## Sect 4.6-Order of Operations

Objective a: Applying the order of operations to decimals.
Recall the order of operations:

## Order of Operations

1) Parentheses - Do operations inside of Parentheses ( ), [ ], \{ \}, | |
2) Exponents including square roots.
3) Multiplication or Division as they appear from left to right.
4) Addition or Subtraction as they appear from left to right.

## Simplify the following:

Ex. $1 \quad 4.8 \bullet 1.6 \div 0.8 \bullet 0.4$
Solution:
Since there are no parentheses or exponents, we start with step \#3, multiply or divide as they appear from left to right:

$$
\begin{array}{ll}
4.8 \bullet 1.6 \div 0.8 \bullet 0.4 & \\
=7.68 \div 0.8 \bullet 0.4 & \\
=9.63 \text { (\#3-division) } \\
=3.0 .4 & \\
\text { (\#3-multiplication) } \\
\text { 3.84. } &
\end{array}
$$

Ex. $2 \quad 5.1-3.4 \div 1.7+(\sqrt{25}-3.5)^{2}$
Solution:

$$
\begin{array}{ll}
5.1-3.4 \div 1.7+(\sqrt{25}-3.5)^{2} & \text { (\#1-parentheses, \#2-expon.) } \\
5.1-3.4 \div 1.7+(5-3.5)^{2} & \text { (\#1-parentheses, \#4-subtraction) } \\
=5.1-3.4 \div 1.7+(1.5)^{2} & \\
=52 \text { (\#-exponents) } \\
=5.1-3.4 \div 1.7+2.25 & \\
=3.1+2.25 & \\
=5.35 & \\
\text { (\#4-division) } \\
\text { (\#4-addraction) } \\
&
\end{array}
$$

Ex. $3 \quad 0.3\left[7(1.2)^{2}-\sqrt{0.49}(10)\right] \div 0.2-0.72 \div 0.3$
Solution:

$$
\begin{aligned}
& 0.3\left[7(1.2)^{2}-\sqrt{0.49}(10)\right] \div 0.2-0.72 \div 0.3 \quad \text { (\#1-parent., \#2-exp.) } \\
& =0.3[7(1.44)-(0.7)(10)] \div 0.2-0.72 \div 0.3 \text { (\#1-parent., \#3-mult.) } \\
& =0.3[10.08-(0.7)(10)] \div 0.2-0.72 \div 0.3 \quad \text { (\#1-parent., \#3-mult.) } \\
& =0.3[10.08-7] \div 0.2-0.72 \div 0.3 \quad \text { (\#1-parentheses, \#4-sub.) } \\
& =0.3[3.08] \div 0.2-0.72 \div 0.3 \quad \text { (\#3-multiplication) } \\
& =0.924 \div 0.2-0.72 \div 0.3 \quad \text { (\#3-division) } \\
& =4.62-0.72 \div 0.3 \quad \quad \text { (\#3-division) } \\
& =4.62-2.4 \quad \quad \text { (\#4-subtraction) } \\
& =2.22
\end{aligned}
$$

Ex. $4 \quad 1+3^{2}-(3.9-3.6 \div 3)^{2}+(1.21)^{1}$
Solution:

$$
\begin{array}{ll}
1+3^{2}-(3.9-3.6 \div 3)^{2}+(1.21)^{1} & (\# 1 \text {-parentheses, \#3-div.) } \\
=1+3^{2}-(3.9-1.2)^{2}+(1.21)^{1} & \text { (\#1-parentheses, \#4-sub.) } \\
=1+3^{2}-(2.7)^{2}+(1.21)^{1} & \text { (\#2-exponents) } \\
=1+3^{2}-(2.7)^{2}+(1.21)^{1} & \text { (\#2-exponents) } \\
=1+9-(2.7)^{2}+(1.21)^{1} & \text { (\#2-exponents) } \\
=1+9-7.29+(1.21)^{1} & \text { (\#2-exponents) } \\
=1+9-7.29+1.21 & \text { (\#4-addition) } \\
=10-7.29+1.21 & \text { (\#4-subtraction) } \\
=2.71+1.21 & \text { (\#4-addition) } \\
=3.92 &
\end{array}
$$

Objective b: Calculations with Decimals and Fractions.

