Sect 5.2 - More Properties of Exponents

Concept #1 Power Rule for Exponents

Let us consider the next example:

Simplify the following:

Ex. 1 $(x^4)^5$ Solution:

Write in expanded form and use the product rule $(x^4)^5 = (x^4) \cdot (x^4) \cdot (x^4) \cdot (x^4) \cdot (x^4) = x^{4+4+4+4+4} = x^{20}$. Notice that this is the same multiplying the exponents 4 and 5. This introduces our next property:

The Power Rule for Exponents

If m and n are positive integers and a is a non-zero real number, then $(a^m)^n = a^{mn}$ (Property #3). In words, when raising a power by a power, multiply the exponents and keep the same base.

Simplify the following:

Ex. 2a	$(x^5)^8$		Ex. 2b	(y ⁷) ¹³	
Ex. 2c	$(5^{18})^{10}$		Ex. 2d	$(t^3)^7 \bullet (t^4)^6$	
Solution:					
	$(x^{5})^{8} = x^{5 \cdot 4}$ $(y^{7})^{13} = y^{7 \cdot 4}$ $(5^{18})^{10} = 5^{10}$ $(t^{3})^{7} \bullet (t^{4})^{6} = 1$	$y^{13} = y^{91}.$ $y^{18 \cdot 10} = 5^{180}.$	$t^{21} \bullet t^{24} = t^{21+24} = t^{21+24} = t^{21+24} = t^{21} \bullet t^{21} = t^{21} \bullet t^{21} = t^{21} \bullet t^{21} \bullet t^{21} \bullet t^{21} = t^{21} \bullet t^{21} \bullet t^{21} \bullet t^{21} \bullet t^{21} \bullet t^{21} = t^{21} \bullet t$	t ⁴⁵ .	
Ex. 3a <u>Solu</u>	3⁴ <u>tion:</u>	Ex. 3b	x ³ •x ⁴	Ex. 3c	(x ³) ⁴

It is important not to confuse these different situations:

- a) The base is 3 and the exponent is 4, so $3^4 = 3 \cdot 3 \cdot 3 \cdot 3 = 81$. Notice 3 is not even an exponent.
- b) We are multiplying powers with the same base, so $x^3 \bullet x^4 = x^{3+4} = x^7$. (property #1)
- c) We are raising a power by a power, so $(x^3)^4 = x^{3 \cdot 4} = x^{12}$. (property #3)

Concept #2 The Power of a Product and Quotient Rules

Let us examine the next set of examples:

Simplify the following:

Ex. 4a
$$(ab)^3$$

Solution:
a) Write in expanded
form and simplify:
 $(ab)^3 = (ab)(ab)(ab)$
 $= a^{1+1+1}b^{1+1+1} = a^3b^3$.
Ex. 4b $\left(\frac{a}{b}\right)^4$
Solution:
b) Write in expanded
form and simplify:
 $\left(\frac{a}{b}\right)^4 = \frac{a}{b} \cdot \frac{a}{b} \cdot \frac{a}{b} \cdot \frac{a}{b} \cdot \frac{a}{b}$
 $= \frac{a^{1+1+1+1}}{b^{1+1+1}} = \frac{a^4}{b^4}$.

Notice that when we raise a product and/or quotient to a power, we raise each factor to that power. This shows our next two properties:

Power of a Product and/or Quotient Rules

If n is a positive integer, then $(xyz)^n = x^n y^n z^n$ (Property #4) and if $b \neq 0$, then $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ (Property #5)

In words, when we raise a product and/or quotient to a power, we raise each factor to that power.

Simplify the following:

Ex. 5a

 $(4x^2y)^3$

Ex. 5b
$$\left(\frac{5x^2}{y^3}\right)^4$$

Solution:

a) Using the Power of a Product Rule, we raise the 4, x^2 , and y to the third power:

 $(4x^{2}y)^{3} = (4)^{3}(x^{2})^{3}(y)^{3} = (4)^{3}x^{6}y^{3} = 64 x^{6}y^{3}$

(#4 power of a product rule) (#3 power rule) (simplify)

b) Using the Power of a Quotient Rule, we raise the numerator and the denominator to the fourth power:

$$\left(\frac{5x^2}{y^3}\right)^4$$
 (#5 power of a quotient rule)

$$= \frac{\left(5x^{2}\right)^{4}}{\left(y^{3}\right)^{4}}$$
 (#4 power of a product rule in the numerator)
$$= \frac{\left(5\right)^{4}\left(x^{2}\right)^{4}}{\left(y^{3}\right)^{4}}$$
 (#3 power rule)
$$= \frac{\left(5\right)^{4}x^{8}}{y^{12}}$$
 (simplify)
$$= \frac{625x^{8}}{y^{12}}$$

