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Brief introduction to the rules of Omweso 
 
Omweso is a Mancala game popular in the East African country of Uganda, with major tournaments being 
held in the capital city of Kampala in the Kingdom of Buganda (see Figure 1). 
 

 
Figure 1 - The Peoples Of Uganda 

 
 Unlike the mancala games played on the West coast of Africa, Omweso is a ‘re-entrant’ game.  That is to 
say that all the seeds remain in play – captured seeds are re-entered onto the winners side of the board.  
Unlike the game of “Bao” played on the Swahili coast of East Africa, in Omweso the players start with all 
64 seeds in play, and set-up freely at the start. 
 

 
 

The objective of the game is to capture opponent’s seeds until he is unable to move, or to gain a knockout 
by ‘Cutting off both his heads’ (that is to capture seeds from both ends of his board in one move). 

Kampala
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Nsimbi notes that in the past games were slower, with players thinking for many minutes to find the right 
move.  Modern play, however, requires very fast play, with only 3 seconds thinking time per turn.  The 
referee counts “Omu”, “Ebiri” and if the player does not choose a hole to start his move he loses his turn to 
other player...   
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There are two ways to win in street play: 
1. Normal - the loser is immobilised and cannot move (only has empty holes and singleton seeds) 
2. Emitwe-Ebiri - 'cutting off at 2 heads'. Capture of both extreme pairs of holes in one move 
 
“Okukoneeza” is a special tournament rule: if a hole has 3 seeds during the opening before first capture 
2 seeds into next hole, final seed into next but one 
Winning by Akakyala - capturing seeds from the loser in two separate moves before the loser has even 
made his first capture of the game. 
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Speculation On The Origins Of Omweso 
 
I would like to continue by posing a question relating to the origins of Omweso:  What is the historical 
relationship between Bao3, played to the East along the Swahili coast, Gabata4 to the North, and Igisoro5 to 
the West?  Which came first?  How did the rules spread and evolve? 
 
Uganda is a landlocked country found between Lake Victoria and Lake Albert in Central Africa.  The 
country was a British colony created with its core the central kingdom of the Ganda tribe, and today 
remains fragmented by 17 different languages.   This fragmentation of peoples and their interactions is of 
great interest to anthropological research into the origins of the mancala board games of the area (see 
Figure 1 - The Peoples Of Uganda). 
 
Firstly, we must note that the peoples of the Inter-lake area were extremely isolated until modern times.  
They were discovered by outsiders at a very late stage of Victorian exploration, just 140 years ago.  In 
contrast, Europeans first discovered Australia in 1606 or even earlier according to some accounts. 
 
Secondly, there was great insularity and lack of trading between the Interlake kingdoms after 1884.    Speke 
was the first European to discover the source of the Nile at the Ripon Falls at the north end of lake Victoria 
in 1862, and was friends with the Kings of the Baganda, Karagwe and Banyoro tribes.  Mutesa was the 
30th King of Buganda, thus dating the kingdom to perhaps the early sixteenth century.  Although Mutesa 
was a regarded as a wise and progressive king, showing a great deal of interest in the ways of the 
Europeans, he maintained the traditional ‘band of steel’ around his kingdom, and was brutal in the 
treatment of his own people.  When Speke gave him rifles as a present, Mutesa ordered a court page to 
shoot someone in the outer court to demonstrate the effect of one of the gun.   His son, Mwanga ascended 
the throne in 1884 and he opposed all foreign presence, including the missions.   In fact, the murder of 
Bishop Hannington in October 1885 was a direct result of his taking the ‘easier’ land route through Busoga 
from the East, rather than sail across Lake Victoria landing directly at the Royal piers.  King Mwanga was 
afraid of strangers approaching from enemy kingdoms, and passing through all his own people before the 
royal audience took place.  Hannington lost his life because he did not take seriously the paranoid hostility 
of Mwanga towards the surrounding kingdoms.  Mwanga’s use of slave labour appears to have been an 
internal issue, with his sub-chiefs being granted permission to ‘harvest’ their own people, or raid other sub-
chiefs’ populations. The great oral historian, Jan Vansina, has dated Arab slave incursions in the Upper 
Congo basin around 1850-60, in the area to the West of the Rwandan Kingdom, but these do not appear to 
touch upon the Rwandese or Urundi Kingdoms.6   Mwanga’s rule was chaotic and the long-distance trading 
declined because of ten years of civil wars in from 1888 between the king and his chiefs, and between 
Muslim and Christian factions.  In 1897 Mwanga left the capital and was exiled by the British.  By this 
time slave trading from Zanzibar had been outlawed and the inland Arab trade routes did not resume.   
 
