
Differential Power Analysis of HMAC based on

SHA-2, and Countermeasures

Robert McEvoy, Michael Tunstall, Colin C. Murphy, and William P. Marnane

Department of Electrical & Electronic Engineering, University College Cork, Ireland
{robertmce,miket,cmurphy,liam}@eleceng.ucc.ie

Abstract. The HMAC algorithm is widely used to provide authenti-
cation and message integrity to digital communications. However, if the
HMAC algorithm is implemented in embedded hardware, it is vulnerable
to side-channel attacks. In this paper, we describe a DPA attack strategy
for the HMAC algorithm, based on the SHA-2 hash function family. Us-
ing an implementation on a commercial FPGA board, we show that such
attacks are practical in reality. In addition, we present a masked imple-
mentation of the algorithm, which is designed to counteract first-order
DPA attacks.

1 Introduction

In today’s modern society of e-mail, internet banking, online shopping and other
sensitive digital communications, cryptography has become a vital tool for en-
suring the privacy of data transfers. To this end, Message Authentication Code
(MAC) algorithms are used to verify the identity of the sender and receiver, and
to ensure the integrity of the transmitted message. These algorithms process the
message to be authenticated along with a secret key, which is shared between the
sender and receiver. The result is a short string of bits, called a MAC. HMAC [1]
is a popular type of MAC algorithm which is used in the IPsec [14] and TLS
protocols [6], and is based on a cryptographic hash function such as SHA-2 [16].

The last decade has also seen the emergence of attacks which target cryp-
tographic algorithms that are implemented in embedded hardware [9]. Of par-
ticular interest are differential side-channel attacks, such as Differential Power
Analysis (DPA) [12]. These non-invasive attacks exploit information that leaks
from a cryptographic device via some side channel, such as timing information,
power consumption, or electromagnetic emanations. Comparing small variations
in the side-channel information as a device processes different messages can po-
tentially allow an attacker to recover secret information stored within the device.
In this paper, we examine the susceptibility to differential side-channel attacks
of the HMAC algorithm based on the SHA-2 family of hash functions.

Side-channel attacks on hash functions and the HMAC algorithm have been
discussed in the past, but specific attack details for the SHA-2 family have not
been given, nor have countermeasures been designed. In 2001, Steinwandt et
al. [21] presented a theoretical attack on the SFLASH signature scheme, which

targeted an exclusive-OR (XOR) operation in SHA-1. Coron and Tchoulkine [5]
noted the vulnerability of the HMAC algorithm to a DPA attack. Lemke et
al. [10] described a theoretical DPA attack on the HMAC algorithm based on the
hash function RIPEMD-160, noting that a similar approach could be taken for a
HMAC scheme based on SHA-1. Okeya et al. [18, 19] highlight the susceptibility
of MAC and HMAC algorithms to side-channel attacks, but the exposition is for
the HMAC algorithm based on block-cipher based hash functions, in contrast
with SHA-2, which is a dedicated cryptographic hash function.

In this paper, we characterise a differential side-channel attack on an imple-
mentation of the HMAC algorithm that uses the SHA-2 hash function family.
Furthermore, we provide attack results on a FPGA implementation of the al-
gorithm. We also describe countermeasures that could be used to prevent such
side-channel attacks, by designing masked circuits for the vulnerable SHA-2 op-
erations. The rest of this paper is organised as follows. In Section 2, the necessary
background theory regarding the HMAC algorithm, the SHA-2 family, and DPA
attacks is introduced. Section 3 gives a detailed account of how the SHA-256
based HMAC scheme can be broken by a side-channel attacker. Results from a
practical FPGA-based implementation of this attack are presented in Section 4.
In Section 5, a masking scheme is designed as a countermeasure against the
attack, and the resulting FPGA-based scheme is tested in Section 6. Section 7
concludes the paper.

2 Background Theory

2.1 HMAC Algorithm Overview

The HMAC authentication scheme was first introduced by Bellare et al. at
CRYPTO’96 [1]. The scheme was designed such that the security of the MAC is
built upon the security of the underlying hash function h. The MAC is calculated
as follows:

HMACk(m) = h((k ⊕ opad)||h((k ⊕ ipad)||m)) (1)

where k is the secret key (padded with zeros to equal the block size of h), and
m is the message to be authenticated. ipad is a fixed string whose length equals
the block size of h; generated by repeating the hexadecimal byte 0x36. Similarly,
opad is fixed and is formed by repeating the hexadecimal byte 0x5C. ⊕ and ||
denote XOR and concatenation respectively.

Clearly, in order to calculate HMACk(m), the hash function h must be in-
voked twice. In this paper, we focus on the first call to the hash function, which
calculates the partial MAC:

HMAC′

k(m) = h((k ⊕ ipad)||m) (2)

In [1], the authors suggested using MD5 or SHA-1 to instantiate the hash
function h. In 2002, the HMAC algorithm was released as a standard by NIST [17],
in which h is defined as a NIST-approved hash function. In this paper, we ad-
here to this standard and choose SHA-256 to instantiate h. This follows a recent

trend in the cryptographic community away from older hash functions, for which
weaknesses have been identified [11], and towards newer constructions like the
SHA-2 family [16]. We use the term “HMAC-SHA-256” to denote the HMAC
algorithm that uses SHA-256 to instantiate h.

