Sect 5.3 - Definitions of a⁰ and a⁻ⁿ

Concept #1 Definition of a^0 .

Let's examine the quotient rule when the powers are equal.

Simplify:

Ex. 1 $\frac{2^5}{2^5}$ Solution:

There are two ways to view this problem. First, any non-zero number divided by itself is 1, so, $\frac{2^5}{2^5} = 1$. But, using the quotient rule, $\frac{2^5}{2^5} = 2^{5-5} = 2^0$. This says that $2^0 = 1$. We can do this same trick with any base except for zero.

Zero Exponents

If a is any non-zero real number, then $a^0 = 1$.

Simplify:

Ex. 2a 3^{0} Ex. 2b $(-3)^{0}$ Ex. 2c -3^{0} Ex. 2d $-3x^{0}$ Ex. 2e $-3x^{2}y^{0}$ Ex. 2f $-3(x^{2}y)^{0}$ Ex. 2g $-(3x^{2}y)^{0}$ Ex. 2h $(-3x^{2}y)^{0}$ Solution: a) $3^{0} = 1$ b) $(-3)^{0} = 1$ c) $-3^{0} = -(1) = -1$ (the 0 exponent only applies to 3) d) $-3x^{0} = -3(1) = -3$ (the 0 exponent only applies to x) e) $-3x^{2}y^{0} = -3x^{2}(1) = -3x^{2}$. (the 0 exponent only applies to y) f) $-3(x^{2}y)^{0} = -3(1) = -3$. (the 0 exponent only applies to $x^{2}y$) g) $-(3x^{2}y)^{0} = -(1) = -1$. (the 0 exponent only applies to $3x^{2}y$) h) $(-3x^{2}y)^{0} = (1) = 1$.

Concept #2 Definition of a⁻ⁿ

Let's examine the quotient rule when the power in the denominator is larger than the power in the numerator.

Simplify:

Ex. 3

Solution:

 $\frac{2^5}{2^8}$

There are two ways to view this problem. First, $2^5 = 32$ and $2^8 = 256$, then $\frac{2^5}{2^8} = \frac{32}{256}$ which reduces to $\frac{1}{8}$. But, $\frac{1}{8} = \frac{1}{2^3}$, so, $\frac{2^5}{2^8} = \frac{1}{2^3}$. But, using the quotient rule, $\frac{2^5}{2^8} = 2^{5-8} = 2^{-3}$. This says that $2^{-3} = \frac{1}{2^3}$. We can do this same trick with any base except for zero. Also, $\frac{1}{4^{-2}} = 4^2 = 16$ since $\frac{1}{4^{-2}} = 1 \div 4^{-2} = 1 \div \frac{1}{4^2} = 1 \cdot 4^2 = 4^2 = 16$

Negative Exponents

If a and b are any non-zero real numbers, then $a^{-n} = \frac{1}{a^n}$ and $\frac{1}{b^{-n}} = b^n$. Note this also implies that $\left(\frac{a}{b}\right)^{-n} = \frac{a^{-n}}{b^{-n}} = \frac{b^n}{a^n} = \left(\frac{b}{a}\right)^n$. In words, when raising a quantity to a negative power, take the reciprocal of the base and change the sign of the exponent.

Simplify the following. Write your answer using positive exponents:

Ex. 4a	11 ⁻²	Ex. 4b	$(-3)^{-4}$
Ex. 4c	$\frac{1}{5^{-2}}$	Ex. 4d	$\frac{5}{(-2)^{-4}}$
Ex. 4e	$\frac{7^{-2}}{6^{-3}}$	Ex. 4f	$(-3x^2)^{-3}$
Ex. 4g	$\left(-\frac{4}{y}\right)^{-3}$	Ex. 4h	$\left(\frac{1}{8}\right)^{-2}$

Solution: a) 11^{-2} $= \frac{1}{11^{2}}$ $= \frac{1}{121}$.

