Características clínicas de Errores congénitos del metabolismo en R. Nacido

Gregory M. Enns and Seymour Packman, 

Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA.    

 (NeoReviews. 2001;2:E183-e191.) 

 

Traducción Dr Gerardo Flores H                                                 Página en trabajo

 

Introducción: en cualquier niño con dificultad de alimentación , vómitos, ictericia, falla de crecimiento, apnea ó taquipnea, hipotonía o hipertonía, convulsiones, letargia ó coma debe considerarse alguna de las siguientes  enfermedadess: 

  •       infección ,

  •      disfunción cardiopulmonar u otras causas de hipoxemia

  •       toxinas

  •       trauma

  •       anomalías cerebrales congénitas estructurales ó  

  •       error congénito del metabolismo. 

 

Incidencia: 

  • La incidencia sumada de errores congénitos del metabolismo es de hasta 1 niño cada 1.000 nacimientos. 

  • En muchos casos solo el rápido diagnóstico y manejo pueden prevenir la muerte ó importante morbilidad. 

  • Deben realizarse inmediatamente exámenes de laboratorio como gases sanguíneos,  glicemia, electrolitos, lactato, amonio, cuerpos cetónicos en orina.

 

Herencia:

 

    +  La mayoría se heredan como rasgos autosómicos recesivos

   + Algunos son ligados al cromosoma X (Ej; deficiencia de transcarbamilasa de ornitina)

 

 

Diagnóstico

 

  • Historia familiar detallada puede revelar un familiar afectado con enfermedad similar .

  • El familiar afectado es pariente del mismo sexo (autosómica recesiva) ó una madre u otra mujer levemente afectadas en enfermedad ligada al sexo. 

  • Algunas patologías son causadas por mutaciones del DNA mitocondrial y se observa la transmisión materna a todos sus niños .

  •  Debe prestarse especial atención a mortinatos , muertes inexplicadas, y enfermedades neurológicas ó desarrollo retrasado de algún grado o severidad.

  •  La enfermedad materna en el embarazo tambien se ha asociado con enfermedades metabólicas específicas . Por ejemplo hígado graso agudo del embarazo e hipertensión, enzimas hepáticas elevadas , trombocitopenia (HELLP) pueden ocurrir en una madre heterocigota portadora de un feto con deficiencia de cadena larga 3-hidroxiacyl-CoA deshidrogenasa (LCHAD) . 

 

Signos y síntomas:

  • Los síntomas generalmente ocurren postnatalmente después de un intervalo de aparente buena salud después de un embarazo normal. 

  • El intervalo puede ser tan corto como pocas horas ó puede ser de varios días o más largo.

  • El niño puede estar bien hasta que sufre un insulto catabólico (infección, ayuno, deshidratación) o una carga proteica o de carbohidratos excesiva.

  •   La irritabilidad y dificultad de alimentación pueden asociarse con succión descoordinada y sudoración ó tono muscular anormal.

  •   Pueden ocurrir vómitos severos y persistentes y convulsiones. 

  • Estas pueden incluir staring spells, eye rolling or myoclonus y diversas combinaciones de anomalías del tono , temblores, letargia y llanto débil.  

  • Los niños más severamente afectados progresan de letargia a coma a episodios de apnea y muerte . 

  • A menos que se sospeche de un error congénito del metabolismo el niño puede ser mal diagnosticado como encefalopatía hipóxico isquémica, hemorragia intraventricular,  sepsis, insuficiencia cardíaca ó enfermedad gastrointestinal como estenosis pilórica u obstrucción intestinal .  

  • Sepsis por Escherichia coli es frecuente en niños con galactosemia y la anorexia e ictericia de esta patología pueden atribuirse incorrectamente solo a sepsis . 

  • Hemorragia pulmonary ó alcalosis respiratoria primaria pueden verse en defectos del ciclo de la urea 

  • Electroencefalografía puede sugerir encefalopatía difusa no específica.  

 

Hallazgos físicos: 

  • Es esencial un examen ocular detallado  (Table 1). 