Finally, I note that there is great similarity between the Omweso-like games of Southern DRC/Zaire 
(Nsumbi), Rwanda (Igisoro), Sudan (Ryakati) and Western Ethipoia (Baré).  These games vary to the 
extent that they have different reversing holes (e.g. Igisoro) or that they allow both players to start the first 
move simultaneously (e.g. Ryakati).  But all require a capture by landing on a marked hole on the inside 
row opposite two occupied opponent’s holes.  In this respect they are quite different from Bao as played on 
the Swahili coast, and inland somewhat in a band from Lake Victoria to Malawi (see Figure 2: 
Geographical relationship to other games).  Above this coastal area we find the 2 row game of “Bosh” in 
Somalia, and southwards we find Moruba-like games, such as Tsoro and Njombwa.7 
 

                                                           
3 Russ, L (1995) “The Complete Mancala Games Book”  New York: Marlowe 
4 Russ, Ibid 
5 Frey, C (1998) “Le Francais au Burundi” Cedex, EDICEF 
6 Vansina, J  “Paths in the rainforests”   (1990)  London : James Currey 
7 Russ (Ibid) 
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Figure 2: Geographical relationship to other games8 

Another ‘strong’ variant of Omweso is the Rwandese game of Igisoro, which has reversing rules that make 
for complex play. 
 
Mugerwa maintains that Omweso was Mutesa’s favourite game9   Can one then postulate a hypothesis that 
as Mwanga’s reign was a period of economic and cultural isolation, then any swapping or adoption of 
mancala rules between Baganda people and others must have taken place in and before Mutesa’s reign, 
before 1884?  Further research is required in this area.  By concentrating on the rule variants of 16 hole 
mancala is various villages from the Swahili Coast all the way to DRC (Zaire) some inferences could be 
draw.  Such field-work outside of the major cities where people have lived in stable communities for 
hundreds of years should surely be the next step in tracing the evolution of the game. 

                                                           
8 This diagram is not intended to be to scale, and the nomadic nature of the Pastoral cattle-herders in these 
regions will blur any simplistic approach in matching games rules to fixed territorial tribal borders. 
9 Mugerwa p17 
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Omweso’s Complexity 
 

State-Space Complexity 
 
A formula for game state-space complexity: 
 
      (h-1+ s)!    minus k 
 (h-1)! x s  
Where: 
 h = number of holes 
 s = number of seeds 
 k = number of illegal/improbable positions 
 
An illegal position in chess might be where a King and Queen share the same square.  An improbable 
position in Awari would include 47 seeds in one hole, and the remaining seed in another. 
 

Table 2: State-space complexities of 'world' games 

Game Initial set-up As play starts Midgame Endgame 
Awari 1 Slowly rising 2.8 x 1011 Falling 
Bao 1 Very slowly Rising 1025 - 
Omweso 5.6 x 1023 Rising quickly 1025 - 
Chess 1 Rising slowly 1050 Falling 
Go11 1 Rising quickly 10160 to 500 Falling 
 
In Omweso, each player has 32 seeds to set up, giving 7.5 x 1011 possible positions for the first player to set 
up, which can be countered by the other player in 7.5 x 1011 ways giving 5.6 x 1023  combinations12.  In 
tournament play there are no illegal set-up combinations, and very few improbable ones. 
 
The ‘k’ factor for mancala games is lower than in positional games since many pieces may share the same 
‘hole’ in mancala.  The fact that pieces are white or black in positional games, and have different attributes 
(e.g. knight, King etc.)which increases the combinations in those games.  State-space complexity in 
Omweso rises rapidly after the first captures, and remains high throughout as the seeds become 
redistributed in large numbers quasi-stochastically from one player to the other. 
 
Note that different games have different numbers of pieces in play at different stages.  For example, in Bao 
seeds are introduced throughout the initial phase of the game, with captures are re-entered onto the board.  
In chess captured pieces are removed.  In Go new pieces are added until the end of the game, when areas of 
stability appear in ‘safe’ areas.  Therefore all these calculations have many implicit assumptions, and are 
only roughly comparable.  De Voogt has pointed out that games with high theoretical state-space 
complexity, such as Songka may be less ‘intricate’ for humans as the outcomes are beyond mental 
calculation and require ‘brute force’ calculations of no finesse.13   This implies that only games which are 
on the edge of human capacity for calculation and tactics and especially those that show high degrees of 
chaotic behaviour are ‘interesting’. 
 