(apply the definition of a negative exponent) (simplify)

b)	$(-3)^{-4} = \frac{1}{(-3)^4} = \frac{1}{81}.$	(apply the definition of a negative exponent) (simplify)
c)	$\frac{1}{5^{-2}} = 5^{2}$ = 25.	(apply the definition of a negative exponent) (simplify)
d)	$\frac{5}{(-2)^{-4}}$	(apply the definition of a negative exponent)
	= $5 \cdot (-2)^4$ = $5 \cdot 16$ = 80.	(exponents) (multiplication)
e)	$\frac{7^{-2}}{6^{-3}}$	(apply the definition of a negative exponent)
	$=\frac{6^3}{7^2}$	(simplify)
	$=\frac{216}{49}$.	
f)	$(-3x^{2})^{-3} = \frac{1}{(-3x^{2})^{3}}$	(apply the definition of a negative exponent) (#4 power of a product rule)
	$= \frac{1}{(-3)^3 (x^2)^3}$	(#3 power rule)
	$=\frac{1}{(-3)^3 x^6}$	(simplify)
	$= -\frac{1}{27x^6}.$	
g)	$\left(-\frac{4}{y}\right)^{-3}$	(apply the definition of a negative exponent)
	$=\left(-\frac{y}{4}\right)^{3}$	(#5 power of a quotient rule)
	$= -\frac{y^3}{4^3}$	(simplify)
	$= -\frac{y^3}{64}.$	

h) $\left(\frac{1}{8}\right)^{-2}$ (apply the definition of a negative exponent) = $(8)^2$ (simplify) = 64Ex. 5a $5x^{-3}$ Ex. 5b $(5x)^{-3}$ Ex. 5c $\frac{-4x^{-3}y^2}{5a^3b^{-5}}$ Ex. 5d $\frac{(-2)^3a^{-3}b^7c^{-5}}{(-7)^2q^{-4}r^2v^0}$ Solution: a) $5x^{-3}$ (write over 1) $= \frac{5x^{-3}}{1}$ (apply the definition of a negative exponent) $= \frac{5}{x^3}$. b) $(5x)^{-3}$ (write over 1) $= \frac{(5x)^{-3}}{1}$ (apply the definition of a negative exponent) $= \frac{1}{(5x)^3}$ (#4 power of a product rule and simplify) $= \frac{1}{125x^3}$.

c) If the exponents are already positive, do not move the factors. Only move the factors that have negative exponents:

$$\frac{-4x^{-3}y^2}{5a^3b^{-5}}$$
 (negative ÷ positive is negative)
= $-\frac{4x^{-3}y^2}{5a^3b^{-5}}$ (apply the definition of a negative exponent)
= $-\frac{4b^5y^2}{5a^3x^3}$. (Note – 4 is not an exponent, but a number

so we do not move it).

d) If the exponents are already positive, do not move the factors. Only move the factors that have negative exponents:

$$\frac{(-2)^{3}a^{-3}b^{7}c^{-5}}{(-7)^{2}q^{-4}r^{2}v^{0}}$$
 (simplify)
= $\frac{-8a^{-3}b^{7}c^{-5}}{49q^{-4}r^{2}v^{0}}$ (negative ÷ positive is negative)

 $= -\frac{8a^{-3}b^{7}c^{-5}}{49q^{-4}r^{2}v^{0}}$ (apply the definition of a negative exponent) $= -\frac{8b^{7}q^{4}}{49a^{3}c^{5}r^{2}v^{0}}$ But $v^{0} = 1$, so $-\frac{8b^{7}q^{4}}{49a^{3}c^{5}r^{2}v^{0}} = -\frac{8b^{7}q^{4}}{49a^{3}c^{5}r^{2}(1)} = -\frac{8b^{7}q^{4}}{49a^{3}c^{5}r^{2}}$

Concept #3 Properties of Integral Exponents: A Summary

We can now extend the properties of exponents discussed in sections 5.1 and 5.2 to include integral exponents.

