New Signal Processing Methods for Improved Performance in Single-Channel Feedforward Active Noise Control Systems

by

Muhammad Tahir Akhtar

A thesis submitted to the Graduate School of Engineering in partial fulfillment of the requirements for the degree of PhD in Electronic Engineering

Department of Electronic Engineering Graduate School of Engineering Tohoku University, Aoba-yama 05, Sendai 980-8579 JAPAN

September, 2004
To

ALLAMA GHULAM AHMAD PARWEZ

For his great research in Islam
Table of Contents

Abstract iv
Preface vi
Acknowledgements ix
List of Figures x
List of Tables xiv
Glossary xv

1 Active Noise Control 1
 1.1 Introduction 1
 1.2 FxLMS Algorithm 3
 1.2.1 Derivation of FxLMS Algorithm 6
 1.3 Online Secondary Path Modeling 8
 1.3.1 Fundamental Problem 9
 1.3.2 Overall Modeling Algorithm 10
 1.3.3 Additive Random Noise Technique 12
 1.4 Summary 15

2 Filtered-x Adaptive Filtering with Averaging (FxAFA) Algorithm 16
 2.1 Introduction 16
 2.2 Algorithm Development 18
 2.3 Choice of the Parameter γ 23
 2.4 Comparison of Computational Complexity 23
 2.5 Comments on Convergence Behavior 24
 2.5.1 Ideal Condition ($\sigma^2_{v_1} = \sigma^2_{v_2} = 0$) 24
 2.5.2 Measurement Noise Condition ($\sigma^2_{v_1} \neq 0, \sigma^2_{v_2} \neq 0$) 25
 2.6 Computer Simulations 25
 2.6.1 Case 1: Ideal condition 26
 2.6.2 Case 2: Measurement noise condition 27
3 ANC Systems with Online Secondary Path Modeling

Part-I: FxAFA Based Method

3.1 Introduction ... 36
3.2 FxAFA Algorithm Based ANC Systems with Online Secondary path
Modeling ... 40
 3.2.1 Proposed Method .. 40
 3.2.2 Why FxAFA Algorithm? 44
 3.2.3 Effect of Using Same Error Signal 45
3.3 Comparison of Computational Complexity 46
3.4 Summary .. 47

Part-II: Modified-FxLMS Based Method

4.1 Introduction .. 50
4.2 Modified-FxLMS Based ANC System with Online Secondary Path
Modeling ... 53
 4.2.1 Proposed Method .. 53
 4.2.2 Analysis of Proposed Method 55
 4.2.3 New Variable Step Size LMS Algorithm 56
4.3 Comparison of Computational Complexity 58
4.4 Summary .. 59

Part-III: Simulations Results

5.1 Introduction .. 62
5.2 Basic Experiments with a Tonal 64
 5.2.1 Case 1: Selection of Step Size Parameters 64
 5.2.2 Case 2: Effect of Order of Adaptive Filters 66
5.3 Effect of Reference Signal Type 68
 5.3.1 Case 3: Narrowband Signal Comprising Sinusoids of 165 Hz
 and 170 Hz ... 69
 5.3.2 Case 4: Narrowband Signal Comprising Sinusoids of 165 Hz
 and 495 Hz ... 70
 5.3.3 Case 5: Broadband Reference Signal 72
5.4 Variations in Reference Signal 74
 5.4.1 Case 6: Amplitude Variations in the Reference Signal .. 74
 5.4.2 Case 7: Occurrence of Burst Noise 77
 5.4.3 Case 8: Another Noise Source Starts Contributing with Different Frequency 79
5.5 Variations in Acoustic Paths 81
 5.5.1 Case 9: Sudden Change in P(z) and S(z) 82
This thesis is a study of active noise control (ANC) systems with the view point of adaptive signal processing. The discussion is restricted to the single-channel feedforward ANC systems. A literature survey shows that the filtered-x least mean square (FxLMS) algorithm is the most popular adaptive algorithm for ANC systems, due mainly to its simplicity and robust performance. However, the convergence speed of the FxLMS algorithm is slow. Furthermore, its performance is degraded when there is a large measurement noise in the reference and error signals.