2.2 SHA-256 Description

There are four hash functions in the SHA-2 family: SHA-224, SHA-256, SHA-
384 and SHA-512. Each algorithm generates a fixed-length hash value; SHA-224
produces a 224-bit output, SHA-256 has a 256-bit output, etc. The compression
functions in SHA-224 and SHA-256 are based on 32-bit operations, whereas the
compression functions for SHA-384 and SHA-512 are based on 64-bit operations.
We focus on SHA-256 in our attacks, because it is easier in practice to perform a
side-channel attack on a 32-bit word than on a 64-bit word. However, in theory,
the side-channel attacks and countermeasures described in this paper should also
be applicable to HMAC-SHA-384 and HMAC-SHA-512.

The SHA-256 algorithm essentially consists of three stages: (i) message padding
and parsing; (ii) expansion; and (iii) compression.

Message Padding and Parsing The binary message to be processed is ap-
pended with a ‘1’ and padded with zeros until its bit length ≡ 448 mod 512.
The original message length is then appended as a 64-bit binary number. The
resultant padded message is parsed into N 512-bit blocks, denoted M (i), for
1 ≤ i ≤ N . These M (i) message blocks are passed individually to the message
expansion stage.

Message Expansion The functions in the SHA-256 algorithm operate on 32-
bit words, so each 512-bit M (i) block from the padding stage is viewed as sixteen

32-bit blocks denoted M
(i)
t , 1 ≤ t ≤ 16. The message expansion stage (also called

the message scheduling stage) takes each M (i) and expands it into sixty-four 32-
bit Wt blocks for 1 ≤ t ≤ 64, according to equations given in [16].

Message Compression The Wt words from the message expansion stage are
then passed to the SHA compression function, or the ‘SHA core’. The core
utilises eight 32-bit working variables labelled A, B, . . . , H , which are initialised

to predefined values H
(0)
0 –H

(0)
7 (given in [16]) at the start of each call to the hash

function. Sixty-four iterations of the compression function are then performed,
given by:

A = T 1 ⊞ T 2 (3)

B = A (4)

C = B (5)

D = C (6)

E = D ⊞ T 1 (7)

F = E (8)

G = F (9)

H = G (10)

where
T 1 = H ⊞

∑

1
(E) ⊞ Ch(E, F, G) ⊞ Kt ⊞ Wt (11)

T 2 =
∑

0
(A) ⊞ Maj(A, B, C) (12)

Ch(x, y, z) = (x ∧ y) ⊕ (x̄ ∧ z) (13)

Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z) (14)
∑

0
(x) = ROT2(x) ⊕ ROT13(x) ⊕ ROT22(x) (15)

∑

1
(x) = ROT6(x) ⊕ ROT11(x) ⊕ ROT25(x) (16)

and the inputs denoted Kt are 64 32-bit constants, specified in [16]. All additions
in the SHA-256 algorithm are computed modulo 232, denoted by ⊞. The logical
AND operator is denoted by ∧, and x̄ denotes the logical NOT operator. After
64 iterations of the compression function, a 256-bit intermediate hash value H(i),

comprising H
(i)
0 –H

(i)
7 , is calculated:

H
(i)
0 = A ⊞ H

(i−1)
0 , H

(i)
1 = B ⊞ H

(i−1)
1 , . . . , H

(i)
7 = H ⊞ H

(i−1)
7 (17)

The SHA-256 compression algorithm then repeats and begins processing an-
other 512-bit block from the message padder. After all N data blocks have been
processed, the output, H(N), is formed by concatenating the final hash values:

H(N) = H
(N)
0 || H

(N)
1 || H

(N)
2 || . . . || H

(N)
7 (18)

2.3 Differential Side-Channel Analysis

Some of the most common forms of side-channel analysis are Differential Power
Analysis (DPA) [9] and related attacks such as Correlation Power Analysis
(CPA) [2]. In this type of attack, a series of power consumption traces are ac-
quired using an oscilloscope, where each trace has a known associated input
(e.g. the message block being processed). A comprehensive guide to this class of
attacks is provided in [12].

The fundamental principle behind all DPA attacks is that at some point in
an algorithm’s execution, a function f exists that combines a fixed secret value
with a variable which an attacker knows. An attacker can form hypotheses about
the fixed secret value, and compute the corresponding output values of f by
using an appropriate leakage model, such as the Hamming Distance model [2].
The attacker can then use the acquired power consumption traces to verify
her hypotheses, by partitioning the acquisitions or using Pearson’s correlation
coefficient. These side-channel analysis attacks are aided by knowledge of details
of the implementation under attack. Moreover, these attacks can be used to
validate hypotheses about implementation details. In subsequent sections, these
side-channel analysis attacks are referred to as DPA attacks.

3 Attacking HMAC-SHA-256

In this section, we describe an attack on HMAC-SHA-256 using DPA. This attack
does not allow recovery of the secret key itself, but rather a secret intermediate
state of the SHA-256 hash function. Knowledge of this intermediate state would
allow an attacker to forge MACs for arbitrary messages. We note that the attack
is not limited to DPA, and other side-channels, such as the electromagnetic side-
channel, could also be used.