 

                                                           
11 Goldis, Bjorn (1999) “Towards Abstraction in Go Knowledge Representation” 
12 Mayega pp11-12 
13 De Voogt (1995) “Limits of the mind” Leiden, CNWS 
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Game-tree Complexity 
Table 3: Game-tree complexities of 'Mancala' games 

Game Initial set-up By endgame (no 
forced moves) 

Awari 1 1032 
Bao 1 2 x 1034 
Omweso 5.6 x 1023 (5.6 x 1023)  

x (5 x 1050) 
= 2.8 x 1074 

 
Game-tree complexity can be calculated as: 
 
i1 x i2 x (b)p 
 
Where: 
i = branches in set-up of game for players 1 and 2 
b = branches per move 
p = plays in game length 
 
Awari and Omweso do not have forced moves (except where in Awari one must ‘feed’ the opponent if all 
his holes are empty).  However, in Bao forced moves are very common, perhaps 1/10 in master-level 
play14, and more common amongst less experienced players who do not know how to avoid or take 
advantage of these situations.  One must also take into account the increased choices a Bao player has in 
choosing where to re-enter captured seeds (left or right) in the initial stage of the game.  In Omweso the 
player has no choice where to re-enter the seeds, but he/she has greater choice over where to begin sowing 
to make a capture. 
 
The average in a sample game15 from the Kampala 2000 tournament is 5.4 anti-clockwise possibilities plus 
the possibility of deciding to reverse capture in about 20% of sowings.  Therefore the number of branches 
per player turn in Omweso is well above 6.  However, when the other player is susceptible to a reverse 
capture, the possibility of further reverse captures often appears (say 50% of cases).  An example of this is 
shown at one point in the sample game.  A multiple-reverse capture is made by Semakula, where his initial 
5 choices of move expand into 9 choices of outcome depending on whether he decides to reverse capture or 
not during his move. 
 
If one assumes then that there are 7 branches per turn with an average game being 60 turns, then the 
branching complexity would become 760 = 5 x 1050 

 
There are, however, many assumptions in the above calculations.  For example, using an average for the 
branching complexity “b” will overstate the branches if b is sometimes low and sometimes high.  For 
example, if a two turn game has 5 branches per turn, then the number of end positions is 25.  However if 
the first turn is forced (i.e. b=1) and the second turn has, say, 9 possibilities, then only 9 outcomes exist.  
But the average of 5+5 is the same as 1+9….. 
 
A comprehensive analysis of tournament games is required before one can come to any conclusion about 
the relevance of these sorts of calculations in relation to branching complexities.  I have only analysed one 
game for this paper – a full transcription of the games is in progress, and a selection of the games in video 
format is available on CD-ROM where the seeds being played are easy to follow, even at the speed these 
players manage to achieve! 
 

                                                           
14 Ibid p.158 
15 ddamba s vs semakula u - game 1 Kampala 2000 (at 2:20 minutes) 
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Mutational Complexity 
 
De Voogt16 has introduced the concept of ‘mutational complexity’ with respect to the number of changes 
on the board due to a single move.  These moves change the nature of the board by changing the state-space 
not just in moving from one ‘position’ to another, as in Chess, but by changing the all the intervening 
numbers due to the sowing process. 
 
The capturing re-entry rules in Bao lead to a preponderance of seeds in the front rows, and it is reasonably 
rare for players to ‘takata’ round the entire board (5 out of 72 moves in one example tournament game)  In 
Aware there is no ‘relay sowing’ so the impact of any one move usually limited to changes in half-a-dozen 
or less holes.  De Voogt estimates a change in 6 holes per move in Bao (including the hole from which the 
seeds have been removed). 
 
In Omweso the average number of changed holes in the sample game was exactly 3 per move for the first 9 
moves whilst the players positioned themselves without laying themselves open.  The next stage had an 
average of 7.1 moves per player turn as one player maintained a large position ready to strike, and 
thereafter 13.4 per turn.  This count of mutational complexity does not however take into account lapping 
the board, in which many holes are changed more than once, and the additional changes to holes already 
visited that occur when captured seeds are re-entered onto the board.  If these are counted, then in one 
single move Ddamba not only changes the state of 6 holes on his opponent’s side of the board, but sows 47 
times into the holes on his side of the board, changing their seed count in some cases 5 times. 
 
The average number of holes changed across the sample Omweso game is 9.31 (or 12.4 if one double-
counts holes sowed into more than once in a turn).  The game was 26 moves per player, and 3:05min in 
length. This is about 3.6 seconds per player turn (including thinking and sowing time).  The sample game 
was somewhat shorter in length than average (tournament games are usually 4-5 minutes long). 
 
