Sect 8.2 - Triangles and the Pythagorean Theorem

Objective a: Categorizing Triangles.

We first want to show an important property of the angles of a triangle. Consider the following example:

Ex. 1 In the triangle below, show that the sum of the measures of the angles is equal to 180°.

Solution:

Draw m so that it is parallel to ℓ and passes through the vertex of the angle of the triangle not on ℓ . Notice that \angle a, \angle b, & \angle 3 together form a line. This means that $m\angle$ a + $m\angle$ b + $m\angle$ 3 = 180°. Since ℓ || m and m a transversal, then m 1 and m are a pair of alternate interior angles. Hence, m 1 = m a and we can replace m a by m 1 in the formula above to get:

 $m \angle 1 + m \angle b + m \angle 3 = 180^\circ$. But, t_2 is also a transversal, so $\angle 2$ and $\angle b$ are a pair of alternate interior angles. Hence, $m \angle 2 = m \angle b$ and we can replace $m \angle b$ by $m \angle 2$ to get:

 $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$.

Thus, the sum of the measures of the angles is 180°.

This property holds for any triangle.

We can classify triangles by their angles:

Acute TriangleAll angles are acute.

Right TriangleHas on right angle.

Obtuse Triangle

Has one obtuse angle.

In a right triangle, the two sides that intersect to form the right angle are called the **legs** of the right triangle while the third side (the longest side) of a right triangle is called the **hypotenuse** of the right triangle.

We can also classify triangles by their sides:

Equilateral Triangle

All sides are equal.

All angles measure 60°.

Isosceles Triangle

Two sides are equal.

The two base angles are equal.

Scalene Triangle No sides are equal.

No angles are equal.

An equilateral triangle is also called an **equiangular triangle**. The third angle in an isosceles triangle formed by the two equal sides is called the **vertex angle**.

Determine what type of triangle is picture below:

Solution:

Since the measures of the angles of a triangle total 180° , then $38^{\circ} + m \angle B + 71^{\circ} = 180^{\circ}$ $m \angle B + 109^{\circ} = 180^{\circ}$

$$m\angle B + 109^{\circ} = 180^{\circ}$$

 $-109^{\circ} = -109^{\circ}$
 $m\angle B = 71^{\circ}$.

So, \triangle ABC is an Isosceles and an Acute Triangle.

Ex. 3

Solution:

Since \angle TXR and 144° are supplementary angles, then m \angle TXR = 180° - 144° = 36°. But, m \angle TXR + m \angle T = 54° + 36° = 90°. So, \angle R = 180° - 90° = 90°. Since the angles are different, then none of the sides are equal. Thus, \triangle XRT is a scalene and a right triangle.

Objective b: Square Roots

Recall that the square root of a number a asks what number times itself is equal to a. For example, the square root of 25 is 5 since 5 times 5 is 25.

The <u>square root</u> of a number a, denoted \sqrt{a} , is a number whose square is a. So, $\sqrt{25} = 5$. If the number under the square root sign is not a perfect square, we will need to use our calculator.

Simplify the following:

Ex.
$$4a \sqrt{49}$$
 Ex. $4b \sqrt{144}$ Ex. $4c \sqrt{0}$ Ex. $4d \sqrt{15}$ Ex. $4d \sqrt{15}$ a) $\sqrt{49} = 7$ b) $\sqrt{144} = 12$ c) $\sqrt{0} = 0$ d) $\sqrt{15} \approx 3.873$

Objective c: The Pythagorean Theorem.

In a right triangle, there is a special relationship between the legs (a and b) and the hypotenuse (c). This is known as the Pythagorean Theorem:

Pythagorean Theorem

In a right triangle, the square of the hypotenuse (c²) is equal to the sum of the squares of the legs (a² + b²) $c^{2} = a^{2} + b^{2}$

Keep in mind that the hypotenuse is the longest side of the right triangle.

Determine is the following triangle is a right triangle:

Ex. 5 A triangle with sides of 7 ft, 24 ft, and 25 ft.

Solution:

Plug the values in the Pythagorean Theorem and see if you get a true statement. Since c is the longest side, then c = 25:

$$c^2 = a^2 + b^2$$

 $(25)^2 = (7)^2 + (24)^2$
 $625 = 49 + 576$
 $625 = 625$, yes the triangle is a right triangle.

Find the length of the missing sides (to the nearest hundredth):

Ex. 7

Solution:

In this problem, we have the two legs of the triangle and we are looking for the hypotenuse:

$$c^2 = a^2 + b^2$$

 $c^2 = (7.8)^2 + (10.2)^2$
 $c^2 = 60.84 + 104.04$
 $c^2 = 164.88$

To find c, take the square root* of 164.88:

$$c = \pm \sqrt{164.88} = \pm 12.8405...$$

 $c \approx 12.84 \text{ m}$

Solution:

In this problem, we have one leg and the hypotenuse and we are looking for the other leg:

$$c^{2} = a^{2} + b^{2}$$

 $(15)^{2} = (6)^{2} + b^{2}$
 $225 = 36 + b^{2}$ (solve for b^{2})
 $\frac{-36 = -36}{189 = b^{2}}$

To find b, take the square root of 189:

$$b = \pm \sqrt{189} = \pm 13.7477...$$

 $b \approx 13.75 \text{ ft}$

* - The equation $c^2 = 164.88$ actually has two solutions ≈ 12.84 and ≈ -12.84 , but the lengths of triangles are positive so we ignore the negative solution.

Find the length of the diagonal of the following rectangle:

Ex. 8 A rectangle that is 12 feet by 5 feet.

Solution:

First, draw a picture. Since the angles of a rectangle are right angles, then the two sides are the legs of a right triangle while the diagonal is the

hypotenuse of the right triangle. Using the Pythagorean Theorem,

we get:
$$c^2 = a^2 + b^2$$

 $c^2 = (12)^2 + (5)^2$
 $c^2 = 144 + 25 = 169$
 $c = \pm \sqrt{169} = \pm 13$. So, the diagonal is 13 feet.