To solve these problems, this thesis proposes an adaptive filtering with averaging based algorithm for ANC systems. This algorithm uses a similar structure as that of the FxLMS algorithm based ANC systems. The proposed algorithm, filtered-x adaptive filtering with averaging (FxAFA) algorithm, uses averages of both data and correction terms to find the updated values of the tap weights of the ANC controller. The computer simulations show that the proposed algorithm gives somewhat faster convergence as compared with the FxLMS algorithm and achieves better performance in the presence of the measurement noise. The comparison with the FxRLS algorithm shows that the proposed FxAFA algorithm is a better choice for low computational complexity and a stable performance.

This thesis also addresses the issue of the secondary path modeling during the online operation of ANC systems. The online secondary path modeling is needed in the situation when the secondary path is time varying. In this thesis two new methods have been proposed to achieve improved performance in ANC systems with online secondary path modeling. In contrast to the existing improved methods, which are comprised of three adaptive filters, these proposed methods consist of two adaptive filters.
In the first proposed method, the error signal used in the adaptation of the secondary path modeling filter is also used as an error signal for the ANC control filter. Furthermore, the ANC control filter is adapted using the FxAFA algorithm. The main features of the second proposed method are that 1) the modified FxLMS (MFxLMS) algorithm is used in adapting the noise control filter and 2) a variable step size (VSS) based LMS algorithm is used in the secondary path modeling filter. The step size is varied in accordance with the power of the residual error signal [the desired response for the modeling filter]. It is found that the desired response for the modeling filter is corrupted by a noise which is decreasing in nature, (ideally) converging to zero. Hence a small step size is used initially and later its value is increased accordingly. Extensive computer simulations have been carried out, which show the effectiveness of the methods proposed in this thesis.

Key words: Adaptive filters, LMS algorithm, variable step size, active noise control, averaging, FxLMS algorithm, modified FxLMS algorithm, online secondary path modeling.
PREFACE

The subject of ‘adaptive signal processing’ constitute an important part of the statistical signal processing. Widrow developed the foundations of the adaptive filters in 1960s by introducing the famous least mean square (LMS) algorithm. He also described the concept of adaptive noise cancelation using LMS algorithm. After this early investigation, later adaptive filters have been successfully applied in such diverse fields as, communications, control, radar, sonar, seismology, and biological engineering, among others.

This thesis provides an outline of active noise control (ANC) systems and studies adaptive signal processing used in ANC systems. The concept of active noise control is based on the simple principle of destructive interference of propagating acoustic waves. The idea that acoustic wave interference can be controlled to produce zones of quietness was first proposed by P. Lueg in 1936 for an analogue ANC system. However success with the early analogue controllers was very limited and in the resent years powerful digital signal processing (DSP) devices and algorithms have made possible the development of real time ANC system with wide range of applications including air conditioning ducts, cars, aircrafts, and so on. The most popular adaptive signal processing algorithm used for ANC applications is the filtered-x least mean square (FxLMS) algorithm which is a modified version of the LMS algorithm.

This thesis combines the concepts of the FxLMS algorithm and adaptive filtering with averaging, and proposes a new algorithm (FxAFA – filtered-x adaptive filtering with averaging algorithm) for ANC systems. The proposed algorithm outperforms the conventional FxLMS based ANC systems under the situation of large measurement noise. The effectiveness of the proposed algorithm in ANC systems with online secondary path modeling, is also demonstrated.

This thesis also proposes a new variable step size (VSS) LMS algorithm for online secondary path modeling in ANC systems. Here step size is varied on the basis of power of desired response of the modeling filter. It is different from the normalized-LMS (NLMS) algorithm, where step size is varied with the power of reference signal. It is also different from the other VSS algorithms where initially
a large step size is selected for fast convergence and finally a small value is used for small misadjustment. The proposed VSS LMS algorithm stems from the fact that desired response for the modeling filter is corrupted by a noise which is decreasing in nature, (ideally) converging to zero. Infact, initially this interference may be so large that the online secondary path modeling may become unstable in the worst case. The proposed VSS LMS algorithm, in contrast to the existing VSS algorithms, uses a small step size initially and later its value is increased in accordance with the decrease in the residual noise.

A brief summary of the contents of this thesis is given below.

Chapter 1 is an overview of Active Noise Control systems with the view point of adaptive signal processing. Here basic concept of active noise control (ANC) is introduced. Only single-channel feedforward ANC are described. The development of FxLMS algorithm is given and an overview of various methods for ANC systems with online secondary path modeling is also presented.