3.1 Goal of the attack

We assume that the attacker has access to a device that performs the HMAC
algorithm, and that she has knowledge of the messages being processed by the
device. This target device contains a basic implementation of the SHA-256 algo-
rithm, and does not include any side-channel analysis countermeasures. Further-
more, we assume that the attacker has access to some side-channel information
(e.g. the power consumption) while the device is calculating the MAC, which
leaks the Hamming Distance between the internal signals as they change from
one state to the next. As is common, we assume that the secret key is stored in
a secure environment, which does not leak side-channel information.

The attack focuses on the first execution of SHA-256, given in equation (2).
The block size of SHA-256 is 512 bits; therefore, using the notation from Sec-
tion 2.2, |k| = |ipad| = 512. Without loss of generality, we can assume that the
size of the message m is such that N = 2, i.e. the device will run through the 64
iterations of the compression function twice, in order to calculate equation (2).

When i = 1, the hash function is operating on (k ⊕ ipad), which clearly
does not change from one execution of the HMAC algorithm to the next. Hence,
the intermediate hash H(1) is also fixed and unknown. Recall that in order to
perform a differential side-channel attack, we require fixed unknown data to
be combined with variable known data. This criterion is fulfilled during the
calculation of H(2), when the variable m is introduced and combined with the
previous intermediate hash H(1). Therefore, in theory, a differential side-channel
attack could be launched on a device calculating equation (2), in order to recover
H(1). This knowledge would allow the attacker to create partial MACs of her
choice. Reapplying the side-channel attack on the second invocation of SHA-
256 in the HMAC algorithm would allow the attacker to forge full MACs for
messages of her choosing. Consequently, the goal of the attacker is to recover the
secret intermediate hash value H(1).

3.2 Attack strategy

The secret intermediate hash H(1) manifests itself as the initial values of the eight
32-bit working variables A–H , when i = 2. We use the subscript t, 1 ≤ t ≤ 64 to
denote the round number, e.g. A1 refers to the value of A at the start of round 1
of the compression function, etc. The side-channel attacker’s goal is to uncover
the eight variables A1–H1. A strategy for such an attack is now described.

1. With reference to equations (3) and (7), it is clear that at some point in the
first round, the variable T 11 must be calculated. T 1t is a large sum with 5
terms, and can be re-written as:

T 1t = θt ⊞ Wt (19)

where
θt = Ht ⊞

∑

1
(Et) ⊞ Ch(Et, Ft, Gt) ⊞ Kt (20)

In round 1, θ1 is fixed and unknown, and W1 is known by the attacker,
since it is related to m. Therefore, a DPA attack can be launched by making
hypotheses about θ1, and computing the corresponding values of T 11. Since
SHA-256 uses 32-bit words, 232 hypotheses for θ1 are required. Furthermore,
since we assume that the target device leaks the Hamming Distance (HD),
the 232 possibilities for the previous state, T 10, must also be taken into
account. Therefore, the attacker correlates the power traces with her 264

hypotheses for HD(T 10, T 11). This allows the attacker to recover T 10 and
θ1, and then calculate T 11 for any message m.
Clearly, correlating with 264 hypotheses would be computationally infeasi-
ble, even for well-resourced attackers. In Section 3.3, we describe how the
Partial CPA technique [22] can be used to significantly reduce the attack’s
complexity.

2. The above attack stage gives the attacker control over the value of T 11, so
it is now a known variable. Using equation (7), the attacker can now make
hypotheses on the (fixed) bits of D1, using the bits of E2 as selection bits.
Using the Hamming Distance model, hypotheses for the previous (secret)
state E1 are also generated. In this way, the attacker can recover her first
secrets, D1 and E1, and accurately predict the value of E2 for any message
m.

3. Focusing on equation (3), we observe that T 11 is variable and known, whereas
T 21 is fixed and unknown. The attacker can launch a DPA attack on A2 by
forming hypotheses about T 21 and the previous state A1. Hence, the secret
value of A1 is revealed. Furthermore, with knowledge of both T 11 and T 21,
the attacker can now accurately predict A2 for any message m.
Therefore, by analysing the side-channel signals from the first round, the
attacker can recover the fixed secret values of θ1, D1, E1, T 21 and A1, and
also predict the values of variables T 11, A2 and E2.

4. The attacker now turns her attention to the second SHA-256 round. Here,
the Ch function is calculated as:

Ch(E2, F2, G2) = (E2 ∧ F2) ⊕ (E2 ∧ G2) (21)

where E2 is variable, and known by the attacker. From equations (8) and (9),
we observe that F2 and G2 are fixed at E1 and F1, respectively. Therefore,
the attacker can generate hypotheses about the unknown values F1, and
attack the output of the Ch function. Of course, 232 hypotheses for the
previous state Ch(E1, F1, G1) are also required. Recovering F1 means that
the attacker can now accurately predict the variable Ch(E2, F2, G2).

5. The next point of attack is the calculation of T 12 (equation (11)). At this
stage, the only fixed unknown value in the equation is H2, as every other
variable can be predicted. The attacker already knows the previous state T 11

from stage 1 above. Mounting a DPA attack uncovers H2, and allows T 12

to be predicted. From equation (10), it can be seen that H2 is equivalent to
G1.

