FACEV - Faculdade de Ciências Econômicas de Vitória

Introdução à Estatística Econômica - 2º ano

Prof. Paulo Cézar Ribeiro da Silva


* A U L A NET - 06 *


DISTRIBUIÇÃO DE FREQUÊNCIA

É um tipo de tabela que condensa uma coleção de dados conforme as frequências (repetições de seus valores).

Tabela primitiva ou dados brutos:É uma tabela ou relação de elementos que não foram numericamente organizados. É difícil formarmos uma idéia exata do comportamento do grupo como um todo, a partir de dados não ordenados.

Ex : 45, 41, 42, 41, 42 43, 44, 41 ,50, 46, 50, 46, 60, 54, 52, 58, 57, 58, 60, 51

ROL:É a tabela obtida após a ordenação dos dados (crescente ou decrescente).

Ex : 41, 41, 41, 42, 42 43, 44, 45 ,46, 46, 50, 50, 51, 52, 54, 57, 58, 58, 60, 60

Distribuição de frequência sem intervalos de classe:É a simples condensação dos dados conforme as repetições de seu valores. Para um ROL de tamanho razoável esta distribuição de frequência é inconveniente, já que exige muito espaço. Veja exempo abaixo:

Dados Frequência
41 3
42 2
43 1
44 1
45 1
46 2
50 2
51 1
52 1
54 1
57 1
58 2
60 2
Total 20

Distribuição de frequência com intervalos de classe:Quando o tamanho da amostra é elevado é mais racional efetuar o agrupamento dos valores em vários intervalos de classe.

Classes Freqências
41 |------- 45 7
45 |------- 49 3
49 |------- 53 4
53 |------- 57 1
57 |------- 61 5
Total 20

ELEMENTOS DE UMA DISTRIBUIÇÃO DE FREQUÊNCIA (com intervalos de classe):

CLASSE: são os intervalos de variação da variável e é simbolizada por i e o número total de classes simbolizada por k. Ex: na tabela anterior k=5 e 49 |------- 53 é a 3ª classe, onde i=3.

LIMITES DE CLASSE: são os extremos de cada classe. O menor número é o limite inferior de classe (li) e o maior número, limite superior de classe(Li). Ex: em 49 |------- 53... l3= 49 e L3= 53. O símbolo |------- representa um intervalo fechado à esquerda e aberto à direita. O dado 53 do ROL não pertence a classe 3 e sim a classe 4 representada por 53 |------- 57.

AMPLITUDE DO INTERVALO DE CLASSE: é obtida através da diferença entre o limite superior e inferior da classe e é simbolizada por hi = Li - li. Ex: na tabela anterior hi= 53 - 49 = 4. Obs: Na distribuição de frequência c/ classe o hi será igual em todas as classes.

AMPLITUDE TOTAL DA DISTRIBUIÇÃO: é a diferença entre o limite superior da última classe e o limite inferior da primeira classe. AT = L(max) - l(min). Ex: na tabela anterior AT = 61 - 41= 20.

AMPLITUDE TOTAL DA AMOSTRA (ROL): é a diferença entre o valor máximo e o valor mínimo da amostra (ROL). Onde AA = Xmax - Xmin. Em nosso exemplo AA = 60 - 41 = 19.

Obs: AT sempre será maior que AA.

PONTO MÉDIO DE CLASSE: é o ponto que divide o intervalo de classe em duas partes iguais. .......Ex: em 49 |------- 53 o ponto médio x3 = (53+49)/2 = 51, ou seja x3=(l3+L3)/2.

MÉTODO PRÁTICO PARA CONSTRUÇÃO DE UMA DIST. DE FREQUÊNCIAS C/ CLASSE:

1º - Organize os dados brutos em um ROL.

2º - Calcule a amplitude amostral AA.

No nosso exmplo: AA =60 - 41 =19

3º - Calcule o número de classes através da "Regra de Sturges":

n i= nº de classes
3 |-----| 5 3
6 |-----| 11 4
12 |-----| 22 5
23 |-----| 46 6
47 |-----| 90 7
91 |-----| 181 8
182 |-----| 362 9

Obs: Qualquer regra para determinação do nº de classes da tabela não nos levam a uma decisão final; esta vai depender, na realidade de um julgamento pessoal, que deve estar ligado à natureza dos dados.

No nosso exemplo: n = 20 dados, então ,a princípio, a regra sugere a adoção de 5 classes.

4º - Decidido o nº de classes, calcule então a amplitude do intervalo de classe h > AA/i.

No nosso exemplo: AA/i = 19/5 = 3,8 . Obs:Como h > AA/i um valor ligeiramente superior para haver folga na última classe. Utilizaremos então h = 4

5º - Temos então o menor nº da amostra, o nº de classes e a amplitude do intervalo. Podemos montar a tabela, com o cuidado para não aparecer classes com frequência = 0 (zero).

No nosso exemplo: o menor nº da amostra = 41 + h = 45, logo a primeira classe será representada por ...... 41 |------- 45. As classes seguintes respeitarão o mesmo procedimento.

O primeiro elemento das classes seguintes sempre serão formadas pelo último elemento da classe anterior.

1