Chapter 2 gives the development of Filtered-x Adaptive Filtering with Averaging (FxAFA) Algorithm in comparison to the FxLMS algorithm. Some theoretical comments on the properties of the FxAFA algorithm are also presented. It is also explained that why FxAFA algorithm is expected to give better performance than the FxLMS algorithm.

The rest of this thesis discusses ANC Systems With Online Secondary Path Modeling. The contents are organized in three parts, as described below.

Chapter 3 is Part-I: FxAFA Based method. The description is given in comparison with the Eriksson’s method, which is considered as a basic method for ANC systems with online secondary path modeling.

Chapter 4 is Part-II: Modified-FxLMS Based method. In the proposed method described in this Chapter, the control filter is adapted using modified-FxLMS algorithm, and a new variable step size LMS algorithm is used for online secondary path modeling.

Chapter 5 is Part-III: Simulation Results. This Chapter details the simulation results for ANC systems with online secondary path modeling. Extensive case studies have been performed, which show the effectiveness of the proposed methods [described in Chapter 3 and 4]. The simulations are carried out in both stationary and non-stationary environments.
Chapter 6 gives **Concluding Remarks and Future Recommendations**. The main achievements of the thesis are summarized in this chapter. The limitations of the proposed methods are also identified, suggesting directions for future work.

Bibliography lists the references cited in the thesis. For completeness, some extra references are also included.

Appendices give some useful information about the acoustic data used in, and the Matlab routines developed for the computer simulations. A list of publications, which resulted from work carried out in this thesis, is also given.

About the Author is an overview of educational and professional background of the author.
ACKNOWLEDGEMENTS

This PhD-thesis is the result of my PhD-study [2001 – 2004] at the Department of Electronic Engineering at Tohoku University of Sendai, Japan. At the completion of this work, I take great pleasure in thanking and acknowledging the people who have supported me over the past few years.

First, I want to thank my supervisors; Prof. Masayuki Kawamata, and Dr. Masahide Abe; for all their support and guidance, without which this adventure would have never come to a good end. Also, I would like to thank the students at the Kawamata Laboratory for their help and kindness. A special thank to Mr. Shunsuke Koshita, for his precious time, help and guidance whenever I needed.

I could not have started down this path without the support and understanding of my family and my wife. Their encouragement has enabled me to pursue my goals with vigor. I hope that they can take as much pleasure of this finished work as I do.

Thanks to Monbokagakusho, Government of Japan, for their financial support during my stay in Japan. I am grateful to Prof. Masayuki Kawamata, for his motivation and financial support to me to attend international and domestic conferences and workshops. These conferences has provided invaluable opportunities for me to present some of results of my work and learn from the wider international community.

No thesis can be finalized without being read by and approved by a thesis committee. I want to thank Prof. Fumiyuki Adachi and Prof. Yōiti Suzuki for being part of my thesis committee and for reading and commenting the thesis.

In the past few years I have met many nice people in different circumstances both in Pakistan and here in Japan. Their kindness has had a positive influence on my general well-behavior which has contributed to the completion of this thesis. I want to thank all of them, specially Dr. Tariq Majeed and Dr. Anwar Majeed Mirza, for their sincere guidance and continuous support.
List of Figures

1.1 Schematic diagram of single-channel feedforward ANC system in a duct. ... 4
1.2 Simplified block diagram of single-channel feedforward ANC system of Fig. 1.1. 5
1.3 Block diagram of single-channel feedforward ANC system using FxLMS algorithm. 8
1.4 Block diagram of online secondary path modeling technique proposed in [48]. 9
1.5 ANC system using overall modeling technique. ... 11
1.6 Block diagram of ANC system with online secondary path modeling using additive random noise. 13

