Sect 8.4-Circles, Circumference, and Area

Objective a: Basic definitions.
A circle is a set of all points in a plane that are equal distance from a center point. The distance from that center point to a point on the circle is called the radius of the circle. A chord is any line segment whose endpoints are two different points on the circle. If the chord passes through the center of a circle, then it is called the diameter of a circle. Recall that the diameter is twice the radius ($\mathrm{d}=2 \mathrm{r}$). Any part of a circle is called an arc. If the endpoints of an arc also happen to be the endpoints of the diameter of the circle, then it is called a semicircle. A minor arc is smaller than a semicircle while a major arc is larger than a semicircle. The $\operatorname{arc} A B$ is denoted $\widehat{A B}$.

Objective b \& c: The Circumference and Area of a Circle.
When we discuss the "perimeter" of a circle, we call it the circumference of the circle. We find the circumference and area of a circle by using the following formulas:

Circumference of a Circle

If d is the diameter of a circle and r is the radius of the circle, then the circumference, C , of the circle is

$$
C=\pi d \quad \text { or } \quad C=2 \pi r \quad \text { where } \pi \approx 3.1415926535 \ldots
$$

Area of a Circle

If r is the radius of a circle, then the area, A, of the circle is

$$
\mathrm{A}=\pi \mathrm{r}^{2}
$$

Find the circumference and the area of the following:
(For calculations involving π, give both the exact answer and the approximate answer).
Ex. 1

Ex. 2

Solution:
We will use $C=\pi d$ to find the circumference since we are given the diameter:
$C=\pi d=\pi(15.4)=15.4 \pi \mathrm{in}$.
The 15.4π in is are exact answer. To approximate the answer, replace π by ≈ 3.14 : $15.4 \pi \approx 15.4(3.14)=48.356 \mathrm{in}$.

To find the area, first divide
15.4 by 2 to get the radius.
$r=15.4 \div 2=7.7 \mathrm{in}$.
Now use $A=\pi r^{2}$:
$A=\pi(7.7)^{2}=59.29 \pi i n^{2}$. So,
$59.29 \pi \mathrm{in}^{2}$ is the exact answer.

Solution:
We will use C $=2 \pi r$ to find the circumference since we are given the radius:
$C=2 \pi\left(\frac{7}{9}\right)=\frac{2}{1} \pi\left(\frac{7}{9}\right)=\frac{14}{9} \pi \mathrm{~m}$.
The $\frac{14}{9} \pi \mathrm{~m}$ is the exact answer
To approximate the answer, replace π by $\approx \frac{22}{7}$:
$\frac{14}{9} \pi \approx \frac{14}{9}\left(\frac{22}{7}\right)=\frac{2}{9}\left(\frac{22}{1}\right)=\frac{44}{9} \mathrm{~m}$.
To find the area, replace r by $\frac{7}{9}$:
$A=\pi r^{2}=\pi\left(\frac{7}{9}\right)^{2}=\frac{49}{81} \pi m^{2}$.
So, $\frac{49}{81} \pi \mathrm{~m}^{2}$ is the exact answer.
To find the approximate answer, replace π by $\frac{22}{7}$:

To approximate the answer, replace π by 3.14:
59.29т $\approx 59.29(3.14)$
$=186.1706 \mathrm{in}^{2}$

Ex. 3

Solution:
To find the perimeter, we will first need to find the base of the right triangle. Using the Pythagorean Theorem:

$$
\begin{gathered}
(11)^{2}=(8.8)^{2}+b^{2} \\
121=77.44+b^{2} \\
-77.44=-77.44 \\
\hline 43.56=b^{2} \\
b= \pm \sqrt{43.56}= \pm 6.6 \mathrm{~m} .
\end{gathered}
$$

So, the base is 6.6 m .
Next, we will need to find the length of the

semicircle. For a full circle, the circumference is $C=\pi d$. Since we have a semicircle, we will divide our answer by 2 :

