Sect 8.2 - Triangles and the Pythagorean Theorem

Objective a: Categorizing Triangles.
We first want to show an important property of the angles of a triangle. Consider the following example:

Ex. 1 In the triangle below, show that the sum of the measures of the angles is equal to 180°.

Solution:

Draw m so that it is parallel to ℓ and passes through the vertex of the angle of the triangle not on ℓ. Notice that $\angle \mathrm{a}, \angle \mathrm{b}, \&$ $\angle 3$ together form a line. This means that $\mathrm{m} \angle \mathrm{a}+\mathrm{m} \angle \mathrm{b}+\mathrm{m} \angle 3=180^{\circ}$. Since $\ell \| m$ and t_{1} is a transversal, then $\angle 1$ and $\angle \mathrm{a}$ are a pair of alternate interior angles.
Hence, $\mathrm{m} \angle 1=\mathrm{m} \angle \mathrm{a}$ and we can replace

$\mathrm{m} \angle \mathrm{a}$ by $\mathrm{m} \angle 1$ in the formula above to get:
$\mathrm{m} \angle 1+\mathrm{m} \angle \mathrm{b}+\mathrm{m} \angle 3=180^{\circ}$. But, t_{2} is also a transversal, so $\angle 2$
and $\angle \mathrm{b}$ are a pair of alternate interior angles. Hence,
$\mathrm{m} \angle 2=\mathrm{m} \angle \mathrm{b}$ and we can replace $\mathrm{m} \angle \mathrm{b}$ by $\mathrm{m} \angle 2$ to get:
$\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$.
Thus, the sum of the measures of the angles is 180°.
This property holds for any triangle.
We can classify triangles by their angles:

Acute Triangle

All angles are acute.

Right Triangle

Has on right angle.

Obtuse Triangle Has one obtuse angle.

In a right triangle, the two sides that intersect to form the right angle are called the legs of the right triangle while the third side (the longest side) of a right triangle is called the hypotenuse of the right triangle.

We can also classify triangles by their sides:

Equilateral Triangle All sides are equal.

All angles measure 60°.

Isosceles Triangle
Two sides are equal.

The two base angles are equal.

An equilateral triangle is also called an equiangular triangle. The third angle in an isosceles triangle formed by the two equal sides is called the vertex angle.

Determine what type of triangle is picture below:

Solution:
Since the measures of the angles of a triangle total
180°, then

$$
\begin{gathered}
38^{\circ}+\mathrm{m} \angle \mathrm{~B}+71^{\circ}=180^{\circ} \\
\mathrm{m} \angle \mathrm{~B}+109^{\circ}=180^{\circ} \\
\frac{-109^{\circ}=-109^{\circ}}{\mathrm{m} \angle \mathrm{~B}=71^{\circ} .}
\end{gathered}
$$

So, $\triangle A B C$ is an Isosceles and an Acute Triangle.

Solution:
Since $\angle \mathrm{TXR}$ and 144° are supplementary angles, then
$\mathrm{m} \angle \mathrm{TXR}=180^{\circ}-144^{\circ}=36^{\circ}$.
But, $\mathrm{m} \angle \mathrm{TXR}+\mathrm{m} \angle \mathrm{T}=54^{\circ}+36^{\circ}$ $=90^{\circ}$. So, $\angle \mathrm{R}=180^{\circ}-90^{\circ}=90^{\circ}$.
Since the angles are different, then none of the sides are equal. Thus, $\triangle X R T$ is a scalene and a right triangle.

Objective b: Square Roots
Recall that the square root of a number a asks what number times itself is equal to a. For example, the square root of 25 is 5 since 5 times 5 is 25 .

The square root of a number a, denoted $\sqrt{\mathrm{a}}$, is a number whose square is a. So, $\sqrt{25}=5$. If the number under the square root sign is not a perfect square, we will need to use our calculator.

Simplify the following:

Ex. 4a $\sqrt{49}$
Ex. 4b $\sqrt{144}$
Ex. 4c $\sqrt{0}$
Ex. 4d $\sqrt{15}$

Solution:

a) $\sqrt{49}=7$
b) $\sqrt{144}=12$
c) $\sqrt{0}=0$
d) $\sqrt{15} \approx 3.873$

Objective c: The Pythagorean Theorem.
In a right triangle, there is a special relationship between the legs (a and b) and the hypotenuse (c). This is known as the Pythagorean Theorem:

Pythagorean Theorem

In a right triangle, the square of the hypotenuse (c^{2}) is equal to the sum of the squares of the legs $\left(a^{2}+b^{2}\right)$

$$
c^{2}=a^{2}+b^{2}
$$

Keep in mind that the hypotenuse is the longest side of the right triangle.

Determine is the following triangle is a right triangle:

Ex. $5 \quad$ A triangle with sides of $7 \mathrm{ft}, 24 \mathrm{ft}$, and 25 ft .

Solution:

Plug the values in the Pythagorean Theorem and see if you get a true statement. Since c is the longest side, then $c=25$:
$c^{2}=a^{2}+b^{2}$
$(25)^{2}=(7)^{2}+(24)^{2}$
$625=49+576$
$625=625$, yes the triangle is a right triangle.

Find the length of the missing sides (to the nearest hundredth):

Ex. 6

Solution:
In this problem, we have the two legs of the triangle and we are looking for the hypotenuse:

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c^{2}=(7.8)^{2}+(10.2)^{2} \\
& c^{2}=60.84+104.04 \\
& c^{2}=164.88
\end{aligned}
$$

To find c , take the square root* of 164.88:
$c= \pm \sqrt{164.88}= \pm 12.8405 \ldots$
$c \approx 12.84 \mathrm{~m}$

Ex. 7

Solution:
In this problem, we have one leg and the hypotenuse and we are looking for the other leg:

$$
c^{2}=a^{2}+b^{2}
$$

$(15)^{2}=(6)^{2}+b^{2}$
$225=36+b^{2} \quad$ (solve for b^{2})
$\frac{-36=-36}{189=b^{2}}$
To find b, take the square root
of 189 :
$b= \pm \sqrt{189}= \pm 13.7477 \ldots$
$b \approx 13.75 \mathrm{ft}$

* - The equation $c^{2}=164.88$ actually has two solutions ≈ 12.84 and ≈-12.84, but the lengths of triangles are positive so we ignore the negative solution.

Find the length of the diagonal of the following rectangle:

Ex. $8 \quad$ A rectangle that is 12 feet by 5 feet.

Solution:

First, draw a picture. Since the angles
of a rectangle are right angles, then
the two sides are the legs of a right

triangle while the diagonal is the
hypotenuse of the right triangle. Using the Pythagorean Theorem,
we get: $\quad c^{2}=a^{2}+b^{2}$
$c^{2}=(12)^{2}+(5)^{2}$
$c^{2}=144+25=169$
$c= \pm \sqrt{169}= \pm 13$. So, the diagonal is 13 feet.

