Review for Test #4 over Ch 12

Work all the problems on a separate piece of paper showing all steps.

Solve the following us	ng the square root property:

1)
$$3x^2 - 11 = 0$$
 2) $(x + \frac{3}{2})^2 - \frac{7}{2} = 0$

Solve the following:

3)
$$8x^3 - 125 = 0$$

5) $2x^2 - 3x - 7 = 0$

7)
$$3x^2 - x + 7 = 0$$

9)
$$0.4x^2 - 0.4x + 0.9 = 0.8$$

11)
$$t^{1/2} + 3t^{1/4} - 4 = 0$$

13) $(3 - \sqrt{x})^2 - 12(3 - \sqrt{x}) - 15 = 0$

15)
$$x^4 + 2x^2 = 35$$

17)
$$w = \frac{km_1m_2}{d^2}$$
 for d (d ≥ 0)

4)
$$6x(x + 2) + 8 = 2x(x - 3)$$

6)
$$x^2 + 4x + 7 = 0$$

$$8) \qquad 12x^2 = 19x + 18$$

10)
$$\frac{5}{3}x^2 - 5x = -4x + \frac{3}{5}$$

12)
$$8(x^2 - 6x)^2 + 18(x^2 - 6x) = 5$$

$$14) \quad x^4 - 4x^3 + 8x - 32 = 0$$

16)
$$\frac{2}{(4x-1)^2} + \frac{8}{(4x-1)} = 12 + \frac{3}{(4x-1)}$$

18) S =
$$\pi r^2 + \pi r h$$
 for r (r ≥ 0)

Solve by completing the square:

19)
$$9x^2 + 18x + 8 = 0$$
20) $3x^2 + 5x - 2 = 0$ 21) $x^2 - 5x = -11$ 22) $\frac{1}{2}x^2 - 2x = -3$

Use the discrimnant to determine the type of solutions and how many solutions exist:

23) $2x^2 - x - 10 = 0$ 24) $3x^2 - 6x + 5 = 0$ 25) $x^2 + 5x = 11$ 26) $3x^2 - \frac{5}{2}x + \frac{1}{2} = 0$

Find the vertex, the axis of symmetry, the intercepts, and the sketch the graph of the following:

27)
$$h(x) = -2(x + \frac{1}{2})^2 + 2$$

28) $g(x) = \frac{1}{2}(x - 2)^2 - 3$
29) $y = 9x^2 + 6x + 4$
30) $f(x) = -2x^2 + 5x + 3$

Sketch the graph of the following:

31)
$$f(x) = 2 | x + 1 | -3$$
 32) $g(x) = -\frac{1}{3} | x - 3 | +6$

Given the graphs below, write the equation:

Set-up the equation(s) and Solve the following:

35) A rancher needs to enclose two adjacent rectangular corrals, one for sheep and one for cattle. A river forms one side of the corrals. If 480 yards of fencing is available, what is the largest total area that can be enclosed?

ed?		
	 	l

River

36) What is the minimum product of two numbers that differ by 10? What are the numbers?

37) The supply and demand functions for a certain commodity are $Q = 0.2p^2 + p + 50$ and $Q = -0.1p^2 + 90$ respectively where p is the price of the commodity and Q is the number of units. Find the equilibrium price and the corresponding number of units supplied and demanded by finding where these functions intersect.

Answers:

1) The solutions are
$$\left\{-\frac{\sqrt{33}}{3}, \frac{\sqrt{33}}{3}\right\}$$
.
2) The solutions are $\left\{\frac{-3-\sqrt{14}}{2}, \frac{-3+\sqrt{14}}{2}\right\}$.
3) The solutions are $\left\{\frac{-5-5i\sqrt{3}}{4}, \frac{-5+5i\sqrt{3}}{4}, 2.5\right\}$.
4) The solutions are $\left\{-4, -0.5\right\}$.
5) The solutions are $\left\{\frac{3-\sqrt{65}}{4}, \frac{3+\sqrt{65}}{4}\right\}$.
6) The solutions are $\left\{-2 - i\sqrt{3}, -2 + i\sqrt{3}\right\}$.
7) The solutions are $\left\{-\frac{2}{3}, \frac{9}{4}\right\}$.
9) The solution is $\{0.5\}$.
10) The solutions are $\left\{-\frac{2}{3}, \frac{9}{4}\right\}$.
9) The solution is $\{0.5\}$.
10) The solutions are $\left\{-\frac{3-\sqrt{5}}{10}, \frac{3+3\sqrt{5}}{10}\right\}$.
11) The solution is $\{1\}$.
12) The solutions are $\left\{\frac{3-3\sqrt{5}}{10}, \frac{3+3\sqrt{5}}{10}\right\}$.
13) The solution is $\{60 - 6\sqrt{51}\}$.
14) The solutions are $\left\{\frac{1-i\sqrt{3}}{2}, \frac{6-\sqrt{26}}{2}, \frac{6+\sqrt{26}}{2}, \frac{6+\sqrt{37}}{2}\right\}$.
15) The solutions are $\left\{\frac{1}{16}, \frac{5}{12}\right\}$.
17) $d = \sqrt{\frac{km_1m_2}{w}}$.
18) $r = \frac{-\pi h + \sqrt{\pi^2 h^2 + 4\pi S}}{2\pi}$.
19) The solutions are $\left\{-\frac{4}{3}, -\frac{2}{3}\right\}$.
20) The solutions are $\left\{-2, \frac{1}{3}\right\}$.
21) The solutions are $\left\{2 - i\sqrt{2}, 2 + i\sqrt{2}\right\}$.
22) The solutions are $\left\{2 - i\sqrt{2}, 2 + i\sqrt{2}\right\}$.
23) There are two real rational zeros.
24) There are two complex (not real) conjugates zeros.

- 25) There are two real irrational zeros.
- 26) There are two real rational zeros.
- 27) Vertex: $(-\frac{1}{2}, 2)$ Axis of Symmetry: $x = -\frac{1}{2}$ x-intercepts: (-1.5, 0) & (0.5, 0)

28) Vertex: (2, -3)

Axis of Symmetry: x = 2x-intercepts: $(2 + \sqrt{6}, 0)$

$$\begin{array}{c} (2 - \sqrt{6}, 0) \\ (2 - \sqrt{6}, 0) \end{array}$$

y-intercepts: (0, -1)

35) The maximum area is 19,200 yd^2

36) The product will be a minimum of -25 when the numbers are -5 & 5.

37) Eighty units of the commodity are sold at \$10 per unit.