  • Puede haber hepatomegalia en alteraciones del metabolismo de carbohidratos (galactosemia, glicogenosis, intolerancia hereditaria fructosa), peroxisomal disorders, tirosinemia, enfermedad Niemann-Pick , enfermedad Gaucher , inborn errors of bile acid metabolism, neonatal hemochromatosis, some forms of congenital lactic acidosis (mitochondrial respiratory chain defects), and other organic acidemias and fatty acid oxidation defects that may have a Reye syndrome-like presentation.

  • Abnormal, brittle hair may be seen in some urea cycle defects (argininosuccinic aciduria, citrullinemia), holocarboxylase synthetase deficiency, and Menkes syndrome (pili torti).

  • Un olor inusual de la orina puede ser asociado con estas enfermedades (Table 2). 

  • Ketosis acompaña muchas de estas condiciones con el olor dulce de los cuerpos cetónicos en orina. 

  • Un color urinario inusual tambien puede señalar alguno de estos errores (Table 3). 

Encefalopatía sin acidosis metabólica

  • Algunos errores congénitos del metabolismo se asocian con encefalopatía ó convulsiones aisladas en período neonatal  (Table 4 ).  

  • If the degree of encephalopathy appears greater than would be expected from careful review of the perinatal history, an inborn error should be considered strongly.

 

Maple Syrup Urine Disease (MSUD): Infants who have MSUD typically develop symptoms in the first few days to weeks of life after appearing normal at birth. Poor feeding and vomiting may be the initial symptoms, but lethargy and progressive neurologic deterioration supervene. The child may be hypotonic or appear markedly hypertonic with opisthotonus. Not all infants develop a "maple syrup" smell. Although ketosis is prominent, metabolic acidosis is not often present until later in the course of disease.

Mevalonic Aciduria: Mevalonic aciduria is a disorder of cholesterol biosynthesis that usually is not associated with metabolic acidosis. Severe neurologic involvement may occur in neonates, but patients often have other findings, such as dysmorphic features, hepatosplenomegaly, recurrent fevers, and anemia.  

Urea Cycle Defects
The early clinical course of patients who have urea cycle defects is similar to that in MSUD, except that hypotonia typically is more severe, and a respiratory alkalosis is common. Severe hyperammonemia is the hallmark of these conditions. However, sepsis often is suspected initially, and unless an ammonia level is evaluated, these infants may die of unknown cause early in the newborn period. Aside from the X-linked ornithine transcarbamylase deficiency, these are autosomal recessive disorders. Transient hyperammonemia of the newborn (THAN) is an important consideration in the differential diagnosis of these conditions. THAN tends to occur in the first day of life; urea cycle disorders typically present after 1 or 2 days. Other inborn errors, including pyruvate carboxylase deficiency, organic acidemias, fatty acid oxidation defects, lysinuric protein intolerance, and the hyperammonemia-hyperornithinemia-homocitrullinuria syndrome, can cause marked hyperammonemia by secondary inhibition of urea cycle function. Standard metabolic investigations are usually sufficient to diagnose these conditions.  

Peroxisomal Disorders
Infants who have peroxisomal disorders (Zellweger syndrome, neonatal adrenoleukodystrophy) often exhibit severe neonatal features, including craniofacial dysmorphism, neuronal migration defects, pigmentary retinopathy, profound hypotonia, seizures, hepatomegaly, jaundice, and renal cysts. Short limbs, joint contractures, and epiphyseal stippling are characteristic of rhizomelic chondrodysplasia punctata. Evidence of hepatocellular dysfunction is common.  