Concept #3 Simplify Expressions with exponents

Simplify the following:

Ex. 6a $3 \cdot (-2x^2y^3)^4$ Ex. 6b $\left(\frac{-7x^3y^4}{6a^2b^5}\right)^3$ Solution: a) $3 \cdot (-2x^2y^3)^4 = 3 \cdot (-2)^4(x^2)^4(y^3)^4 = 3 \cdot (16x^{2 \cdot 4}y^{3 \cdot 4}) = 48x^8y^{12}$. b) $\left(\frac{-7x^3y^4}{6a^2b^5}\right)^3 = \frac{(-7)^3(x^3)^3(y^4)^3}{(6)^3(a^2)^3(b^5)^3} = \frac{-343x^9y^{12}}{216a^6b^{15}} = -\frac{343x^9y^{12}}{216a^6b^{15}}$. Ex. 7a $(-4px^2y^4)^2(-p^3xy^4)^3$ Ex. 7b $\left(\frac{-4t^5t^4v^3}{6t^2t^5v}\right)^3$

Solution:

Think of your order of operations

- 1) Parenthesis nothing to simplify inside
- 2) Exponents $1^{st} \rightarrow power of a product/quotient rule <math>2^{nd} \rightarrow power rule$

3) Multiplication and Division from left to right - product rule They will apply in algebra as well.

a)
$$(-4px^2y^4)^2(-p^3xy^4)^3$$
 (#4 power of a product rule)
= $(-4)^2(p)^2(x^2)^2(y^4)^2(-1)^3(p^3)^3(x)^3(y^4)^3$ (#3 power rule)
= $16p^2x^4y^8(-p^9x^3y^{12}) = -16p^{11}x^7y^{20}$. (#1 product rule)

b)
$$\left(\frac{-4t^5t^4v^3}{6t^2t^5v}\right)^3$$
 (parenthesis - #1 product rule)
 $= \left(\frac{-4t^9v^3}{6t^7v}\right)^3$ (parenthesis - #2 quotient rule)
 $= \left(-\frac{2}{3}t^2v^2\right)^3$ (#4 power of a product rule)
 $= \left(-\frac{2}{3}\right)^3(t^2)^3(v^2)^3$ (#3 power rule)
 $= -\frac{8}{27}t^6v^6$

Ex. 8
$$\frac{(x^2y)^4(x^3y^5)^2}{(x^4z)^3}$$

Solution:

$$\frac{(x^{2}y)^{4}(x^{3}y^{5})^{2}}{(x^{4}z)^{3}}$$

$$= \frac{(x^{2})^{4}(y)^{4}(x^{3})^{2}(y^{5})^{2}}{(x^{4})^{3}(z)^{3}}$$

$$= \frac{x^{8}y^{4}x^{6}y^{10}}{x^{12}z^{3}}$$

$$= \frac{x^{8}x^{6}y^{10}y^{4}}{x^{12}z^{3}}$$

$$= \boxed{\qquad}$$

$$= \frac{x^{2}y^{14}}{z^{3}}$$

(#4 power of a product rule)

(#3 power rule)

(commutative property of multiplication)

(#1 product rule in the numerator)

(#2 quotient rule)

The rules for exponents work for the operations of multiplication and division only. They do not work for addition or subtraction (i.e., $(x + y)^2 \neq x^2 + y^2$ and $(x - y)^3 \neq x^3 - y^3$).

Show that the following for x = 5 and y = 3:

Ex. 9a $(x + y)^2 \neq x^2 + y^2$ Ex. 9b $(x - y)^2 \neq x^2 - y^2$ Solution:Ex. 9b $(x - y)^2 \neq x^2 - y^2$ Replace x by 5 and y by 3:Replace x by 5 and y by 3: $(x + y)^2 \neq x^2 + y^2$ $(x - y)^2 \neq x^2 - y^2$ $((5) + (3))^2 \neq (5)^2 + (3)^2$ $((5) - (3))^2 \neq (5)^2 - (3)^2$ $(8)^2 \neq 25 + 9$ $(2)^2 \neq 25 - 9$ $64 \neq 34$ $4 \neq 16$