Properties of Integral Exponents					
Assume that a and b are non-zero real numbers and m and n are integers.					
Property	Example	Notes			
The Product Rule					
1. $a^m a^n = a^{m+n}$	$x^3x^5 = x^{3+5} = x^8$	$x^3x^5 = (x \bullet x \bullet x)(x \bullet x \bullet x \bullet x \bullet x) = x^8$			
The Quotient Rule					
2. $\frac{b^m}{b^n} = b^{m-n}$	$\frac{b^6}{b^2} = b^{6-2} = b^4$	$\frac{b^6}{b^2} = \frac{b \cdot b \cdot b \cdot b \cdot b \cdot b}{b \cdot b} = b^4$			
The Power Rule					
3. $(a^m)^n = a^{m \cdot n}$	$(x^3)^2 = x^{3 \cdot 2} = x^6$	$(\mathbf{x}^3)^2 = (\mathbf{x} \bullet \mathbf{x} \bullet \mathbf{x})(\mathbf{x} \bullet \mathbf{x} \bullet \mathbf{x}) = \mathbf{x}^6$			
Power of a Product Rule					
4. $(ab)^n = a^n b^n$	$(ab)^4 = a^4b^4$	$(ab)^4 = (ab)(ab)(ab)(ab) = a^4b^4$			
Power of a Quotient Rule					
5. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$\left(\frac{a}{b}\right)^4 = \frac{a^4}{b^4}$	$\left(\frac{a}{b}\right)^{4} = \left(\frac{a}{b}\right)\left(\frac{a}{b}\right)\left(\frac{a}{b}\right)\left(\frac{a}{b}\right) = \frac{a^{4}}{b^{4}}$			
Definitions					

Definitions

Assume that a is non-zero real number and n is an integers.

Definition	Example	Notes
Zero Exponents		Any non-zero real number
a ⁰ = 1	$(-5)^0 = 1$	raised to the 0 power is 1.
Negative Exponents		Take the reciprocal of the base
$a^{-n} = \frac{1}{a^n}$	$x^{-7} = \frac{1}{x^7}$	and change the sign of the exponent.

Simplify the following. Write your answer using positive exponents:

Ex. 6a
$$\frac{x^2}{h^{-7}v^{-8}h^9}$$
Ex. 6b $(-7a^2c^{-4})^{-3}$
Ex. 6c $\left(\frac{-5x^{-2}y^3}{xy^4}\right)^{-3}$ Ex. 6d $\frac{(-7x^3y^4)^{-2}}{(3x^2y^{-2})^{-1}}$
Solution:
a) $\frac{x^2}{h^{-7}v^{-8}h^9}$ (#1 product rule in the denominator)
 $=\frac{x^2}{h^2v^{-8}}$ (apply the definition of a negative exponent)
 $=\frac{\sqrt{8x^2}}{h^2}$.
b) $(-7a^2c^{-4})^{-3}$ (#4 power of a product rule)
 $=(-7)^{-3}(a^2)^{-3}(c^{-4})^{-3}$ (#3 power rule)
 $=(-7)^{-3}a^{-6}c^{12}$ (apply the definition of a negative exponent)
 $=\frac{c^{12}}{(-7)^3a^6}$ (simplify)
 $=-\frac{c^{12}}{343a^6}$
c) $\left(\frac{-5x^{-2}y^3}{xy^4}\right)^{-3}$ (apply the definition of a negative exponent inside the parenthesis)
 $=\left(\frac{-5y^3}{x^3y^4}\right)^{-3}$ (#1 product rule)
 $=\left(\frac{-5y^3}{x^3y^4}\right)^{-3}$ (#2 quotient rule inside the parenthesis)
 $=\left(\frac{-5y^{-1}}{x^3}\right)^{-3}$ (apply the definition of a negative exponent inside the parenthesis)
 $=\left(\frac{-5y^{-1}}{x^3y^4}\right)^{-3}$ (apply the definition of a negative exponent inside the parenthesis)
 $=\left(\frac{-5y^{-1}}{x^3y^4}\right)^{-3}$ (apply the definition of a negative exponent inside the parenthesis)
 $=\left(\frac{-5y^{-1}}{x^3}\right)^{-3}$ (apply the definition of a negative exponent inside the parenthesis)
 $=\left(\frac{-5y^{-1}}{x^3}\right)^{-3}$ (apply the definition of a negative exponent)
 $=\left(\frac{x^3y}{x^{-1}}\right)^{-3}$ (apply the definition of a negative exponent)
 $=\left(\frac{x^3y}{x^{-1}}\right)^{-3}$ (45 power of a quotient rule)