2.1 Block diagram of single-channel feedforward ANC system in a duct, taking measurement noises (associated with microphones) into account. .. 18
2.2 Signal flow diagrams: (a) FxLMS algorithm, (b) FxAFA algorithm. .. 22
2.3 Frequency response of acoustic paths used in computer simulations. (a) Primary path $P(z)$, (b) Secondary path $S(z)$. .. 30
2.4 Performance comparison between FxAFA and FxLMS algorithms: Noise reduction \Re versus iteration time n in Case 1 (no measurement noise). ... 31
2.5 Impulse response of the control filter $W(z)$ after 10×10^4 iterations in Case 1 (no measurement noise): (a) FxLMS algorithm ($\mu = 2.5 \times 10^{-5}$), (b) FxAFA algorithm ($\mu = 2 \times 10^{-3}$, $\gamma = 0.7$). 32
2.6 Performance comparison between FxAFA and FxLMS algorithms: Noise reduction \Re versus iteration time n in Case 2 (under measurement noise). ... 33
2.7 Performance comparison between FxAFA and FxLMS algorithms: Estimation error $\Delta w(n)$ versus iteration time n in Case 2 (under measurement noise). ... 34
2.8 Performance comparison between FxAFA and FxLMS algorithms: Residual error signal $e(n)$ in Case 2 (under measurement noise). ... 35
3.1 Single-channel feedforward ANC system with online secondary path modeling (Eriksson’s method).................. 38
3.2 Third adaptive filter for improved online secondary path modeling in ANC system of Fig. 3.1. (a) Adaptive noise cancelation (ADNC) filter in Bao’s method, (b) Prediction error filter in Kuo’s method. (c) ADNC filter with cross-updating in Zhang’s method. 39
3.3 FxAFA algorithm based single-channel feedforward ANC system with online secondary path modeling (Proposed-1 method). 42
4.1 Block diagram of modified-FxLMS algorithm based single-channel feedforward ANC system. 51
4.2 Modified-FxLMS algorithm based single-channel feedforward ANC system with new variable step size LMS algorithm for online secondary path modeling (Proposed-2 method). 53
4.3 Structure of modified-FxLMS algorithm separated from Fig. 4.2. 55
5.1 Relative modeling error ΔS (dB) versus iteration time n for a tonal of 165 Hz and filter orders $L = 128$, $M = 64$, $N = 64$ (Case 1). .. 67
5.2 Residual error signal $e(n)$ versus iteration time n for a tonal of 165 Hz and filter orders $L = 128$, $M = 64$, $N = 64$ (Case 1).......... 68
5.3 Variation of step size $\mu_s(n)$ in the Proposed-2 method for a tonal of 165 Hz and filter orders $L = 128$, $M = 64$ (Case 1). 69
5.4 Relative modeling error ΔS (dB) versus iteration time n for a tonal of 165 Hz and filter orders $L = 128$, $M = 128$, $N = 64$, 128 (Case 2). 70
5.5 Residual error signal $e(n)$ versus iteration time n for a tonal of 165 Hz and filter orders $L = 128$, $M = 128$, $N = 64$, 128 (Case 2). 71
5.6 Variation of step size $\mu_s(n)$ in the Proposed-2 method for a tonal of 165 Hz and filter orders $L = 128$, $M = 128$ (Case 2). 72
5.7 Relative modeling error ΔS (dB) versus iteration time n for a tonal of 165 Hz and filter orders $L = 256$, $M = 128$, $N = 64$, 128 (Case 2). 73
5.8 Residual error signal $e(n)$ versus iteration time n for a tonal of 165 Hz and filter orders $L = 256$, $M = 128$, $N = 64$, 128 (Case 2). 74
5.9 Variation of step size $\mu_s(n)$ in the Proposed-2 method for a tonal of 165 Hz and filter orders $L = 256$, $M = 128$ (Case 2). 75
5.10 Effect of tap-weight lengths on the modeling error reduction performance in Zhang’s method for a tonal of 165 Hz. 76
5.11 Effect of tap-weight lengths on the modeling error reduction performance in Proposed-1 method for a tonal of 165 Hz. 77
5.12 Effect of tap-weight lengths on the modeling error reduction performance in Proposed-2 method for a tonal of 165 Hz. 78
5.13 Time variation of the reference signals comprising multiple frequencies (a) in Case 3: Narrowband signal comprising 165 Hz and 170 Hz, (b) in Case 4: Narrowband signal comprising 165 Hz and 495 Hz, and (c) in Case 5: Broadband signal comprising 165 Hz, 178 Hz, 330 Hz, and 495 Hz. 79

5.14 Relative modeling error $\Delta S'(\text{dB})$ versus iteration time n for a narrowband signal comprising two sinusoids of 165 Hz and 170 Hz (Case 3). 80

5.15 Residual error signal $e(n)$ versus iteration time n for a narrowband signal comprising two sinusoids of 165 Hz and 170 Hz (Case 3). 81