6. The knowledge of T 12 gained from the previous attack stage can be applied
to equation (7). Using the bits of E3 as the selection function, the attacker
can mount a DPA attack that uncovers D2. From equation (6), we observe
that D2 is equivalent to C1.

7. The Maj function in the second round can be expressed as:

Maj(A2, B2, C2) = (A2 ∧ B2) ⊕ (A2 ∧ C2) ⊕ (B2 ∧ C2) (22)

where A2 is variable, and known by the attacker. From equations (4) and
(5), we observe that B2 and C2 are fixed at A1 and B1, respectively. Using
a similar approach to that taken in stage 4 above, the attacker can perform
DPA on Maj and discover the secret value of B1.

8. By following the above strategy, the attacker can recover the fixed secrets
A1–G1. The last remaining secret variable, H1, can be found by reverting
the focus to round 1, and substituting into equation (11), where the only un-
known value is that of H1. The eight 32-bit secret values are thus recovered,
using seven first-order DPA attacks.

3.3 Complexity of the attack

As noted above, it is currently computationally infeasible for an attacker to
compute 264 hypotheses for a DPA attack. However, as indicated in [2] and
illustrated in [22], a partial correlation may be computed, rather than the full
correlation. If a correlation coefficient of ρ is obtained by correctly predicting
all 32 bits of an intermediate variable, then we would expect to obtain a partial
correlation of ρ

√

l/32 by predicting l bits correctly. Hypotheses can be made
on smaller sets of bits at a time, e.g. l = 8, and this strategy can be employed
to keep only those hypotheses that produce the highest partial correlations. In
this way, the full 32-bit correlation can be built up in stages, thereby reducing
the complexity of the attack. This is similar to the ‘extend-and-prune’ strategy
employed by a template attack [3].

4 Attack on FPGA Implementation

4.1 Implementation Details

In order to demonstrate the feasibility of a DPA attack on HMAC-SHA-256,
we implemented the algorithm on a Xilinx FPGA Board. FPGAs are attractive
for implementing cryptographic algorithms because of their low cost (relative to
ASICs), and their flexibility when adopting security protocol upgrades. FPGAs

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time

C
or

re
la

tio
n

8 bits
12 bits
16 bits
20 bits
24 bits
28 bits
32 bits

Fig. 1. Correlation and partial correlations between the power consumption and E2,
given the correct prediction of D1 and the previous state E1.

also allow rapid prototyping of various designs. For our experiments, we im-
plemented SHA-256 on Xilinx’s low-cost Spartan™-3E Development Kit, which
contains the Spartan™XC3S500E FPGA [23]. FPGAs consist mostly of Config-
urable Logic Blocks (CLBs), arranged in a regular array across the chip. In our
case, each CLB contains 4 logic “slices”, which is the basic unit used to quantify
the area occupied by a design. Each slice contains two four-input Look-Up Ta-
bles (LUTs) and two registers. Logic also exists within a slice which allows fast
implementation of carry look-ahead addition. Each slice has a dedicated mul-
tiplexer, which is hard-wired to provide a fast carry chain between consecutive
slices and CLBs. Indeed, fast carry logic is a feature of many modern FPGAs.
We will make use of this dedicated addition circuitry in Section 5.

Several optimisations for the SHA-2 family exist, such as pipelining and loop
unrolling [4]. However, for simplicity, it was decided to implement a basic design
without such optimisations. The design was captured using VHDL, and synthe-
sis, placing and routing were performed using Xilinx ISE™v9.1i. The processor
and interface circuitry utilise 951 slices, corresponding to 20% of the FPGA re-
sources. The critical path in the design (i.e. the longest combinational path) is
16.4 ns, during the calculation of A (equation (3)). Block RAMs (BRAMs) on
the FPGA are used to store the various messages to be processed; this reduces
the communication requirements with the FPGA board.

4.2 Experimental Results

In order to obtain DPA power traces from the design, the FPGA board was
configured with the basic SHA-256 design, and a 10 Ω resistor was inserted in the
FPGA power supply line. Using a LeCroy WaveRunner 104Xi oscilloscope and a
differential probe, we could measure the voltage fluctuations across the resistor
as the SHA-256 algorithm was being executed. Therefore, the traces recorded on

the oscilloscope were proportional to the power consumption of the FPGA during
the execution of the algorithm. Traces for the first three rounds were captured
while 4000 random messages were being processed by the FPGA. In order to
reduce acquisition noise, each captured trace corresponded to the average of
700 executions with the same message. Figure 1 shows the correlation trace
achieved when D1 and the unknown previous state E1 are correctly predicted.
The different levels correspond to the correlation coefficients achieved when a
certain number of bits are correctly predicted.

5 Masking the SHA-256 algorithm

The preceding sections have demonstrated the susceptibility of hardware imple-
mentations of the HMAC algorithm to first-order DPA attacks. We now examine
how to use masking as a countermeasure to such attacks. The masking technique
aims to use random values to conceal intermediate variables in the implementa-
tion of the algorithm, thereby making the side-channel leakage independent of
the secret intermediate variables. Much of the literature has focused on masking
techniques for software implementations of cryptographic algorithms (e.g. [5, 8,
15]). In [7], Golić detailed techniques for masking hardware implementations,
which we build upon below in order to mask HMAC-SHA-256.