From these calculations I could conclude that Omweso is a more complex game than Bao.  But more 
research is needed to define what we mean by ‘complexity’.  We need to move beyond simple 
combinatorial statistics into definitions of ‘finesse’, ‘chaos’ and non-computational complexities that 
human beings find difficult, such as ‘mutational complexity’ and ‘memory complexity’.  Other human 
characteristics such as dexterity and speed of play are pronounced in Mancala games, especially where 
thinking time is curtailed as much as it is in Omweso.  Does this lead to a lessening of depth of play, or 
does it enhance a players use of subliminal ‘zen-like’ techniques and ‘feel’ for play that ‘Go’ dan-grade 
players exhibit? 

                                                           
16 De Voogt p.158 
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Standard Set-Ups: 2 examples 
 
There are many standard openings in Omweso I have gathered from my informants.   
 
Here I would like to present two: one is a ‘junior grouping’, that is to say 8 seeds or less, and the other is 
the most extreme opening position the “twenty-three”. 
 
In Omweso there is no restriction on setting up seeds, but in ‘street-play’ one generally only uses ‘junior 
groupings’.  In tournaments, ‘senior groupings’ are allowed, but require very careful play: 
 

Table 4: Position notation17 

P O N M L K J I ‘Upper’ Player 
H G F E D C B A  
a b c d e f g h  
i j k l m n o p ‘Lower’ Player

 
 

Example ‘junior grouping’ set-up 
 

Table 5 shows Upper having laid out 'seven', and Lower has responded with a strong counter opening.  The 
footnote in the presentation notes give some idea of the tactics that strong players will know either by rote 
or by quick calculation.18 

Table 5: Example ‘junior grouping’ 

        
7 3 3 3 3 3 3 7 
5  7 2 4 2 6  
       6 

 

                                                           
17 Several alternative notations have been used.  Shackell presented two different notations: one using anti-
clockwise counting from 1-16 (Uganda Journal, 1934 vol.II) and an alphabetical notation omitting “o” and 
“l” (1935 vol.III).  Both Russ and Zaslavsky use an anti-clockwise alphabetical notation.  Ilukor uses 
Shackell’s anti-clockwise number notation to demonstrate the ‘magic numbers’ therein.  The notation I am 
using here is one that has been used in Kampala by the Ugandans, so it has the advantage of compatibility 
with the notes of the experts, even though the Zaslavsky or Ilukor notations have some advantages. 
18 Notes on recommended play: 
A. The best opening for the ‘Upper’ player is “B”, which moves the 3 seeds there into A, I and J. 
 ‘Lower’ is best to respond with “d”, sowing into c and b. 
B. Upper then plays the 3 in “C” 
 Lower plays “e”, landing in “a”, and then reversing with those 6 into “g” capturing the 2 now  
 in “B” and “J” 
C. Upper plays “H”, hoping for Lower to play c which will put on 2 heads…. 
 Lower wisely plays “p” 
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Example ‘senior grouping’ set-up 
 
Table 6 shows Uppers set up using the most extreme ‘senior grouping’: the “twenty-three”. 
Table 7 shows recommended responses to the set-up by Upper: 
 

Table 6: Upper sets up the 'twenty-three' 

23        
 3 3 3     

 

Table 7: Lower responds to the "twenty three" 

   3 3 3 3   
       20  
   Or:      
  3 3 3 19  2  
      2   
   Or:      

1 1 2 3 3 18  2  
       2  
   Or:      
  3 3 3 3 3 17  
         
   Or:      
  3 3 3 3 3   
       17 See footnote 19 
   Or:      
    3 3 3   
       23  

 
Junior groupings having a maximum of 5, 6, or 7 seeds are popular.  Senior groupings of 17, 19, 20, 21, 22 
and 23 seeds are seen often in tournament play.    Openings, responses and analysis of the first dozen or so 
moves exist for these opening settings have been documented in manuscript form, but I have yet to collate, 
analyse or check all these. 

                                                           
19 Nsimbi (1968) Diagram 8 illustrates exactly the same opening as ‘Uppers’ position in Table 5.   My 
informants were familiar with Nsimbi’s work published in the vernacular.  However, this opening (the 17) 
was also illustrated in the Uganda Journal in 1934 (Ref: Shackell 1934) which was unknown to them.  This 
opening may therefore have been handed down the generations by play alone for more than 65 years. 
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Magic Numbers 
 
Professor Mayega wrote the first known Omweso computer program (written in Algol 60), and presented 
some statistical analysis in his 1974 paper, together with some work on applying matrix theory to the 
Omweso problem to create a goal-seeking program driven by a points scoring system. 
 
In 1978 Professor Ilukor took a different tack by investigating the ‘magic numbers’ within Omweso rather 
than crunching away at traditional statistical and matrix bound techniques. 
 
