Sect 5.3 - Definitions of a^{0} and $\mathrm{a}^{-\mathrm{n}}$

Concept \#1 Definition of a^{0}.
Let's examine the quotient rule when the powers are equal.

Simplify:

Ex. $1 \frac{2^{5}}{2^{5}}$

Solution:

There are two ways to view this problem. First, any non-zero number divided by itself is 1 , so, $\frac{2^{5}}{2^{5}}=1$. But, using the quotient rule, $\frac{2^{5}}{2^{5}}=2^{5-5}=2^{0}$. This says that $2^{0}=1$. We can do this same trick with any base except for zero.

Zero Exponents

If a is any non-zero real number, then $a^{0}=1$.

Simplify:

Ex. 2a $\quad 3^{0}$
Ex. 2c
Ex. 2e $\quad-3 x^{2} y^{0}$
Ex. $2 \mathrm{~g} \quad-\left(3 x^{2} y\right)^{0}$
Solution:

Ex. 2b $\quad(-3)^{0}$
Ex.2d $\quad-3 x^{0}$
Ex. $2 f \quad-3\left(x^{2} y\right)^{0}$
Ex. 2h $\quad\left(-3 x^{2} y\right)^{0}$
a) $3^{0}=1$
b) $(-3)^{0}=1$
c) $-3^{0}=-(1)=-1 \quad$ (the 0 exponent only applies to 3)
d) $-3 x^{0}=-3(1)=-3 \quad$ (the 0 exponent only applies to x)
e) $-3 x^{2} y^{0}=-3 x^{2}(1)=-3 x^{2}$. (the 0 exponent only applies to y)
f) $\quad-3\left(x^{2} y\right)^{0}=-3(1)=-3$. (the 0 exponent only applies to $x^{2} y$)
g) $\quad-\left(3 x^{2} y\right)^{0}=-(1)=-1$. (the 0 exponent only applies to $3 x^{2} y$)
h) $\left(-3 x^{2} y\right)^{0}=(1)=1$.

Concept \#2 Definition of a^{-n}
Let's examine the quotient rule when the power in the denominator is larger than the power in the numerator.

Simplify:

Ex. $3 \quad \frac{2^{5}}{2^{8}}$

Solution:

There are two ways to view this problem. First, $2^{5}=32$ and $2^{8}=$ 256 , then $\frac{2^{5}}{2^{8}}=\frac{32}{256}$ which reduces to $\frac{1}{8}$. But, $\frac{1}{8}=\frac{1}{2^{3}}$,so, $\frac{2^{5}}{2^{8}}=\frac{1}{2^{3}}$.
But, using the quotient rule, $\frac{2^{5}}{2^{8}}=2^{5-8}=2^{-3}$. This says that $2^{-3}=\frac{1}{2^{3}}$. We can do this same trick with any base except for zero.
Also, $\frac{1}{4^{-2}}=4^{2}=16$ since $\frac{1}{4^{-2}}=1 \div 4^{-2}=1 \div \frac{1}{4^{2}}=1 \bullet 4^{2}=4^{2}=16$

Negative Exponents

If a and b are any non-zero real numbers, then $a^{-n}=\frac{1}{a^{n}}$ and
$\frac{1}{b^{-n}}=b^{n}$. Note this also implies that $\left(\frac{a}{b}\right)^{-n}=\frac{a^{-n}}{b^{-n}}=\frac{b^{n}}{a^{n}}=\left(\frac{b}{a}\right)^{n}$.
In words, when raising a quantity to a negative power, take the reciprocal of the base and change the sign of the exponent.