$$= \frac{\left(x^{3}y\right)^{3}}{\left(-5\right)^{3}} \qquad (#4 \text{ power of a product rule})$$

$$= \frac{\left(x^{3}\right)^{3}\left(y\right)^{3}}{\left(-5\right)^{3}} \qquad (#3 \text{ power rule})$$

$$= \frac{x^{9}y^{3}}{\left(-5\right)^{3}} \qquad (simplify)$$

$$= -\frac{x^{9}y^{3}}{\left(-5\right)^{3}} \qquad (simplify)$$

$$= -\frac{x^{9}y^{3}}{\left(-5\right)^{3}} \qquad (#4 \text{ power of a product rule})$$

$$= \frac{x^{9}y^{3}}{\left(-5\right)^{3}} \qquad (simplify)$$

$$= -\frac{x^{9}y^{3}}{\left(-5\right)^{2}} \qquad (#4 \text{ power of a product rule})$$

$$= \frac{\left(-7\right)^{-2}x^{(3)}-\frac{2}{\left(y^{4}\right)^{-2}}}{\left(3\right)^{-1}\left(x^{2}\right)^{-1}\left(y^{-2}\right)^{-1}} \qquad (#3 \text{ power rule})$$

$$= \frac{\left(-7\right)^{-2}x^{-6}y^{-8}}{\left(3\right)^{-1}x^{-2}y^{2}} \qquad (apply the definition of a negative exponent)$$

$$= \frac{3x^{2}}{\left(-7\right)^{2}x^{6}y^{10}} \qquad (#2 \text{ quotient rule})$$

$$= \frac{3x^{-4}}{\left(-7\right)^{2}x^{6}y^{10}} \qquad (apply the definition of a negative exponent)$$

$$= \frac{3x^{-4}}{\left(-7\right)^{2}x^{6}y^{10}} \qquad (simplify)$$

$$= \frac{3}{49x^{4}y^{10}}$$

$$3^{-1} + \left(\frac{7}{2}\right)^{-2} - 7^{0} \qquad (apply the definition of a negative exponent)$$

$$= \frac{1}{3} + \left(\frac{2}{7}\right)^{2} - 7^{0} \qquad (apply the definition of a negative exponent)$$

$$= \frac{1}{3} + \left(\frac{2}{7}\right)^{-2} - 7^{0} \qquad (apply the definition of a negative exponent)$$

$$= \frac{1}{3} + \left(\frac{2}{7}\right)^{-2} - 7^{0} \qquad (apply the definition of a negative exponent)$$

$$= \frac{1}{3} + \left(\frac{2}{7}\right)^{-2} - 7^{0} \qquad (apply the definition of a negative exponent)$$

$$= \frac{1}{3} + \left(\frac{2}{7}\right)^{-2} - 7^{0} \qquad (apply the definition of a negative exponent)$$

$$= \frac{1}{3} + \left(\frac{2}{7}\right)^{-2} - 7^{0} \qquad (apply the definition of a negative exponent)$$

$$= \frac{1}{3} + \left(\frac{2}{7}\right)^{-2} - 7^{0} \qquad (apply the definition of a negative exponent)$$

$$= \frac{1}{3} + \left(\frac{2}{7}\right)^{-2} - 7^{0} \qquad (apply the definition of a negative exponent)$$

$$= \frac{1}{3} + \left(\frac{2}{7}\right)^{-2} - 7^{0} \qquad (apply the definition of a negative exponent)$$

$$= \frac{1}{3} + \frac{4}{49} - 1 \qquad (LCD = 147 \text{ and simplify)$$

$$= \frac{49}{147} + \frac{12}{147} - \frac{147}{147} = -\frac{86}{147}$$

Ex. 7

57