5.16 Variation of step size $\mu_s(n)$ in the Proposed-2 method for a narrowband signal comprising two sinusoids of 165 Hz and 170 Hz (Case 3). 82

5.17 Relative modeling error $\Delta S'(\text{dB})$ versus iteration time n for a narrowband signal comprising two sinusoids of 165 Hz and 495 Hz (Case 4). 83

5.18 Residual error signal $e(n)$ versus iteration time n for a narrowband signal comprising two sinusoids of 165 Hz and 495 Hz (Case 4). 84

5.19 Variation of step size $\mu_s(n)$ in the Proposed-2 method for a narrowband signal comprising two sinusoids of 165 Hz and 495 Hz (Case 4). 85

5.20 Relative modeling error $\Delta S'(\text{dB})$ versus iteration time n for a broadband signal comprising sinusoids of 165 Hz, 178 Hz, 330 Hz, and 495 Hz and filter orders $L = 128$, $M = 64$, $N = 64$ (Case 5). 86

5.21 Residual error signal $e(n)$ versus iteration time n for a broadband signal comprising sinusoids of 165 Hz, 178 Hz, 330 Hz, and 495 Hz and filter orders $L = 128$, $M = 64$, $N = 64$ (Case 5). 87

5.22 Variation of step size $\mu_s(n)$ in the Proposed-2 method for a broadband signal comprising sinusoids of 165 Hz, 178 Hz, 330 Hz, and 495 Hz and filter orders $L = 128$, $M = 64$, $N = 64$ (Case 5). 88

5.23 Effect of variation in amplitude of the reference signal $x(n)$ on the relative modeling error ΔS (Case 6). 89

5.24 Effect of variation in amplitude of the reference signal $x(n)$ on the residual noise signal $e(n)$ (Case 6): (a) Zhang’s method, (b) Proposed-1 method, (c) Proposed-2 method. 90

5.25 Effect of variation in amplitude of the reference signal $x(n)$ on variation of step size $\mu_s(n)$ in the Proposed-2 method (Case 6). 91

5.26 Effect of a burst noise on the relative modeling error ΔS (Case 7). 92

5.27 Variation of step size $\mu_s(n)$ in the Proposed-2 method in the situation when reference noise has acquired a short burst (Case 7). 93

5.28 Effect of a burst noise on the residual noise signal $e(n)$: (a) Zhang’s method, (b) Proposed-1 method, (c) Proposed-2 method (Case 7). 94
5.29 Relative modeling error ΔS in the situation when an unknown frequency starts appearing in the reference noise (Case 8) 95
5.30 Residual error signal $e(n)$ in the situation when an unknown frequency starts appearing in the reference noise (Case 8): (a) Zhang’s method, (b) Proposed-1 method, (c) Proposed-2 method 96
5.31 Variation of step size $\mu_s(n)$ in the Proposed-2 method in the situation when an unknown frequency starts appearing in the reference noise (Case 8) ... 97
5.32 Magnitude responses of the acoustic paths in Case 9. (a) Magnitude responses of $P(z)$, (b) Magnitude responses of $S(z)$. Thin green line: Path at the start of the simulation, Thick blue line: Path changed at $n = 5 \times 10^5$. ... 98
5.33 Relative modeling error ΔS in the situation when there is a sudden change in $P(z)$ and $S(z)$ at $n = 5 \times 10^5$ (Case 9) 99
5.34 Residual error signal $e(n)$ in the situation when there is a sudden change in $P(z)$ and $S(z)$ at $n = 5 \times 10^5$ (Case 9): (a), (b) Zhang’s method, (c), (d) Proposed-1 method, (e), (f) Proposed-2 method 100
5.35 Variation of step size $\mu_s(n)$ in the Proposed-2 method in the situation when there is a sudden change in $P(z)$ and $S(z)$ at $n = 5 \times 10^5$ (Case 9) ... 101
A.1 Schematic diagram of single-channel feedforward ANC system in a duct ... 110
A.2 Frequency response of the acoustic paths described in Table A.1. (a) Primary path $P(z)$, (2) Secondary path $S(z)$, (c) Feedback path $F(z)$... 111
A.3 Block diagram of multiple-channel (1 \times 2 \times 2) ANC system comprising one reference microphone, two secondary loudspeakers, and two error microphones ... 113
List of Tables

