Sect 8.1 - Lines and Angles

Objective a: Basic Definitions.

Definition

A point is a location in space. It is indicated by making a dot. Points are typically labeled with capital letters next to the dot.

A line is determined by two different points and extends infinitely in two directions. A line can be labeled by small case letter or by two different points. If a picture contains two or more lines, subscripts can be used to denote the lines.

A ray is determined by two different points and extends infinitely in one direction.

A line segment is determined by two different points and extends in no direction. The two different points are called "endpoints." The distance between the endpoints is called the length of the line segment.

Illustration

Line $A B$ or line ℓ or $\overleftrightarrow{A B}$

Ray $A B$ or $\overrightarrow{A B}$
Ray DC or $\overrightarrow{D C}$

Line segment $A B$ or $\overline{A B}$.
The length of $\overline{A B}$ or $\mathrm{AB}=5 \mathrm{ft}$.

Note: $\overline{\mathrm{AB}}$ refers to the line segment and $A B$ refers to the length.

Solve the following:

Ex 1 Given $A C=16$ inches and $A B=9$ inches in the diagram below, find $B C$.

Solution:

Since $B C=A C-A B$, then $B C=16-9=7$ inches.
Objective b \& c: Understanding types of angles.

Definition

Two rays that share a common endpoint form an angle. Rays $A C$ and $A B$ form angle CAB. The common endpoint, A, is called the vertex of the angle and the two rays are called the sides of the angle. An angle is measured using a tool called a protractor. A protractor is marked in equal increments called degrees. There are 180° in an angle whose sides form a straight line.

An acute angle is an angle whose measure is between 0° and 90°.

A right angle is an angle whose measure is exactly 90°.

An obtuse angle is an angle whose measure is between 90° and 180°.

A straight angle is an angle whose measure is exactly 180°.

Illustration

$\angle \mathrm{A}$ is an acute angle since $m \angle A<90^{\circ}$.

$\angle \mathrm{C}$ is an obtuse angle since $m \angle C>90^{\circ}$ and $\mathrm{m} \angle \mathrm{C}<180^{\circ}$.

Definition

A reflex angle is an angle whose measure is between 180° and 360°.

Two angles are called adjacent angles if they are side by side and have the same vertex.

Two acute angles are called Complementary angles if the sum of their measures is 90°. Each is called the "complement" of the other.

Two angles measuring less than 180° are called Supplementary angles if the sum of their measures is 180°. Each is called the "supplement" of the other.

Illustration

Notation

$\angle \mathrm{E}$ is a reflex angle since $\mathrm{m} \angle \mathrm{E}>180^{\circ}$ and $\mathrm{m} \angle \mathrm{E}<360^{\circ}$.
$\angle \mathrm{ABC}$ and $\angle \mathrm{CBD}$ are adjacent angles since they are side by side and have the point B as their vertex.
$\angle \mathrm{ABC}$ and $\angle \mathrm{CBD}$ are complementary angles since
$\mathrm{m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{CBD}=90^{\circ}$.
$\angle \mathrm{XYW}$ and $\angle \mathrm{WYZ}$ are supplementary angles since $\mathrm{m} \angle \mathrm{XYW}+\mathrm{m} \angle \mathrm{WYZ}=180^{\circ}$

Note that complementary and supplementary angles are not always adjacent angles.

Solve the following:

Ex. 2 Given that $\mathrm{m} \angle \mathrm{A}=36^{\circ}$, find the measure of the complement and the supplement of $\angle A$.

Solution:

Since complementary angles total 90°, then the measure of the complement of $\angle \mathrm{A}$ is $90^{\circ}-\mathrm{m} \angle \mathrm{A}=90^{\circ}-36^{\circ}=54^{\circ}$.
Since supplementary angles total 180°, then the measure of the supplement of $\angle A$ is $180^{\circ}-m \angle A=180^{\circ}-36^{\circ}=144^{\circ}$.

Ex. 3 Given the diagram below, find the measure of the complement and the supplement of $\angle \mathrm{ABC}$

Solution:
Since complementary angles have to be acute angles (less than 90°) and the $\mathrm{m} \angle \mathrm{ABC}>90^{\circ}$, it is not possible for $\angle \mathrm{ABC}$ to have a complement. Hence, $\angle \mathrm{ABC}$ has no complement.
Since supplementary angles add up to 180°, then the measure of the supplement of $\angle B$ is $180^{\circ}-m \angle B=180^{\circ}-95^{\circ}=85^{\circ}$.