He made several simple observations which are illustrated in Figure 3.  These observations help introduce 
us to a new form of mathematics that may solve many complex problems in Mancala, as we shall see in the 
next section. 
 

Figure 3: Magic Numbers In Omweso 
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Never-Ending Moves – A Proof! 
 

Trivial Never-Ending Moves 
 
There is a category of position which I have called “Trivial never-ending moves” which may be based on 
triangular numbers such as those presented in Figure 4. 
 

 
Figure 4: "Trivial" never-ending moves 

 
These “trivial” settings have the following properties: 

• One can see the repetition immediately without experimentation 
• After each move the board is left in exactly the same state, except that the starting hole position is 

rotated 
• Triangular numbers play a part with patterns of 4,3,2,1 appearing 

 

Complex Never-Ending Moves 
 
Of more interest, is a starting position that my informants in Kampala showed me that appeared to lead to 
apparently infinite looping (see Table 8).20 
 

Table 8: "Hudson's 32" a 61,776  iteration never-ending game 

3 2 3 2 3 2 3 1 
2 2 1 2 1 2 1 2 

 
Two players working in 4 hour relays in Kampala had failed to find an end-point or repetition in the game.  
On my return to London I wrote a Java program to: 

• Calculate the number of iterations to the return position 
• Check for any rotational symmetry in intervening moves 

 
I also checked some other never-ending moves from the literature and one of my own invention.  The 
results are shown in Figure 5. 
 

                                                           
20 Mayega (1974) assumed in writing his Algol 60 program that “infinite looping cannot occur, but it 
would be nice to have a formal proof or disproof of this statement”.  But Ilukor (1978) reported that players 
were well aware of “infinite looping” , and postulated his (incorrect) theory that there were only 4 such 
cases, all involving 25 seeds. 
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Figure 5: Known complex never-ending moves 

 
Ilukor had a theory that all never-ending positions were related to his Magic Number “25”.  The examples 
here of my “28” and Kygaba’s “32” disprove this idea.21 
 
These complex positions have the following attributes: 

• A large (200+) number of repetitions before the position appears again 
• When the seeds appear again in the same sequence, the starting hole is in exactly the same position 

(i.e. no intervening rotation occurs) 
• The number of iterations in these examples is always divisible by 4 
• There are no obvious patterns occurring 

 
Jonkers, Uiterwijk and de Voogt in last year’s Colloquium22 presented the starting position shown in Table 
2.  Wondering whether such positions can occur in a game of 16 hole Mancala.  The answer is yes, but in 
Bao this can only occur in a real game if one player cannot capture at the start of his move and then plays 
“takata” unable to capture again in his move, and therefore continuing an un-ending move.  This could 
occur with Ilukor’s “Case 4” opening shown in Figure 5, where only one hole may start, and would only 
capture if the ‘Lower’ opponent had a front-row occupied where the 17th seed would land.  This will 
seldom occur in Bao.  However, in Omweso, if the ‘Lower’ player is invulnerable to capture, as he often is, 
then ‘Upper’ will sometimes find himself unknowingly starting a never-ending move.  The tournament 
rules from Kampala recognise this with their rule for “Ekyeso kyolutentezi oba ekitayalika” = “Non 
stop/unending move” 

 
“…the umpire shall give 3 minutes, and where the 3 minutes elapse, he shall order the game to be 
repeated.” 23 

 
 

                                                           
21 Ilukor’s Cases 2 & 3 do not work as presented in his paper, probably due to typo errors. 
22 “Mancala  Games – Topics in Matematics and Artificial Intelligence”  (2001) Donkers J, Uiterwijk J and 
deVoogt A 
23 “Amateeka Agafuga Omweso Mu Uganda Y.M.C.A.” or “Rules Governing The Board Game “Omweso” 
In The Uganda YMCA”,  Uganda Ymca Mweso Council, Nakasero, Kampala 1999 
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Table 9: Jonkers, Uiterwijk and de Voogt’s “40” 

3 2 3 2 3 2 3 2 
2 3 2 3 2 3 2 3 

 
Steven Mayer24 is Professor of Physics at the Milwaukee School of Engineering, Milwaukee, Wisconsin. I 
am thankful to him for providing a theorem for a test for ‘complex never-ending moves’ together with a 
mathematical proof.   His full paper is attached as an Appendix to these presentation notes.  I will give a 
brief non-mathematical overview of his theorem and proof here in Figure 6. 
 