$C=\pi d=\pi(8.8)=8.8 \pi m$. Dividing by two, we get: $8.8 \pi \div 2=4.4 \pi \mathrm{~m}$.
Now, we add up the sides :
$P=6.6+11+4.4 \pi=(17.6+4.4 \pi) \mathrm{m}$.
The exact answer is $(17.6+4.4 \pi) \mathrm{m}$. Notice we did not use the 8.8 m since it is not along the outside of the figure. The approximate
 answer is $17.6+4.4 \pi \approx 17.6+4.4(3.14)$
$=17.6+13.816=31.416 \mathrm{~m}$.
For the area, we will add the area of the triangle to the area of the semicircle. Since the diameter of the circle is 8.8 m , its radius is $8.8 \div 2=4.4 \mathrm{~m}$. The area for a circle is $A=\pi r^{2}$, so we will divide the answer by 2 : $\pi r^{2}=\pi(4.4)^{2}=19.36 \pi \mathrm{~m}^{2}$. Dividing by 2 , we get: $19.36 \mathrm{~m} \div 2=9.68 \mathrm{~m} \mathrm{~m}^{2}$. Since the base is 6.6 m and the height is 8.8 m , the area of the

triangle is $\frac{1}{2}(6.6)(8.8)=29.04 \mathrm{~m}^{2}$. Thus, the total area is $(9.68 \pi+29.04) \mathrm{m}^{2}$. The approximate answer is: $9.68 \pi+29.04 \approx 9.68(3.14)+29.04=59.4352 \mathrm{~m}^{2}$.

Find the area of the shaded region:

Ex. 4
0.15 m
0.1 m

Solution:
First convert the meters into centimeters:

$$
\begin{gathered}
0.1 \mathrm{~m}=0.10 \\
\cup \cup
\end{gathered}=10 \mathrm{~cm} \text { and } 0.15 \mathrm{~m}=0.15=15 \mathrm{~cm}
$$

The area of the shade region is equal to the area of the rectangle minus the area of the circle (the radius is $4 \div 2=2 \mathrm{~cm}$) and the area of the triangle:

Solve the following:

Ex. $5 \quad$ For the same price, Rosa can buy three twelve-inch pizzas or two sixteen-inch pizzas. a) Which set of pizzas is the better buy? b) What percent (to the nearest tenth) more pizza does she get with the better buy?

Solution:

a) For pizza, we will need to find the total area of the three 12-in pizzas and compare it to the total area of the two 16 -in pizzas. The set of pizzas with the most area will be the better buy. The size of the pizzas refers to its diameter. So, the radius of the 12 -in pizza is 6 in and the radius of the 16 -in pizza is 8 in . Now, we can calculate the area of each set:

The area of a circle is $A=\pi r^{2}$.
For the medium set of pizzas, we will replace r by 6 in and calculate the area. Since we have three pizzas, we will multiply the answer by three to get the total area:

$$
A=\pi r^{2}=\pi(6)^{2}=36 \pi i n^{2} .
$$

Multiplying by 3 , we get:
$3 \cdot 36 \pi=108 \pi \mathrm{in}^{2}$.
For the large set of pizzas, we will replace r by 8 in and calculate the area. Since we have two pizzas, we will multiply the answer by two to get the total area:

$$
A=\pi r^{2}=\pi(8)^{2}=64 \pi i^{2}
$$

Multiplying by 2, we get:
$2 \cdot 64 \pi=128 \pi \mathrm{in}^{2}$. Since $128 \pi \mathrm{in}^{2}>108 \mathrm{~m} \mathrm{in}^{2}$, the two large pizzas are a better buy.
b) The two large pizzas offer $128 \pi-108 \pi=20 \pi i^{2}$ more area than the three medium pizzas. We want to find what percent of 108π is 20π :

$$
\begin{aligned}
& 20 \pi=P(108 \pi) \quad \\
& 20 \pi=(108 \pi) P \quad \text { (Divide both sides by } 108 \pi) \\
& \underline{20 \pi}=\frac{(108 \pi) P}{108 \pi} \quad \quad \text { (The } \pi \text { 's divide out) } \\
& 108 \pi \\
& P=0.18518 \ldots=18.518 \ldots \% \\
& \approx 18.5 \% .
\end{aligned}
$$