2.1 Computational complexity comparison between FxLMS, FxAFA, and FxRLS algorithms. ... 29

3.1 Summary of the Proposed-1 method for ANC systems with online secondary path modeling. 48
3.2 Computational complexity analysis of the Proposed-1 method for ANC systems with online online secondary path modeling. 49
3.3 Computational complexity comparison of the Proposed-1 method with the existing methods. 49

4.1 Summary of the Proposed-2 method for ANC systems with online secondary path modeling. 60
4.2 Computational complexity analysis of the Proposed-2 method for ANC systems with online online secondary path modeling. 61
4.3 Computational complexity comparison of the Proposed-2 method with the other methods. ... 61

5.1 Simulation parameters for computer experiments. 65
5.2 Tap-weight lengths for various adaptive filters in computer simulations. ... 66

A.1 Data for acoustic paths $P(z)$, $S(z)$, and $F(z)$ in single-channel ANC system of Fig. A.1. 114
A.2 Data for acoustic paths $P_1(z)$, $P_2(z)$, $F_1(z)$, and $F_2(z)$ in a multiple-channel ($1 \times 2 \times 2$) ANC system of Fig. A.3. ... 115
A.3 Data for secondary paths $S_{11}(z)$, $S_{12}(z)$, $S_{21}(z)$, and $S_{22}(z)$ in a multiple-channel ($1 \times 2 \times 2$) ANC system of Fig. A.3. ... 116
Glossary

Symbols

- t: Continuous time
- f_s: Sampling frequency
- n: Discrete time index, so $n = tf_s$ where n is integer
- L: Tap-weight length of FIR filter $W(z)$
- M: Tap-weight length of FIR filter $\hat{S}(z)$
- \ast: Linear convolution operation
- μ: Step size (gain) parameter
- ∇: Gradient operator
- $z^{-\Delta}$: Delay of Δ units
- σ_x^2: Variance of the signal $x(n)$
- λ: Forgetting factor
- P_x: Power of signal $x(n)$
- \Re: Reduction (in noise) at error microphone (in dB)
- Δw: Estimation error in $w(n)$ (in dB)
- ΔS: Relative modeling error (in dB) between $\hat{S}(z)$ and $S(z)$

Signal Conventions

- $d(n)$: Desired or disturbance signal
- $r(n)$: Reference signal generated by noise source
- $v_1(n)$: Measurement noise associated with the reference microphone
- $v_2(n)$: Measurement noise associated with the error microphone
- $x(n)$: Reference signal measured by reference microphone:
 \[x(n) = r(n) + v_1(n)\]
 [Sometimes no measurement noise is assumed, and $x(n)$ is referred to as the reference signal. It will be clear from the context.]
e(n) Error signal at the error microphone
y(n) Controller output
v(n) Excitation signal for the secondary path modeling filter
f(n) Error signal for updating the modeling filter $\hat{S}(z)$
g(n) Error signal for updating the control filter $W(z)$
X(z) z-transform of the signal $x(n)$
W(z) FIR filter representing controller transfer function
P(z) Transfer function of the primary path
S(z) Transfer function of the secondary path
$\hat{S}(z)$ FIR filter representing transfer function of the secondary path modeling filter
w(n) Impulse response of the controller $W(z)$
p(n) Impulse response of the primary path $P(z)$
s(n) Impulse response of the secondary path $S(z)$
$\hat{s}(n)$ Impulse response of the secondary path modeling filter $\hat{S}(z)$
y′(n) Canceling signal at the error microphone: $y'(n) = s(n) * y(n)$
$\hat{y}'(n)$ Estimate of canceling signal $y'(n)$: $\hat{y}'(n) = \hat{s}(n) * y(n)$
$\hat{x}'(n)$ Estimate of filtered reference signal: $\hat{x}'(n) = \hat{s}(n) * x(n)$
x(n) $[x(n)x(n-1) \cdots x(n-l+1)]^T$ vector of l recent samples of $x(n)$
w(n) $[w_0(n)w_1(n) \cdots w_{L-1}(n)]^T$ tap-weight vector of FIR filter $W(z)$
$\hat{s}(n)$ $[\hat{s}_0(n)\hat{s}_1(n) \cdots \hat{s}_{M-1}(n)]^T$ tap-weight vector of FIR filter $\hat{S}(z)$