Figure 6 Mayer Tests A, B, C & D 

 
 

                                                           
24  
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Mayer’s full proof is provided in the Appendix to these presentation notes.  Mayer starts by proving that 
Test A is violated at the end of a sowing if the last seed lands in an empty hole.  He goes on to show that 
his four tests are mutually supportive: 

• Test A can only be violated at the end of any move if Tests B, C or D are violated at the beginning 
of that move 

• Test B can only be violated if Tests A or D were previously violated 
• Tests C & D can only be violated if Tests A, B, C or D were previously violated 
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Conclusions 
 
There are many areas of mathematical, historical and anthropological research still requiring work. 
 
How did these games come to be played in so many areas by so many peoples who were for long periods of 
time isolated from outside influence?  Why is Omweso so different from Bao, yet played with the same 
board configuration and number of seeds? 
 
Some mathematical questions are still unanswered: 

• Does Mayer’s theorem cover all Complex cases? 
• Is the iteration count always divisible by 4? 
• Can we define a method to catalogue all never ending positions for n-hole mancala games? 

 
I hope that this paper shows that Omweso poses a unique and interesting area of board games research that 
has been relatively neglected up to now by the academic community, and perhaps I shall stimulate further 
research by the presentation of this paper. 
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Theorem on Endless Moves - Appendix 
 

© 2001 by Steven P. Mayer25 
Professor of Physics at the Milwaukee School of Engineering, Milwaukee, Wisconsin 

 
Notation: 
 
On a 16-hole mancala board, let the hole from which the next iteration is to begin be “0” and number the 
remaining holes in a clockwise direction from 1 to 15. Let y_k denote the number of seeds in hole k.26 
 
Theorem: 
 
A move in 16-hole mancala is endless if it satisfies all of the following incongruencies for all values of i 
and j, with i running from 0 to 15 and j running from 0 to 15 - i: 
 
y_i not congruent to i + 1 (mod 17)   A 
 
y_i not congruent to i - 1 (mod 17)   B 
 
y_(i+j) not congruent to y_i + j + 1 (mod 17)  C 
 
y_(i+j) not congruent to y_i + j – 1 (mod 17)  D 
 
Outline of Proof: 
 
Assume A, B, C and D to be true for all permissible values of i and j at the start of one iteration. We will 
prove that they are true for all permissible valus of i and j at the start of the next iteration. Therefore they 
will hold for all iterations. Then incongruency A for the case i = 0 implies that the number of seeds in hole 
0 can never be congruent to 1 (and therefore can never equal 1). We will establish that all of the 
incongruencies hold by assuming the negation of each one and showing that in each case it implies the 
negation of an incongruency in the previous iteration, which contradicts our assumption. 
 
Notation: 
Let A(i) refer to incongruency A for a particular value of i. 
Let B(i) refer to incongruency B for a particular value of i. 
Let C(i,j) refer to incongruency C for particular values of i and j. 
Let D(i,j) refer to incongruency D for particular values of i and j. 
Let x_k denote the number of seeds in hole k at the start of iteration 1. 
Let y_k denote the number of seeds in hole k at the start of iteration 2. 
Let ~ mean “is congruent modulo 17”. 
 
For example, if the arrangement of seeds is as follows: 
 
12  5   6   0   2  11  9   0 
  2  6   3   3   5    0  1   8 
 
and if the move begins by lifting the twelve seeds from the upper left-hand hole, then y_0 = 12,  y_1 = 5, 
y_2 = 6,  y_3 = 0,  y_4 = 2,  y_5 = 11,  y_6 = 9,  y_7 =0,  y_8 = 8,  y_9 = 1,  y_10 = 0,  y_11 = 5,  y_12 = 
3,  y_13 = 3,  y_14 = 6, y_15 = 2  

                                                           
25 
  
26 BW: This proof can be extended for an ‘n’ hole Mancala board, with the test and proof working to mod 
n+1. 
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Case 1: Suppose x_0 is a multiple of 16.  
 
Then x_0 = 16n for some n. Thus 
x_0 ~ -n   (1) 
y_0 = n   (2) 
y_k = x_k + n for k > 0 (3) 
 
Suppose A(0) is violated on iteration 2. Then 
y_0 ~ 1 
n ~ 1 by (2) 
x_0 ~ -1 by (1) 
contradicts B(0) on iteration 1 
 
Suppose A(i) is violated on iteration 2, i > 0. Then 
y_i ~ i + 1 
x_i + n ~ i + 1 by (3) 
x_i ~ i + 1 – n 
x_0 ~ x_0 + i + 1 by (1) 
contradicts C(0,i) on iteration 1 
 
Suppose B(0) is violated on iteration 1. Then 
y_0 ~ -1 
n ~ -1 by (2) 
x_0 ~ 1 by (1) 
contradicts A(0) on iteration 1 
 
Suppose B(i) is violated on iteration 2, i > 0. Then 
y_i ~ i -1 
x_i + n ~ i – 1 by (3) 
x_i ~ i – 1 – n  
x_i ~ x_0 + i – 1 by (1) 
contradicts D(0,i) on iteration 1 
 
Suppose C(0,0) is violated on iteration 2. This can never happen, since C(0,0) implies 0 ~ 1. 
 