Definition

Two or more lines are called intersecting if they "cross," "meet," or share a common point.

Two intersecting lines form vertical angles. These angles come in pairs which have equal measures.

Illustration

Notation

The two lines, $\overleftrightarrow{A B}$ and $\overleftrightarrow{D C}$, intersect at point E .

$$
\begin{aligned}
& \text { The vertical pairs are: } \\
& \angle \mathrm{a} \& \angle \mathrm{c} ; \angle \mathrm{b} \& \angle \mathrm{~d} \text {. } \\
& \mathrm{m} \angle \mathrm{a}=\mathrm{m} \angle \mathrm{c} \\
& \mathrm{~m} \angle \mathrm{~b}=\mathrm{m} \angle \mathrm{~d}
\end{aligned}
$$

Ex. 4 Find the value of x and y in the following diagram:

Solution:
Since $\angle x$ and 34° are vertical angles, they are equal.
Thus, $\mathrm{m} \angle \mathrm{x}=34^{\circ}$
$\angle \mathrm{y}$ is a supplementary angle to $\angle \mathrm{x}$, so
$\mathrm{m} \angle \mathrm{y}=180^{\circ}-\mathrm{m} \angle \mathrm{x}=180^{\circ}-34^{\circ}=146^{\circ}$

Objective d: Parallel and Perpendicular Lines.

Definition

Two intersecting lines (or rays or line segments) that form right angles (90°) are called perpendicular lines.

Two or more lines are called parallel lines if they never "cross", "meet", or have no points in common.

Illustration

Notation

Line ℓ is perpendicular to line m or $\ell \perp m$.

Lines l_{1} and l_{2} are parallel or $\ell_{1} \| \ell_{2}$.

Line t is the transversal since it intersects $\ell_{1} \& l_{2}$ at two different points.
If $\ell \| m$, then
$\mathrm{m} \angle 1=\mathrm{m} \angle 4=\mathrm{m} \angle 5=\mathrm{m} \angle 8$
$\mathrm{m} \angle 2=\mathrm{m} \angle 3=\mathrm{m} \angle 6=\mathrm{m} \angle 7$

Ex. 5 Given that $\mathrm{m} \angle \mathrm{b}=63^{\circ}$ in the diagram below, find all the other angles. Assume that $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$.

Solution:

Since $\mathrm{m} \angle \mathrm{f}=\mathrm{m} \angle \mathrm{h}=\mathrm{m} \angle \mathrm{d}=\mathrm{m} \angle \mathrm{b}$, then $\mathrm{m} \angle \mathrm{f}=\mathrm{m} \angle \mathrm{h}=\mathrm{m} \angle \mathrm{d}=$ 63°. Since $\angle \mathrm{c}$ and $\angle \mathrm{b}$ are supplementary angles, $\mathrm{m} \angle \mathrm{c}=180^{\circ}-\mathrm{m} \angle \mathrm{b}=180^{\circ}-63^{\circ}=117^{\circ}$.
Hence, $\mathrm{m} \angle \mathrm{g}=\mathrm{m} \angle \mathrm{e}=\mathrm{m} \angle \mathrm{a}=\mathrm{m} \angle \mathrm{c}=117^{\circ}$.

Definition

Corresponding angles are those angles that share the same location in their respective intersections. If two lines that are cut by a transversal are parallel, then the corresponding angles are equal.

Illustration

$\mathrm{m} \angle 2=\mathrm{m} \angle 6$;
$\mathrm{m} \angle 3=\mathrm{m} \angle 7$;
$\mathrm{m} \angle 4=\mathrm{m} \angle 8$.

Alternate interior angles are those angles inside the two lines sharing the opposite locations, i.e., top - left and bottom - right. If the two lines are parallel, then the alternate interior angles are equal.

Alternate exterior angles are those angles outside the two lines sharing the opposite locations, i.e., top left and bottom - right. If the two lines are parallel, then the alternate exterior angles are equal.
 corresponding angles.
They are:
$\angle 1 \& \angle 5 ; \angle 2 \& \angle 6$;
$\angle 3 \& \angle 7 ; \angle 4 \& \angle 8$.
If $\ell \| m$, then
$\mathrm{m} \angle 1=\mathrm{m} \angle 5$;

There are two pairs of
They are: $\angle 3 \& \angle 5$;
If $\ell \| m$, then
$\mathrm{m} \angle 3=\mathrm{m} \angle 5$;
$\mathrm{m} \angle 4=\mathrm{m} \angle 6$.