Simplify the following. Write your answer using positive exponents:

Ex. 4a	11^{-2}	Ex. 4b	$(-3)^{-4}$
Ex. 4c	$\frac{1}{5^{-2}}$	Ex. 4d	$\frac{5}{(-2)^{-4}}$

Ex. $4 \mathrm{e} \quad \frac{7^{-2}}{6^{-3}}$
Ex. $4 \mathrm{f} \quad\left(-3 \mathrm{x}^{2}\right)^{-3}$
Ex. $4 \mathrm{~g} \quad\left(-\frac{4}{y}\right)^{-3}$
Ex. $4 \mathrm{~h} \quad\left(\frac{1}{8}\right)^{-2}$
Solution:
a) 11^{-2}

$$
\begin{aligned}
& =\frac{1}{11^{2}} \\
& =\frac{1}{121} .
\end{aligned}
$$

(apply the definition of a negative exponent)
(simplify)
b) $(-3)^{-4}$
$=\frac{1}{(-3)^{4}}$
$=\frac{1}{81}$.
c) $\frac{1}{5^{-2}}$
$=5^{2}$
$=25$.
d) $\frac{5}{(-2)^{-4}}$
$=5 \cdot(-2)^{4} \quad$ (exponents)
$=5 \cdot 16$
$=80$.
e) $\frac{7^{-2}}{6^{-3}}$
$=\frac{6^{3}}{7^{2}}$
$=\frac{216}{49}$.
f) $\left(-3 x^{2}\right)^{-3}$
$=\frac{1}{\left(-3 x^{2}\right)^{3}}$
$=\frac{1}{(-3)^{3}\left(x^{2}\right)^{3}}$
$=\frac{1}{(-3)^{3} x^{6}} \quad$ (simplify)
$=-\frac{1}{27 x^{6}}$.
$=\left(-\frac{y}{4}\right)^{3}$
$=-\frac{y^{3}}{4^{3}}$
$=-\frac{y^{3}}{64}$.
g) $\left(-\frac{4}{y}\right)^{-3} \quad$ (apply the definition of a negative exponent)
(\#5 power of a quotient rule)
(apply the definition of a negative exponent) (simplify)
(apply the definition of a negative exponent) (simplify)
(multiplication)
(apply the definition of a negative exponent)
(simplify)
(apply the definition of a negative exponent)
(\#4 power of a product rule)
(\#3 power rule)
(simplify)
h) $\left(\frac{1}{8}\right)^{-2}$ (apply the definition of a negative exponent)

$$
\begin{aligned}
& =(8)^{2} \quad \text { (simplify) } \\
& =64
\end{aligned}
$$

Ex. 5a
$5 x^{-3}$
Ex. 5b
$(5 x)^{-3}$
Ex. 5c $\frac{-4 x^{-3} y^{2}}{5 a^{3} b^{-5}}$
Ex. 5d $\frac{(-2)^{3} a^{-3} b^{7} c^{-5}}{(-7)^{2} q^{-4} r^{2} v^{0}}$

Solution:
a) $5 x^{-3}$
(write over 1)

$$
\begin{aligned}
& =\frac{5 x^{-3}}{1} \\
& =\frac{5}{x^{3}} .
\end{aligned}
$$

(apply the definition of a negative exponent)
b) $(5 x)^{-3} \quad$ (write over 1)

$$
\begin{aligned}
& =\frac{(5 x)^{-3}}{1} \quad \text { (apply the definition of a negative exponent) } \\
& =\frac{1}{(5 x)^{3}} \quad \text { (\#4 power of a product rule and simplify) } \\
& =\frac{1}{125 x^{3}} .
\end{aligned}
$$

c) If the exponents are already positive, do not move the factors. Only move the factors that have negative exponents:
$\frac{-4 x^{-3} y^{2}}{5 a^{3} b^{-5}} \quad$ (negative \div positive is negative)
$=-\frac{4 x^{-3} y^{2}}{5 a^{3} b^{-5}} \quad$ (apply the definition of a negative exponent)
$=-\frac{4 b^{5} y^{2}}{5 a^{3} x^{3}}$. (Note -4 is not an exponent, but a number
so we do not move it).
d) If the exponents are already positive, do not move the factors. Only move the factors that have negative exponents:

$$
\begin{array}{ll}
\frac{(-2)^{3} a^{-3} b^{7} c^{-5}}{(-7)^{2} q^{-4} r^{2} v^{0}} & \text { (simplify) } \\
=\frac{-8 a^{-3} b^{7} c^{-5}}{49 q^{-4} r^{2} v^{0}} & \text { (negative } \div \text { positive is negative) }
\end{array}
$$

$$
\begin{aligned}
& =-\frac{8 a^{-3} b^{7} c^{-5}}{49 q^{-4} r^{2} v^{0}} \quad \text { (apply the definition of a negative exponent) } \\
& =-\frac{8 b^{7} q^{4}}{49 a^{3} c^{5} r^{2} v^{0}}
\end{aligned}
$$

$$
\text { But } v^{0}=1 \text {, so }-\frac{8 b^{7} q^{4}}{49 a^{3} c^{5} r^{2} v^{0}}=-\frac{8 b^{7} q^{4}}{49 a^{3} c^{5} r^{2}(1)}=-\frac{8 b^{7} q^{4}}{49 a^{3} c^{5} r^{2}}
$$

Concept \#3 Properties of Integral Exponents: A Summary
We can now extend the properties of exponents discussed in sections 5.1 and 5.2 to include integral exponents.

Properties of Integral Exponents

Assume that a and b are non-zero real numbers and m and n are integers.

Property	Example	Notes
The Product Rule 1. $a^{m} a^{n}=a^{m+n}$	$x^{3} x^{5}=x^{3+5}=x^{8}$	$x^{3} x^{5}=(x \bullet x \bullet x)(x \bullet x \bullet x \bullet x \bullet x)=x^{8}$
The Quotient Rule	$\frac{b^{6}}{b^{2}}=b^{6-2}=b^{4}$	$\frac{b^{6}}{b^{2}}=\frac{b^{m}}{b^{n}}=b^{m-n}$
2.	$\left(x^{3}\right)^{2}=x^{3 \cdot 2}=x^{6}$	$\left(x^{3}\right)^{2}=(x \bullet x \bullet x)(x \bullet x \bullet x)=x^{6}$
The Power Rule 3. $\quad\left(a^{m}\right)^{n}=a^{m \bullet n}$ Power of a Product Rule 4. $\quad(a b)^{n}=a^{n} b^{n}$	$(a b)^{4}=a^{4} b^{4}$	$(a b)^{4}=(a b)(a b)(a b)(a b)=a^{4} b^{4}$
Power of a Quotient Rule	$\left(\frac{a}{b}\right)^{4}=\frac{a^{4}}{b^{4}}$	$\left(\frac{a}{b}\right)^{4}=\left(\frac{a}{b}\right)\left(\frac{a}{b}\right)\left(\frac{a}{b}\right)\left(\frac{a}{b}\right)=\frac{a^{4}}{b^{4}}$
5. $\quad\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$		

Definitions

Assume that a is non-zero real number and n is an integers.

Definition	Example	Notes
Zero Exponents $a^{0}=1$	Any non-zero real number raised to the 0 power is 1.	
Negative Exponents	$-5)^{0}=1$	Take the reciprocal of the base and change the sign of the exponent.
$a^{-n}=\frac{1}{a^{n}}$	$x^{-7}=\frac{1}{x^{7}}$	

Concept \#4 Simplifying Expressions with Exponents

Simplify the following. Write your answer using positive exponents:

Ex. 6a $\frac{x^{2}}{h^{-7} v^{-8} h^{9}}$
Ex. 6b $\quad\left(-7 a^{2} c^{-4}\right)^{-3}$
Ex. 6c $\quad\left(\frac{-5 x^{-2} y^{3}}{x y^{4}}\right)^{-3}$
Ex. 6d $\frac{\left(-7 x^{3} y^{4}\right)^{-2}}{\left(3 x^{2} y^{-2}\right)^{-1}}$
Solution:
a) $\frac{x^{2}}{h^{-7} v^{-8} h^{9}} \quad$ (\#1 product rule in the denominator)

$$
\begin{aligned}
& =\frac{x^{2}}{h^{2} v-8} \quad \text { (apply the definition of a negative exponent) } \\
& =\frac{v^{8} x^{2}}{h^{2}} .
\end{aligned}
$$