Suppose C(0,j) is violated on iteration 2, j > 0. Then 
y_j ~ y_i + j + 1 
x_j + n ~ n + j + 1 by (3) and (2) 
x_j ~ j + 1  
contradicts A(j) on iteration 1 
 
Suppose C(i,0) is violated. This can’t happen since it implies y_i ~ y_i + 1 
 
Suppose C(i,j) is violated on iteration 2, i > 0 , j> 0. Then 
y_(i+j) ~ y_i + j + 1 
x_(i+j) + n ~ x_i + n + j + 1 by (3) 
x_(i+j) ~ x_i + j + 1 
contradicts C(i,j) on iteration 1 
D(0,0) can’t happen. 
 
Suppose D(0,j) is violated on iteration 2 with j > 0. Then 
y_j ~ y_0 + j – 1 
x_j + n ~ n + j – 1 by (3) and (2) 
x_j ~ j – 1 
contradicts B(j) on iteration 1 
D(i,0) can’t happen. 
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Suppose D(i,j) is violated on iteration 2, with i > 0 and j > 0. Then 
y_(i+j) ~ y_i + j – 1 
x_(i+j) + n ~ x_i + n + j – 1 by (3) 
x_(i+j) ~ x_i + j – 1 
contradicts D(i,j) on iteration 1 
 
 
 
Case 2: x_0 is not a multiple of 16. 
 
Then x_0 = 16n + m for some n and m, where 0 < m < 16. Thus 
x_0 ~ m – n      (4) 
y_0 = x_(16-m) + n + 1    (5) 
y_m = n      (6) 
If 0 < k < m then y_k = x_(16-m+k) + n + 1  (7) 
If k > m then y_k = x_(k-m) + n   (8) 
 
To save space I will use boldface type to denote incongruencies that are 
hypothetically violated on iteration 2; I will use normal type to denote 
incongruencies that are consequently violated on iteration 1. I will omit cases where 
j = 0, since these are all vacuous. 
 
A(0): 
y_0 ~ 1 
x_(16-m) + n + 1 ~ 1 by (5) 
x_(16-m) ~ -n 
x_(16-m) ~ x_0 – m by (4) 
x_(16-m) ~ x_0 + (16-m) + 1 because 16 ~ -1 
C(0,16-m) 
 
A(i), 0 < i < m: 
y_i ~ i + 1 
x_(16-m+i) + n + 1 ~ i + 1 by (5) 
x_(16-m+i) ~ i – n  
x_(16-m+i) ~ x_0 + i – m by (4) 
x_(16-m+i) ~ x_0 + (16-m+i) + 1 
C(0,16-m+i) 
 
A(m): 
y_m ~ m + 1 
n ~ m + 1 by (6) 
-1 ~ m – n  
-1 ~ x_0 by (4) 
B(0) 
 
A(i), i > m : 
y_i ~ i + 1 
x_(i-m) + n ~ i + 1 by (8) 
x_(i-m) ~ (i-m) + m – n + 1 
x_(i-m) ~ (i-m) + x_0 + 1 by (4) 
C(0, i-m) 
 



Board Games in Academia V - Omweso presentation  23 of 26 

B(0): 
y_0 ~ -1 
x_(16-m) + n + 1 ~ -1 by (5) 
x_(16-m) ~ (16 – m) + m – n – 1 because 16 ~ -1  
x_(16-m) ~ (16 – m) + x_0 - 1 by (4) 
D(0, 16-m) 
 
B(i), 0 < i < m : 
y_i ~ i – 1 
x_(16-m+i) + n + 1 ~ i - 1 by (7) 
x_(16-m+i) ~ (16 – m + i) + m – n – 1  
x_(16-m+i) ~ (16 – m + i) + x_0 – 1 by (4) 
D(0, 16-m+i) 
 
B(m): 
y_m ~ m – 1 
n ~ m – 1 by (6) 
1 ~ m – n 
1 ~ x_0 by (4) 
A(0) 
 
B(i), i > m : 
y_i ~ i – 1 
x_(i-m) + n ~ i – 1 by (8) 
x_(i-m) ~ (i – m) + m – n – 1 
x_(i-m) ~ (i – m) + x_0 – 1 by (4) 
D(0, i-m) 
 