 

Isolated Seizures
A growing list of metabolic disorders are associated with isolated seizures or progressive encephalopathy without obvious biochemical abnormalities on routine metabolic screening (Table 4
). It is important to save a sample of cerebrospinal fluid (CSF) for specialized testing in case a common cause for neonatal seizures is not identified. Approximately two thirds of patients who have nonketotic hyperglycinemia exhibit symptoms within 48 hours of delivery. Infants typically present with lethargy, apnea, profound hypotonia, feeding difficulty, hiccups, and intractable seizures. The only consistent abnormalities are elevated urine, plasma, and CSF glycine levels. A CSF-to-plasma glycine ratio of greater than 0.08 confirms the diagnosis. CSF and blood samples for glycine analysis must be obtained as near to simultaneously as possible for accurate calculation of the glycine ratio. Sulfite oxidase deficiency may occur in isolation or combined with xanthine oxidase deficiency. The combined defects are secondary to molybdenum cofactor deficiency. Patients have seizures that are recalcitrant to therapy starting in the first few days of life. A low uric acid level may be noted in molybdenum cofactor deficiency, but other laboratory findings are normal. A specific assay for elevation of plasma or urine S-sulfocysteine is required to make the diagnosis. Infants who have pyridoxine-dependent seizures may present as early as the first day of life with flaccidity, abnormal eye movements, and irritability. The diagnosis is clinical and is based on documented response of seizures to intravenous pyridoxine (vitamin B6). The enzyme 4-aminobutyrate aminotransferase (GABA transaminase) catalyzes the initial step in the conversion of GABA, a central nervous system inhibitory neurotransmitter, to succinic acid. Elevated GABA concentrations in the central nervous system result in neonatal seizures, lethargy, hypotonia, hyperreflexia, and a high-pitched cry. Folinic acid-responsive seizures is a newly described disease of unknown etiology. Seizures occur as early as 2 hours after birth.

High-performance liquid chromatography documents a characteristic peak. Infants respond to folinic acid supplementation. Patients who have guanidinoacetate methyltransferase deficiency, a recently identified disorder of creatine metabolism, usually present in infancy with seizures, developmental delay, and extrapyramidal signs, but symptoms have been described in neonates. Low plasma creatinine levels and elevated guanidinoacetate are characteristic. A reduced CSF glucose concentration (hypoglycorrhachia) is present in the GLUT-1 deficiency syndrome (glucose transporter defect). This autosomal dominant disorder causes severe clinical symptoms, including seizures, acquired microcephaly, and developmental delay. Patients have become symptomatic as early as the third week of life, but it is unclear whether symptoms may occur earlier because of the paucity of reported cases.  

Encephalopathy With Metabolic Acidosis

Inborn errors of metabolism that are characterized by a nonspecific encephalopathy with associated metabolic acidosis include organic acidemias, fatty acid oxidation defects, and primary congential lactic acidoses (Table 5). Distinctive clinical features are often absent.  

Tabla 5.- Errores congénitos del metabolismo asociados con Encefalopatía con Acidosis metabólica.

Organic acidemias that present in the newborn period with encephalopathy and severe metabolic acidosis are virtually indistinguishable clinically. Hyperammonemia may be severe, with ammonia levels similar to those encountered in urea cycle disorders. In addition, neutropenia and thrombocytopenia are common, and sepsis or a bleeding diathesis may supervene. Distinctive odors may be present in some of these conditions (Table 2), but often only the nonspecific sweet smell of ketone bodies is noticeable.

Fatty acid oxidation disorders may have a Reye syndrome-like presentation. Approximately 5% to 10% of unexplained sudden infant deaths may be attributed to these conditions. Although encephalopathy may dominate the clinical picture, multiorgan system involvement is common, with infants showing various degrees of cardiac, skeletal muscle, ophthalmologic, and hepatic involvement. Hyperammonemia and lactic acidosis may occur. Cardiomyopathy is particularly common in long-chain defects (Table 6 ). Hepatomegaly and hepatocellular dysfunction are typical of these conditions when they occur in neonates. A pigmentary retinopathy is often present in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency, but it tends to develop later in childhood.