5.1 Requirements

Consider a function f and intermediate variables x, y and z, such that z =
f(x, y). If x or y are key-dependent or data-dependent, then masking is required.
We introduce random masks rx, ry and rz such that x′ = x ◦ rx, y′ = y ◦ ry

and z′ = z ⋄ rz; where ◦ is the group operation masking the input data, and
⋄ is the group operation masking the output z. In order to prevent differential
side-channel attacks, the function f must be modified to the function f ′, such
that z′ = f ′(x′, y′, rx, ry, rz) = z⋄rz. If the group operation is XOR, the masking
scheme is termed Boolean masking. The SHA-256 algorithm also uses addition
modulo 232, which requires arithmetic masking.

In [7], Golić described the goal of designing a secure masked hardware im-
plementation for a function f , using the “secure computation condition”. This
condition states that the output value of each logic gate in the design should be
statistically independent of the original data (i.e. the secret key and the input
data). In the case of a Boolean logic circuit implementing f , this condition is
satisfied if all of the inputs to the circuit are jointly statistically independent of
the original data. In the case of a multiplexer-based design for f : (i) the data
inputs to the multiplexer should be identically distributed; (ii) each data input
should be statistically independent of the original data; and (iii) for each fixed
value of the original data, each data input should be statistically independent of
the control input. In order to mask our SHA-256 design correctly, care must be
taken that these conditions are met.

Table 1. Linear and non-linear functions (with respect to XOR) used in SHA-256

Linear Non-Linear

NOT (x̄) Ch

σ0 Maj

σ1 AND
X

0

,
X

1

addition modulo 232

5.2 Masking the original data

In Section 3, the eight variables A–H in the SHA-256 algorithm were identified
as the secret values which are of interest to the side-channel attacker. Therefore,
we begin the first iteration of the compression function by XOR-ing these values
with eight 32-bit random masks denoted rA–rH , so that they become A′–H ′.
Furthermore, the variable input data Wt to the SHA-256 compression algorithm
requires masking. Since this data is perfectly predictable by the attacker, it must
be XOR-ed with a new 32-bit random value rW in every SHA-256 round.

Recall that the fixed secret data mixes with the attacker’s variable known
data within the SHA-256 compression algorithm. Therefore, we must also mask
the individual functions in the SHA-256 compression algorithm. If a function f
is linear with respect to the mask, then it is easy to mask, as z′ = f(x′, y′), and
rz = f(rx, ry). Conversely, non-linear functions require modification in order to
achieve secure masking. Therefore, new circuits implementing these non-linear
functions must be designed, with respect to the secure computation condition
given above. Table 1 outlines the linear and non-linear functions used by SHA-
256. In the following sub-sections, we present our designs for the secure circuits
implementing the non-linear functions of Table 1 on an FPGA.

5.3 The Ch and Maj Functions

The logical functions Ch and Maj are described by equations (13) and (14)
respectively. The non-linearity in both of these functions stems from the AND
operations. Therefore, Ch and Maj cannot be implemented using ordinary AND
gates, and masked AND gates must be used instead.

In [7], Golić proposed masking the AND function z = x ∧ y, using Boolean
masking, as follows:

z′ = ∧′(x′, y′, rx, ry))
= y′ ∧ (ry ∧ rx ∨ ry ∧ x′) ∨ y′ ∧ (ry ∧ rx ∨ ry ∧ x′)

(23)

where ∨ denotes logical OR. This approach has the advantage that the output
mask rz is equal to the input mask rx; therefore, a new mask for z is not required.

When implementing this masked AND circuit (denoted ∧′) on an FPGA, we
can take advantage of the underlying slice structure. Equation (23) is a four-
input function, which is perfectly suited for implementation in one of the FPGA
slice’s four-input LUTs. A two-input or three-input XOR operation can also be

implemented using a single four-input LUT. Note that care must also be taken
when describing masked circuits, so that the HDL synthesis tool does not remove
the redundancy in the design, or combine two variables that are not statistically
independent.1

Our design for masked Maj(A, B, C), denoted Maj′(A′, B′, C′, rA, rB, rC),
is as follows:

Maj′(A′, B′, C′, rA, rB , rC) = (∧′(A′, B′, rA, rB)) ⊕ (∧′(A′, C′, rA, rC))
⊕(∧′(B′, C′, rB, rC))

(24)

Therefore, three LUTs (per bit) are required for the three masked AND oper-
ations, and one LUT (per bit) is required for the three-input XOR. Since the
variables are 32-bit, Maj′ requires 128 LUTs or 64 Spartan-3E slices. This is four
times larger than a basic unmasked implementation of Maj. By choosing the
order for the operands of the masked AND functions appropriately, the output
mask becomes rMaj = rA ⊕ rA ⊕ rB = rB .