C(0, j), 0 < j < m : 
y_j ~ y_0 + j + 1 
x_(16-m+j) + n + 1 ~ x_(16-m) + n + 1 + j + 1 by (7) and (5) 
x_(16-m+j) ~ x_(16-m) + j + 1  
C(16-m, j) 
 
C(0, m): 
y_m ~ y_0 + m + 1 
n ~ x_(16-m) + n + 1 + m + 1 by (6) and (5) 
x_(16-m) ~ (16 – m) – 1 
B(16 – m) 
 
C(0, j), j > m : 
y_j ~ y_0 + j + 1 
x_(j-m) + n ~ x_(16-m) + n + 1 + j + 1 by (8) and (5) 
x_[(j-m) + (16-j)] ~ x_(j-m) + (16 – j) – 1 
D(j-m, 16-j) 
 
C(i, j), 0 < i < m , 0 < j < m – i : 
y_(i+j) ~ y_i + j + 1  
x_(16-m+i+j) + n + 1 ~ x_(16-m+i) + n + 1 + j + 1 by (7)  
x_(16-m+i+j) ~ x_(16-m+i) + j + 1 
C(16-m+i, j) 
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C(i, m-i), 0 < i < m : 
y_(i+m-i) ~ y_i + m – i + 1 
y_m ~ y_i + m – i + 1 
n ~ x_(16-m+i) + n + 1 + m – i + 1 by (6) and (7) 
x_(16-m+i) ~ (16 – m + i) – 1 
B(16-m+i) 
 
C(i, j), 0 < i < m, m – i < j < 16 – i : 
y_(i+j) ~ y_i + j + 1 
x_(i+j-m) + n ~ x_(16-m+i) + n + 1 + j + 1 by (8) and (7) 
x_[(i+j-m) + (16-j)] ~ x_(i+j-m) + (16 – j) – 1 
D(i+j-m, 16-j) 
 
C(m, j), j > 0 : 
y_(m+j) ~ y_m + j + 1 
x_(m+j-m) + n ~ n + j + 1 by (8) and (6) 
x_j ~ j + 1 
A(j) 
 
C(i, j), i > m , j > 0 : 
y_(i+j) ~ y_i + j + 1 
x_(i+j-m) + n ~ x_(i-m) + n + j + 1 by (8) 
x_(i+j-m) ~ x_(i-m) + j + 1 
C(i-m, j) 
 
D(0, j) , 0 < j < m : 
y_j ~ y_0 + j – 1 
x_(16-m+j) + n + 1 ~ x_(16-m) + n + 1 + j – 1 by (7) and (5) 
D(16-m, j) 
 
D(0, m): 
y_m ~ y_0 + m – 1 
n ~ x_(16-m) + n + 1 + m – 1 by (6) and (5) 
x_(16-m) ~ (16 – m) + 1 
A(16-m) 
 
D(0, j), j > m : 
y_j ~ y_0 + j – 1 
x_(j-m) + n ~ x_(16-m) + n + 1 + j – 1 by (8) and (5) 
x_[(j-m) + (16-j)] ~ x_(j-m) + 1 + 16 – j 
D(j-m, 16-j) 
 
D(i, j), 0 < i < m , 0 < j < m – i : 
y_(i+j) ~ y_i + j – 1 
x_(16-m+i+j) + n + 1 ~ x_(16-m+i) + n + 1 + j – 1 by (7) 
D(16-m+i, j) 
 
D(i, m-i) , 0 < i < m : 
y_m ~ y_i + m – i – 1 
n ~ x_(16-m+i) + n + 1 + m – i – 1 by (6) and (7) 
x_(16-m+i) ~ 16 – m + i + 1 
A(16 – m + i) 
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D(i, j), 0 < i < m , m – i < j < 16 – i : 
y_(i+j) ~ y_i + j – 1 
x_(i+j-m) + n ~ x_(16-m+i) + n + 1 + j – 1 by (8) and (7) 
x_[(i+j-m) + (16-j)] ~ x_(i+j-m) + (16 – j) + 1 
C(i+j-m, 16-j) 
 
D(m, j), j > 0 : 
y_(m+j) ~ y_m + j – 1 
x_(m+j-m) + n ~ n + j – 1 by (8) and (6) 
x_j ~ j – 1 
B(j) 
 
D(i, j), i > m , j > 0 : 
y_(i+j) ~ y_i + j – 1 
x_(i+j-m) + n ~ x_(i-m) + n + j – 1 by (8)  
D(i-m, j) 

End of Appendix 
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