## Simplify the following:

Ex. 5
$(0.1)^{3} \div\left(\left\{3.1-\frac{12}{5}\right\}^{2}-\frac{1}{8} \div 0.5\right)+\frac{5}{16}$
Solution:
In this problem, we have both fractions and decimals. Let's see if the fractions convert to nice, terminating decimals:

$$
\frac{12}{5}=2.4 \quad \frac{1}{8}=0.125 \quad \frac{5}{16}=0.3125
$$

Since we get nice, terminating decimals, we will do this as a decimal problem:

$$
\begin{aligned}
& (0.1)^{3} \div\left(\left\{3.1-\frac{12}{5}\right\}^{2}-\frac{1}{8} \div 0.5\right)+\frac{5}{16} \\
& =(0.1)^{3} \div\left(\{3.1-2.4\}^{2}-0.125 \div 0.5\right)+0.3125
\end{aligned}
$$

(\#1-parentheses, \#1-parentheses, \#4-subtraction)

$$
\left.=(0.1)^{3} \div\left(\{0.7\}^{2}-0.125 \div 0.5\right)+0.3125 \quad \text { (\#1-parent., \#2-exp. }\right)
$$

$$
=(0.1)^{3} \div(0.49-0.125 \div 0.5)+0.3125 \quad \text { (\#1-parent., \#3-division) }
$$

$$
=(0.1)^{3} \div(0.49-0.25)+0.3125 \quad \text { (\#1-parent., \#4-subtraction) }
$$

$$
\left.=(0.1)^{3} \div(0.24)+0.3125 \quad \text { (\#2-exponents }\right)
$$

$$
=0.001 \div(0.24)+0.3125 \quad \text { (\#3-division) }
$$

$$
=0.00416+0.3125
$$

(\#4-addition)

$$
=0.31 \overline{\overline{6}}
$$

Ex. 6

$$
(2.5)^{2}-\left(\frac{5}{6} \div 0.75\right)-\sqrt{0.09}\left(2 \frac{5}{14}-2.2\right) \cdot 100
$$

## Solution:

In this problem, we have both fractions and decimals. Let's see if the fractions convert to nice, terminating decimals:

$$
\frac{5}{6}=0.833333 \ldots \quad \frac{5}{14}=0.35714285714 \ldots
$$

Since we do not get nice, terminating decimals, we will do this as a fraction problem:

$$
\begin{aligned}
& 2.5=2 \frac{5}{10}=2 \frac{1}{2}, 0.75=\frac{75}{100}=\frac{3}{4}, \sqrt{0.09}=\sqrt{\frac{9}{100}}, \quad 2.2=2 \frac{2}{10}=2 \frac{1}{5} \\
& \text { So, }(2.5)^{2}-\left(\frac{5}{6} \div 0.75\right)-\sqrt{0.09}\left(2 \frac{5}{14}-2.2\right) \cdot 100 \\
& =\left(2 \frac{1}{2}\right)^{2}-\left(\frac{5}{6} \div \frac{3}{4}\right)-\sqrt{\frac{9}{100}}\left(2 \frac{5}{14}-2 \frac{1}{5}\right) \cdot 100 \quad \text { (invert and multiply) } \\
& =\left(2 \frac{1}{2}\right)^{2}-\left(\frac{5}{6} \bullet \frac{4}{3}\right)-\sqrt{\frac{9}{100}}\left(2 \frac{5}{14}-2 \frac{1}{5}\right) \cdot 100 \quad \text { (\#1-parent., \#3-mult.) } \\
& =\left(2 \frac{1}{2}\right)^{2}-\frac{10}{9}-\sqrt{\frac{9}{100}}\left(2 \frac{5}{14}-2 \frac{1}{5}\right) \cdot 100 \quad \text { (L.C.D. }=70, \text { build fractions) } \\
& =\left(2 \frac{1}{2}\right)^{2}-\frac{10}{9}-\sqrt{\frac{9}{100}}\left(2 \frac{5 \cdot 5}{14 \cdot 5}-2 \frac{1 \cdot 14}{5 \cdot 14}\right) \cdot 100 \quad \text { (multiply) } \\
& =\left(2 \frac{1}{2}\right)^{2}-\frac{10}{9}-\sqrt{\frac{9}{100}}\left(2 \frac{25}{70}-2 \frac{14}{70}\right) \cdot 100 \quad \text { (\#1-parent., \#4-sub.) } \\
& =\left(2 \frac{1}{2}\right)^{2}-\frac{10}{9}-\sqrt{\frac{9}{100}}\left(\frac{11}{70}\right) \cdot 100 \quad \text { (change into an improper fraction) } \\
& =\left(\frac{5}{2}\right)^{2}-\frac{10}{9}-\sqrt{\frac{9}{100}}\left(\frac{11}{70}\right) \cdot 100 \quad \text { (\#2-exponents) }
\end{aligned}
$$