Similarly, our design for masked Ch(E, F, G) is

Ch′(E′, F ′, G′, rE , rF , rG) = (∧′(E′, F ′, rE , rF)) ⊕ (∧′(G′, E′, rG, rE)) (25)

which requires two LUTs (per bit) for the two masked AND operations, and one
LUT (per bit) for the 2-input XOR. Care must be taken regarding the order
of the operands of the masked AND functions. If E′ was the first operand of
both masked AND gates, then the output mask would be rCh = rE ⊕ rE = 0,
i.e. the output would be unmasked. Therefore, we choose the order such that
rCh = rE ⊕ rG, which requires one extra LUT (per bit) to compute the XOR.
Hence, a total of 128 LUTs or 64 Spartan-3E slices are required, which is four
times the size of a Ch implementation not protected by Boolean masking.

5.4 Addition modulo 232

All of the masks that have been introduced up to this point have been Boolean
masks. However, the SHA-256 compression algorithm makes extensive use of
consecutive additions modulo 232, denoted ⊞, which are arithmetic functions
and are non-linear with respect to Boolean masking. This presents the designer
with a choice: (i) a new masked function ⊞

′ can be created, which uses Boolean
masking; or (ii) a Boolean-to-Arithmetic conversion can be applied prior to the
⊞ operations. The latter choice converts a variable masked with a Boolean mask
to a variable masked with an arithmetic mask, meaning that subsequent ad-
ditions are linear with respect to the arithmetic mask. Arithmetic-to-Boolean
conversion is required before the results of the additions are fed back to the
Boolean part of the function. In [7], Golić investigated this design choice, and
concluded that choice (i) above is effective only if a small number of consecutive
masked additions (e.g. one to three) is required. This is verified by our experi-
ments on the FPGA (not detailed here). The masked adder produced in design

1 In VHDL, this can be achieved by asserting the “keep hierarchy” attribute within
the masked AND gate’s architecture.

(i) has large area and large latency, which greatly adds to the critical path in
the circuit. On the other hand, design (ii) uses the conversion functions along
with ordinary addition operations, both of which can take advantage of the un-
derlying structure of the FPGA, leading to a much shorter critical path than in
design (i). Our designs for the conversion functions are detailed below.

5.5 Boolean-to-Arithmetic Conversion

The circuits implementing the Boolean-to-Arithmetic and Arithmetic-to-Boolean
conversion functions must themselves be secure against side-channel attacks.
Several software-based algorithms have been proposed for performing these con-
versions [5, 8, 15]; however, these solutions are not suitable for efficient hard-
ware implementation. Golić [7] developed hardware solutions based on the basic
method of ripple-carry addition. Here, we present solutions tailored for FPGA
implementation, based on the carry look-ahead addition method. We take ad-
vantage of the dedicated carry logic that is hard-wired into the FPGA, which
allows carry bits to quickly propagate through columns of FPGA slices.

Henceforth, we will use single prime notation (x′) to denote Boolean masking,
and double prime notation (x′′) to denote arithmetic masking (with respect to
⊞). The goal is to securely convert a variable x′ = x ⊕ rx into a variable x′′

such that x′′ = x ⊞ rx, without compromising the secret value x. Following the
analysis in [7], we use a subscript j, 0 ≤ j ≤ 31 to index the individual bits of
x′, x′′ and rx. The addition, with carry word c, can be expressed as:

x′′

j = xj ⊕ rx,j ⊕ cj−1 (26)

= x′

j ⊕ cj−1 (27)

where c−1 = 0, and c31 is not used. The carry bits are described by the recursive
equation cj = (xj ∧ rx,j)∨ cj−1 ∧ (xj ⊕ rx,j). In order to suit a carry look-ahead
implementation, the equation for the carry bits can be restated as:

cj = ((x′

j ⊕ rx,j) ∧ rx,j) ∨ (cj−1 ∧ (x′

j ⊕ rx,j ⊕ rx,j))

= x′

j ∧ rx,j ∨ x′

j ∧ cj−1 (28)

Clearly, equation (28) is suitable for implementation by a multiplexer in the
FPGA’s dedicated carry chain, with rx,j and cj−1 as data inputs, and x′

j as the
control input. Therefore, the Boolean-to-Arithmetic conversion circuit should
have similar area requirements and similar latency to an ordinary adder.

However, the above multiplexer-based design contravenes the secure compu-
tation condition, because the data input rx,j is not statistically independent of
the control input x′

j . In theory, this dependence could be used by an attacker to
launch a side-channel attack. In order to remove this dependence, we introduce
a further Boolean masking bit q to mask the carry chain. The same bit q can
be re-used for each multiplexer in the conversion circuit. The resulting scheme
is described as follows:

cj ⊕ q = x′

j ∧ (rx,j ⊕ q) ∨ x′

j ∧ (cj−1 ⊕ q) (29)

x′′

j = x′

j ⊕ (cj−1 ⊕ q) ⊕ q (30)

The carry look-ahead structure is maintained, which allows fast calculation of
equation (29) on the FPGA. One extra LUT per bit is required by equation (30),
to remove the mask from the masked carry bits.