There are two pairs of
They are: $\angle 1 \& \angle 7$;
If $\ell \| m$, then
$\mathrm{m} \angle 1=\mathrm{m} \angle 7$;
$\mathrm{m} \angle 2=\mathrm{m} \angle 8$.

Notation

There are four pairs of alternate interior angles.
$\angle 4 \& \angle 6$. alternate exterior angles.
$\angle 2 \& \angle 8$.

Ex. $6 \xrightarrow[\longleftrightarrow]{\text { Using the diagram below, fill in the following blanks. Assume }}$ that $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$.

a) \angle a and \angle e are \qquad angles.
b) $\angle \mathrm{d}$ and $\angle \mathrm{f}$ are \qquad angles.
c) $\angle \mathrm{g}$ and $\angle \mathrm{e}$ are \qquad angles.
d) $\angle \mathrm{h}$ and $\angle \mathrm{b}$ are \qquad angles.
e) $\angle \mathrm{d}$ and $\angle \mathrm{c}$ are \qquad angles.

Solution:

a) \angle a and $\angle \mathrm{e}$ are corresponding angles.
b) $\quad \angle \mathrm{d}$ and $\angle \mathrm{f}$ are alternate exterior angles.
c) $\angle \mathrm{g}$ and $\angle \mathrm{e}$ are vertical angles.
d) $\angle \mathrm{h}$ and $\angle \mathrm{b}$ are alternate interior angles.
e) $\angle \mathrm{d}$ and $\angle \mathrm{c}$ are supplementary angles.

Ex. 7 In the diagram below, find all the missing angles. Assume $\ell \| m$.

Solution:

Since $\angle 5$ and 56° are vertical angles, $\mathrm{m} \angle 5=56^{\circ}$. Since $\angle 1$ and 43° are alternate exterior angles, $\mathrm{m} \angle 1=43^{\circ}$. But $\angle 1$ and $\angle 3$ are vertical angles, thus $\mathrm{m} \angle 3=43^{\circ} . \angle 1, \angle 2$, and 56° form a straight line and $\mathrm{m} \angle 1=43^{\circ}$, hence $180^{\circ}=56^{\circ}+\mathrm{m} \angle 2+43^{\circ}$. Solving for $\mathrm{m} \angle 2$ yields $\mathrm{m} \angle 2=81^{\circ}$. Yet, $\angle 2$ and $\angle 4$ are vertical angles which means $\mathrm{m} \angle 4=81^{\circ}$. Since $\angle 5$ corresponds to $\angle 8$,
$\mathrm{m} \angle 8=\mathrm{m} \angle 5=56^{\circ}$. But $\angle 6$ and $\angle 8$ are vertical angles, so $\mathrm{m} \angle 6=56^{\circ} . \angle 7$ and $\angle 8$ are supplementary angles, therefore $\mathrm{m} \angle 7=180^{\circ}-\mathrm{m} \angle 8=180^{\circ}-56^{\circ}=124^{\circ} . \angle 7$ and $\angle 9$ are vertical angles and thus $\mathrm{m} \angle 9=124^{\circ} . \angle 10$ and 43° are vertical angles which means $\mathrm{m} \angle 10=43^{\circ}$. Since $\angle 10$ and $\angle 11$ are supplementary angles, $m \angle 11=180^{\circ}-43^{\circ}=137^{\circ}$. But, $\angle 11$ and $\angle 12$ are vertical angles, so $\mathrm{m} \angle 12=137^{\circ}$. Therefore:
$\mathrm{m} \angle 1=43^{\circ}$
$\mathrm{m} \angle 2=81^{\circ}$
$\mathrm{m} \angle 3=43^{\circ}$
$\mathrm{m} \angle 4=81^{\circ}$
$\mathrm{m} \angle 5=56^{\circ} \quad \mathrm{m} \angle 6=56^{\circ}$
$\mathrm{m} \angle 7=124^{\circ}$
$\mathrm{m} \angle 8=56^{\circ}$
$\mathrm{m} \angle 9=124^{\circ}$
$\mathrm{m} \angle 10=43^{\circ}$
$\mathrm{m} \angle 11=137^{\circ}$
$m \angle 12=137^{\circ}$

