Formulas for the MCAT

Note: The AAMC does not indicate which formulas should be memorized. This is a list of most of the formulas needed for the MCAT; however, it may not be exhaustive. Examinees should understand these formulas, but not all of them need to be memorized. Judgement should be used in deciding which to memorize. The ones that certainly should be memorized are in bold face.

General Chemistry

Number of moles $=$ mass in grams $/$ molecular weight
$\mathbf{P V}=\mathbf{n R T}$
$K E \propto T$
$\mathrm{v} \propto \sqrt{ }(\mathrm{T} / \mathrm{mw})$
$P_{T}=P_{1}+P_{2}+P_{3}+\ldots$
$\mathrm{P}=$ mole fraction of solvent x Po
$\Delta \mathrm{P}=$ mole fraction of solute $\times \mathrm{Po}$
$\Delta \mathrm{T}_{\mathrm{BP}}=\mathrm{k}_{\mathrm{b}}$ (molality of solute particles)
$\Delta T_{F P}=-k_{f}$ (molality of solute particles)
Osmotic Pressure $=$ RT [molarity of solute particles]
$\mathbf{p H}=-\log _{10}\left[\mathbf{H}^{+}\right] \quad \mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right) \quad \mathrm{pK}_{\mathrm{w}}=14$
$\mathbf{K}_{\mathrm{a}}=\left[\mathbf{H}^{+}\right]\left[\mathbf{A}^{-}\right] /[\mathbf{H A}]$
$\mathrm{K}_{\mathrm{b}}=[\mathrm{HA}]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{A}^{-}\right]$
$K_{a} K_{b}=K_{w}=10^{-14}$
$\mathbf{p} \mathrm{K}_{\mathrm{a}}=-\log _{10} \mathrm{~K}_{\mathrm{a}} \quad \mathrm{pK}=-\log _{10} \mathrm{~K}_{\mathrm{b}}$
$\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=\mathrm{pK}_{\mathrm{w}}=14$
$\mathbf{p H}=\mathbf{p K} \mathrm{a}_{\mathrm{a}}+\log _{10}\left[\mathrm{~A}^{-}\right] /[\mathrm{HA}]$
$\Delta E=q+w$
$\Delta G=\Delta H-T \Delta S$
$\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}$
$K_{\text {eq }}=\mathrm{e}^{\Delta \mathrm{G}^{\prime} / \text { RT }}$
$\mathrm{E}=\mathrm{E}^{\circ}-(\mathrm{RT} / \mathrm{nF}) \ln \mathrm{Q}=\mathrm{E}^{\circ}-(0.026 / \mathrm{n}) \ln \mathrm{Q}$
$K_{\mathrm{eq}}=\mathrm{e}^{\mathrm{nEE} \% \mathrm{RT}}$
$\Delta \mathrm{G}^{\circ}=-\mathrm{nFE}^{\circ}$
Moles $=\mathrm{It} / \mathrm{nF}$
0 order reaction:
$\mathrm{dA} / \mathrm{dt}=\mathrm{k}$
$A_{t}=A_{0}-k t$
1st order reaction:
$\mathrm{dA} / \mathrm{dt}=\mathrm{kA}$
$A_{t}=A_{0} e^{-k t}$
2nd order reaction:
$\mathrm{dA} / \mathrm{dt}=\mathrm{kA}^{2}$
$1 / \mathrm{A}_{\mathrm{t}}=\left(1 / \mathrm{A}_{0}\right)+\mathrm{kt}$

Physics

Biology

$p^{2}+2 p q+q^{2}=1$
Number of different gamete genotypes $=2^{\text {n }}$
Maximum number of stereoisomers with n stereogenic centers $=2^{n}$