5.6 Arithmetic-to-Boolean Conversion

The aim of an Arithmetic-to-Boolean conversion is to use x′′ and rx to derive
the Boolean-masked variable x′. From equation (27), we have x′

j = x′′

j ⊕ cj−1.
In order to obtain a recursive expression for cj in terms of x′′, we substitute x′

j

into equation (28), giving cj = (x′′

j ⊕ cj−1)∧rx,j ∨ (x′′

j ⊕ cj−1)∧cj−1. After some
algebraic manipulation, the following can be derived:

cj = (x′′

j ⊕ rx,j) ∧ rx,j ∨ (x′′

j ⊕ rx,j) ∧ cj−1 (31)

The conversion function is now in the carry look-ahead form that is required
for fast calculation on the FPGA; with rx,j and cj−1 as the data inputs to

the multiplexers, and (x′′

j ⊕ rx,j) as the control input. As above, we must now
determine if the multiplexers comply with the secure computation condition.
It appears that data input rx,j is statistically independent of the control input

(x′′

j ⊕rx,j), because x′′

j incorporates randomness from bit cj−1 as well as from bit
rx,j (equation (26)). However, when j = 0, c−1 is fixed at zero, and the control
input becomes simply x0, i.e. one secret bit is unmasked.

Clearly, we must avoid computing (x′′

j ⊕ rx,j) when j = 0. Our solution is
to remove one multiplexer from the carry chain, and to use an FPGA LUT to
calculate c0 directly. From equation (31), c0 = x′′

0 ∧ rx,0, which could itself be
the focus of a side-channel attack. Therefore, as in the case of the Boolean-to-
Arithmetic conversion, we introduce a Boolean masking bit q, giving:

c0 = (x′′

0 ∧ rx,0) ⊕ q (32)

Technically, this equation violates the secure computation condition, as the in-
termediate result (x′′

0 ∧ rx,0) is not independent of the secret bit x0. However, if
an FPGA LUT is used to calculate c0, it can be shown that the LUT output is
statistically independent of x0, therefore the LUT does not leak information.

Finally, the other 31 masked values of cj can be calculated using the fast
carry chain, according to:

cj ⊕ q = (x′′

j ⊕ rx,j) ∧ (rx,j ⊕ q) ∨ (x′′

j ⊕ rx,j) ∧ (cj−1 ⊕ q) (33)

As in the case of Boolean-to-Arithmetic masking, additional LUTs are required
to remove the masking bit q, via x′

j = x′′

j ⊕ (cj−1 ⊕ q) ⊕ q.

6 Masked FPGA Implementation

The above section detailed the proposed masking schemes for the SHA-256 com-
pression function. Note that in order to remove the masks rA–rH at the end

of the 64th iteration of the compression function, it is necessary to compute
mask update terms in parallel with the masked compression function. The com-
plete masked core design contains: sixteen 32-bit registers; thirteen adders; seven
Boolean-to-Arithmetic conversion blocks; two Arithmetic-to-Boolean conversion

blocks; as well as circuits implementing the
∑

0
,

∑

1
, Maj′ and Ch′ functions.

On our Spartan-3E chip, the masked processor and interface circuitry utilise
1734 slices (37% of FPGA resources), and the design’s critical path is 18.6 ns.
Hence, although the area has almost doubled compared with the unprotected im-
plementation, the speed has not been overly affected. The required random bits
could be generated, for example, by a cryptographically secure pseudo-random
number generator implemented on the FPGA, as described in [20]. For simplic-
ity, in our case we pre-generated the required random bits, and stored them in
BRAM on the FPGA. By repeating the experiments described in section 3, we
verified that the data-dependence of the power consumption has been removed;
therefore, the design is resistant to standard first-order DPA attacks.

We note that more sophisticated first-order DPA attacks are still possible, for
example by considering the side-channel leakage due to glitches [13]. However,
such attacks rely on the strong assumption that the attacker has very detailed
knowledge of the design, such as a back-annotated netlist, from which an exact
power model can be extracted.

7 Conclusions

It has been shown that implementations of the HMAC algorithm are suscepti-
ble to side-channel attacks. An explicit DPA attack strategy for HMAC-SHA-2
has been presented, and the attacks have been verified with actual FPGA-based
experiments. A hardware-based masked core for SHA-2 hash functions has been
designed, which counteracts first-order DPA attacks. The Boolean-to-Arithmetic
and Arithmetic-to-Boolean conversion circuits, which are traditionally consid-
ered to be slow, have been optimised for implementation on FPGAs. This useful
adaptation can be used to mask other algorithms that mix Boolean and arith-
metic functions, such as IDEA or RC6. Future work will focus on securing the
HMAC algorithm against other forms of side-channel attack, such as higher-order
DPA and template attacks. Another avenue for further research is to investigate
how throughput optimisation techniques can be applied to SHA-2 implementa-
tions, while maintaining the DPA attack countermeasures.

Acknowledgements

The authors would like to acknowledge the comments of the anonymous re-
viewers, as well as the reviewers of an earlier draft of this paper. This work
was supported in part by the Embark Initiative, operated by the Irish Research
Council for Science, Engineering and Technology (IRCSET).

References

1. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication. In Neal Koblitz, editor, Advances in Cryptology —
CRYPTO’96, 16th Annual International Cryptology Conference, volume 1109 of
Lecture Notes in Computer Science, pages 1–15. Springer, 1996.

2. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with
a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic
Hardware and Embedded Systems — CHES 2004, 6th International Workshop,
volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer, 2004.

3. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems — CHES 2002, 4th International Workshop, volume 2523
of Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

4. Ricardo Chaves, Georgi Kuzmanov, Leonel Sousa, and Stamatis Vassiliadis. Im-
proving SHA-2 hardware implementations. In Louis Goubin and Mitsuru Matsui,
editors, Cryptographic Hardware and Embedded Systems — CHES 2006, 8th In-
ternational Workshop, volume 4249 of Lecture Notes in Computer Science, pages
298–310. Springer, 2006.

5. Jean-Sébastien Coron and Alexei Tchoulkine. A new algorithm for switching from
arithmetic to boolean masking. In Colin D. Walter, Çetin Kaya Koç, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems — CHES 2003, 5th
International Workshop, volume 2779 of Lecture Notes in Computer Science, pages
89–97. Springer, 2003.

6. Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol,
Version 1.1. RFC 4346, Retrieved online, July 2007. http://tools.ietf.org/

html/rfc4346, April 2006.
7. Jovan Dj. Golić. Techniques for random masking in hardware. IEEE Transactions

on Circuits and Systems — I, 54(2):291–300, February 2007.
8. Louis Goubin. A sound method for switching between boolean and arithmetic

masking. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems — CHES 2001, Third Interna-
tional Workshop, volume 2162 of Lecture Notes in Computer Science, pages 3–15.
Springer, 2001.

9. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael Wiener, editor, Advances in Cryptology — CRYPTO’99, 19th Annual In-
ternational Cryptology Conference, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

10. Kerstin Lemke, Kai Schramm, and Christof Paar. DPA on n-bit sized boolean
and arithmetic operations and its application to IDEA, RC6, and the HMAC-
Construction. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic
Hardware and Embedded Systems — CHES 2004, 6th International Workshop,
volume 3156 of Lecture Notes in Computer Science, pages 205–219. Springer, 2004.

11. Arjen K. Lenstra. Further progress in hashing cryptanalysis (white paper). Re-
trieved online, July 2007. http://cm.bell-labs.com/who/akl/hash.pdf, Febru-
ary 2005.

12. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards. Springer, 2007.

13. Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully attack-
ing masked AES hardware implementations. In Josyula R. Rao and Berk Sunar,

editors, Cryptographic Hardware and Embedded Systems — CHES 2005, 7th In-
ternational Workshop, volume 3659 of Lecture Notes in Computer Science, pages
157–171. Springer, 2005.

14. Vishwas Manral. Cryptographic Algorithm Implementation Requirements for En-
capsulating Security Payload (ESP) and Authentication Header (AH). RFC 4835,
Retrieved online, July 2007. http://tools.ietf.org/html/rfc4835, April 2007.

15. Olaf Neiße and Jürgen Pulkus. Switching blindings with a view torwards IDEA.
In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic Hardware and
Embedded Systems — CHES 2004, 6th International Workshop, volume 3156 of
Lecture Notes in Computer Science, pages 230–239. Springer, 2004.

16. National Institute of Standards and Technology. FIPS PUB 180-2. Secure Hash
Standard, August 2002.

17. National Institute of Standards and Technology. FIPS PUB 198. The Keyed-Hash
Message Authentication Code (HMAC), March 2002.

18. Katsuyuki Okeya. Side channel attacks against HMACs based on block-cipher
based hash functions. In Lynn Margaret Batten and Reihaneh Safavi-Naini, editors,
Information Security and Privacy, 11th Australasian Conference, ACISP 2006,
volume 4058 of Lecture Notes in Computer Science, pages 432–443. Springer, 2006.

19. Katsuyuki Okeya and Tetsu Iwata. Side channel attacks on message authentication
codes. In Refik Molva, Gene Tsudik, and Dirk Westhoff, editors, Security and
Privacy in Ad-hoc and Sensor Networks, Second European Workshop, ESAS 2005,
Revised Selected Papers, volume 3813 of Lecture Notes in Computer Science, pages
205–217. Springer, 2005.

20. Dries Schellekens, Bart Preneel, and Ingrid Verbauwhede. FPGA vendor agnos-
tic true random number generator. In 16th International Conference on Field
Programmable Logic and Applications (FPL 2006), pages 139–144. IEEE, August
2006.

21. Rainer Steinwandt, Willi Geiselmann, and Thomas Beth. A theoretical DPA-based
cryptanalysis of the NESSIE candidates FLASH and SFLASH. In Information
Security, 4th International Conference, ISC 2001, volume 2200 of Lecture Notes in
Computer Science, pages 280–293. Springer, 2001.

22. Michael Tunstall, Neil Hanley, Robert McEvoy, Claire Whelan, Colin C. Murphy,
and William P. Marnane. Correlation power analysis of large word sizes. Submitted
to IET Irish Signals and Systems Conference (ISSC) 2007. IEEE, 2007.

23. Xilinx. Spartan-3 Generation FPGA User Guide. Retrieved online, July 2007.
http://direct.xilinx.com/bvdocs/userguides/ug331.pdf.