b) $\left(-7 a^{2} c^{-4}\right)^{-3} \quad$ (\#4 power of a product rule)

$$
\left.=(-7)^{-3}\left(a^{2}\right)^{-3}\left(c^{-4}\right)^{-3} \quad \text { (\#3 power rule }\right)
$$

$$
=(-7)^{-3} a^{-6} c^{12} \quad \text { (apply the definition of a negative exponent) }
$$

$$
\begin{aligned}
& =\frac{c^{12}}{(-7)^{3} a^{6}} \\
& =-\frac{c^{12}}{343 a^{6}}
\end{aligned}
$$

c) $\left(\frac{-5 x^{-2} y^{3}}{x y^{4}}\right)^{-3} \quad$ (apply the definition of a negative exponent inside the parenthesis)
$=\left(\frac{-5 y^{3}}{x^{2} x y^{4}}\right)^{-3} \quad$ (\#1 product rule)
$=\left(\frac{-5 y^{3}}{x^{3} y^{4}}\right)^{-3} \quad$ (\#2 quotient rule inside the parenthesis)
$=\left(\frac{-5 y^{-1}}{x^{3}}\right)^{-3} \quad$ (apply the definition of a negative exponent inside the parenthesis)
$=\left(\frac{-5}{x^{3} y}\right)^{-3} \quad$ (apply the definition of a negative exponent)
$=\left(\frac{x^{3} y}{-5}\right)^{3} \quad$ (\#5 power of a quotient rule)

$$
\begin{aligned}
& =\frac{\left(x^{3} y\right)^{3}}{(-5)^{3}} \\
& \text { (\#4 power of a product rule) } \\
& =\frac{\left(x^{3}\right)^{3}(y)^{3}}{(-5)^{3}} \quad \text { (\#3 power rule) } \\
& =\frac{x^{9} y^{3}}{(-5)^{3}} \\
& =-\frac{x^{9} y^{3}}{125} \\
& \text { d) } \frac{\left(-7 x^{3} y^{4}\right)^{-2}}{\left(3 x^{2} y^{-2}\right)^{-1}} \\
& \text { (\#4 power of a product rule) } \\
& =\frac{(-7)^{-2}\left(x^{3}\right)^{-2}\left(y^{4}\right)^{-2}}{(3)^{-1}\left(x^{2}\right)^{-1}\left(y^{-2}\right)^{-1}} \quad \text { (\#3 power rule) } \\
& =\frac{(-7)^{-2} x^{-6} y^{-8}}{(3)^{-1} x^{-2} y^{2}} \quad \text { (apply the definition of a negative exponent) } \\
& =\frac{3 x^{2}}{(-7)^{2} x^{6} y^{8} y^{2}} \quad \text { (\#1 product rule) } \\
& =\frac{3 x^{2}}{(-7)^{2} x^{6} y^{10}} \quad \text { (\#2 quotient rule) } \\
& =\frac{3 x^{-4}}{(-7)^{2} y^{10}} \quad \text { (apply the definition of a negative exponent) } \\
& =\frac{3}{(-7)^{2} x^{4} y^{10}} \quad \text { (simplify) } \\
& =\frac{3}{49 x^{4} y^{10}}
\end{aligned}
$$

Ex. $7 \quad 3^{-1}+\left(\frac{7}{2}\right)^{-2}-7^{0}$
Solution:

$$
\begin{array}{ll}
3^{-1}+\left(\frac{7}{2}\right)^{-2}-7^{0} & \text { (apply the definition of a negative exponent) } \\
=\frac{1}{3}+\left(\frac{2}{7}\right)^{2}-7^{0} & (\# 5 \text { quotient to a power and simplify) } \\
=\frac{1}{3}+\frac{4}{49}-1 & (\text { LCD }=147 \text { and simplify }) \\
=\frac{49}{147}+\frac{12}{147}-\frac{147}{147}=-\frac{86}{147}
\end{array}
$$