 

Cardiomyopathy may be present in other inborn errors of metabolism, including organic acidemias, tyrosinemia, congenital disorders of glycosylation, and other lysosomal storage disorders, but tends to occur after the newborn period. Disorders of pyruvate metabolism and mitochondrial disorders may cause congenital lactic acidosis. Many infants who have pyruvate dehydrogenase deficiency exhibit dysmorphic features. Brain abnormalities, including cerebral and cerebellar atrophy, agenesis of the corpus callosum, and Leigh syndrome, may be present. Patients who have the neonatal form of pyruvate carboxylase deficiency have hepatomegaly, hyperammonemia, citrullinemia, and ketosis. Infants who have mitochondrial disease often have lactic acidosis with an elevated lactate-to-pyruvate ratio. Virtually any organ system may be affected, either in isolation or in any combination, in patients who have mitochondrial disease. However, involvement of the neuromuscular systems is especially common.

Cardiomyopathy : Long-chain fatty acid oxidation defects are a significant cause of neonatal cardiomyopathy. Although cardiomyopathy may occur in mitochondrial disorders, onset is often in early infancy. The infantile form of Pompe disease presents between birth and 6 months of age with muscle weakness and a rapidly progressive cardiomyopathy. Electrocardiography may show very large QRS complexes and a short PR interval due to the electrical conductive properties of glycogen. Phosphorylase b kinase deficiency is another glycogen storage disorder that rarely causes cardiomyopathy. Several of the lysosomal storage disorders may be associated with cardiomyopathy, but this tends to develop after the newborn period (Table 6 ).

Liver Disease: Neonates who have classic galactosemia often have a history of persistent hyperbilirubinemia, hepatomegaly, and hepatocellular dysfunction. The hyperbilirubinemia tends to be unconjugated initially, but it becomes mostly conjugated in later untreated disease. Patients who have alpha-1-antitrypsin deficiency also may exhibit persistent neonatal jaundice that may progress to cirrhosis over several months. Severe hepatocellular dysfunction is common in fatty acid oxidation defects and is characteristic of hereditary tyrosinemia type I and neonatal hemochromatosis. Hereditary fructose intolerance may present in the newborn period with acute liver dysfunction if an affected infant is exposed to fructose. Hepatomegaly associated with hypoglycemia (without encephalopathy) is characteristic of glycogen storage disease type I and some disorders of gluconeogenesis. Causes of neonatal liver disease are shown in Table 7

 

Dysmorphic Features: An increasing number of inborn errors are being recognized that may be associated with dysmorphic features (Table 8 ). Infants who have peroxisomal disorders may have striking facial dysmorphism and structural anomalies. Pyruvate dehydrogenase deficiency, cholesterol biosynthetic disorders (mevalonic aciduria, Smith-Lemli-Opitz syndrome), 3-hydroxyisobutyric aciduria, multiple acyl-CoA dehydrogenase deficiency (glutaric aciduria type II), D-2-hydroxyglutaric aciduria, and mitochondrial disorders also may be associated with dysmorphic features. Children who have congenital disorders of glycosylation (formerly carbohydrate deficient glycoprotein syndrome) typically exhibit inverted nipples and an unusual distribution of fat, often with suprailiac fat pads and buttock lipodystrophy. The coarse features characteristic of lysosomal storage disorders usually evolve in infancy and early childhood, but some of these conditions may present in the neonatal period with hydrops. Therefore, the presence of dysmorphic features does not exclude an inborn error of metabolism from diagnostic consideration.  

Nonimmune Fetal Hydrops:Inborn errors of metabolism may be associated with nonimmune fetal hydrops (Table 9 ). Although the association of metabolic disorders that cause anemia with fetal hydrops is clear, the cause of the massive generalized edema that may accompany many of these conditions remains obscure.


RESUMEN: In aggregate, inborn errors of metabolism are a significant cause of neonatal distress. A presumptive diagnosis, or at least a narrow differential diagnosis, may be apparent after taking into account family history, clinical features, and results of basic laboratory studies. The consideration of these conditions in any infant who has nonspecific signs of distress may lead to rapid diagnosis and provide the best chance of decreasing the morbidity and mortality associated with metabolic diseases.