
then $2.142<\frac{15}{7}$.

Ex. $10 \quad 0.372 \quad \frac{22}{59}$
Solution:
Convert $\frac{22}{59}$ into a decimal
by dividing 22 by 59 :
$22 \div 59=0.3728 \ldots$
But, this is larger than
0.372 since $0.372=0.3720$.

So, $0.372<\frac{22}{59}$.

Ex. $11 \quad 12.715 \quad \frac{89}{7}$
Solution:
Convert $\frac{89}{7}$ into a decimal by dividing 89 by 7 :
$89 \div 7=12.714 \ldots$
But this is smaller than
12.715 .

So, $12.715>\frac{89}{7}$.

List in Order from Smallest to Largest:

Ex. $12 \quad 0.629, \frac{5}{8}, 0.65, \frac{7}{10}$
Solution:
Since $\frac{5}{8}=0.625$ and $\frac{7}{10}=0.7$
and $0.625<0.629<0.65<0.7$, then $\frac{5}{8}, 0.629,0.65, \frac{7}{10}$.

$$
\text { Ex. } 1300.047,0.151, \frac{1}{200}, \frac{3}{20}
$$

Solution:
Since $\frac{1}{200}=0.005 \& \frac{3}{20}=0.15$ and $0.005<0.047<0.15<0.151$, then $\frac{1}{200}, 0.047, \frac{3}{20}, 0.151$.

Notice the numbers in example 12 are very close together. If we needed to plot these numbers on a number line, we would need to blow up the scale in order to see the different locations of the numbers:

Objective d: Applications

Find the area of the following (Exact Value Only):

Ex. 14

Solution:
Since $\frac{1}{2}=0.5$ and $\frac{3}{4}=0.75$
are nice, terminating decimals, we will do this as a decimal problem:

$$
\begin{aligned}
& A=\frac{1}{2} \bullet(6.8) \bullet\left(4 \frac{3}{4}\right) \\
& =0.5 \bullet 6.8 \bullet 4.75=16.15 \mathrm{ft}^{2} .
\end{aligned}
$$

Ex. 15
 $\frac{10}{13} \mathrm{~m}$
Solution:
Since $\frac{10}{13}=0.768230 \ldots$ is not a terminating decimal, we will do this as a fraction problem: $0.6=6 / 10=3 / 5$, so, $A=\frac{1}{2} \bullet \frac{10}{13} \bullet 0.6=\frac{1}{2} \bullet \frac{10}{13} \bullet \frac{3}{5}$
$=\frac{1}{2} \bullet \frac{2 \cdot 5}{13} \bullet \frac{3}{5}=\frac{1}{1} \bullet \frac{1}{13} \bullet \frac{3}{1}$ $=\frac{3}{13} \mathrm{~m}^{2}$.