$$
\begin{array}{ll}
=\frac{25}{4}-\frac{10}{9}-\frac{3}{10}\left(\frac{11}{70}\right) \cdot 100 & \\
=\frac{25}{4}-\frac{10}{9}-\frac{3}{10}\left(\frac{11}{70}\right) \cdot \frac{100}{1} & \\
=\frac{25}{4}-\frac{10}{9}-\frac{33}{7} & \text { (\#3-multiplication) } \\
=\frac{25 \cdot 63}{4 \cdot 63}-\frac{10 \cdot 28}{9 \cdot 28}-\frac{33 \cdot 36}{7 \cdot 36} & \text { (L.C.D. }=252, \text { build fraction) } \\
=\frac{1575}{252}-\frac{280}{252}-\frac{1188}{252} & \text { (\#4-subtiply) } \\
=\frac{1295}{252}-\frac{1188}{252} & \\
=\frac{107}{252} &
\end{array}
$$

Since $252=4 \bullet 9 \bullet 7=2^{2} \bullet 3^{2} \bullet 7$ and 107 is not divisible by 2 , 3 , or 7 , our answer is reduced to lowest terms. So, the answer is $\frac{107}{252}$.

Objective c: Applications

## Solve the following:

Ex. $7 \quad$ A developer purchased 409.84 acres of land and plans to divide it into a 52 -acre recreational park and lots of $\frac{8}{11}$ of an acre each. If 12 acres will be reserved for roads and utilities, how many lots can be formed from the land?

## Solution:

To begin, we must exclude the land that s being used for roads, utilities and the recreational park. The remaining land will be split into lots of $\frac{8}{11}$ acres each:

$$
\begin{array}{ll} 
& (409.84-52-12) \div \frac{8}{11} \quad(\# 1-\text { parenthesis, \#4-subtraction) } \\
=(345.84) \div \frac{8}{11} & \text { (write } 345.62 \text { as an improper fraction) } \\
=\frac{34584}{100} \div \frac{8}{11} & \text { (invert and multiply) } \\
=\frac{34584}{100} \bullet \frac{11}{8} & \text { (reduce) } \\
=\frac{4323 \bullet 8}{100} \bullet \frac{11}{801}=\frac{4323}{100} \bullet \frac{11}{1} \quad \text { (multiply and then divide) } \\
=\frac{47553}{100}=475.53 &
\end{array}
$$

The developer can form 475 complete lots.

Ex. $8 \quad$ At the department store, Leroy purchased four boxes of cat food priced at $\$ 5.78$ per box, six $t$-shirts for $\$ 4.95$ each, and two pairs of shoes for $\$ 19.48$. If the sale tax was $\$ 5.58$, how much change did he get if he gave the cashier a hundred dollar bill?

## Solution:

First, multiply the quantity times the price for each item he bought:
$4(5.78)=23.12 \quad 6(4.95)=29.70 \quad 2(19.48)=38.96$
Add these amounts and the sales tax:
$23.12+29.70+38.96+5.58=97.36$
Now, subtract this from 100:
$100-97.36=2.64$
He received $\$ 2.64$ in change.
Ex. 9 The monthly rainfall amounts for a six-month period of time were 1.34 ", 2.07 ", 4.56 ", 2.03 ", 0.29 ", and 1.34 ". Find the average rainfall per month (round the nearest hundredth).

## Solution:

To find the average, we add the numbers and then divide by the number of numbers: $\quad(1.34+2.07+4.56+2.03+0.29+1.34) \div 6$ $=11.63 \div 6=1.938333 \ldots \approx 1.94 "$
The average rainfall was 1.94 " per month.
Ex. 10 Find the area of the following:


Solution:
Since the triangle is turned on its side, the height of the triangle is the total length of the figure minus the length of the rectangle:

$$
41.8 \mathrm{ft}-31.6 \mathrm{ft}=10.2 \mathrm{ft}
$$

The area of the figure is the area of a rectangle plus the area of the triangle:


$$
A=31.6(12.8)+1 / 2(12.8)(10.2)=404.48+65.28=469.76
$$

The area is $469.76 \mathrm{ft}^{2}$.

