HOME
CANCER AND BACTERIA
         III
None of these studies mention the possibility that Russell bodies might represent unusual large growth forms of bacteria. However, if Russell bodies prove to be tiny intracellular microbes that grow and enlarge within leukocytes, it would be natural to expect these white blood cells (especially the plasma cell) to produce an antibody attack against these invading organisms, resulting in the production of immunoglobulin-coated cells and organisms.
 
Bacterial transformation into Giant forms (L-form "large bodies')
 
There are many different kinds of bacteria but only one type that has been consistently observed and studied in cancer for over a century. The cancer microbe has many forms, some of which appear as ordinary staphylococci or larger yeast-like forms that further enlarge to the size of Russell bodies. As mentioned, some Russell bodies enlarge to truly gigantic proportions, one hundred times the diameter of small cocci. One can liken this growth potential to an empty balloon that is then blown up to full-size. In addition, the microbe has exceedingly small filterable submicroscopic forms approaching the size of viruses, visible only by use of the electron microscope.
 
Scientists who have extensively studied the cancer microbe claim it most closely resembles the type bacteria that cause tuberculosis and leprosy- the so-called mycobacteria. Mycobacteria are closely related to fungi; and some microbiologists claim mycobacteria are essentially derived from the "higher" fungi. "Myco" in Greek means fungus. Ergo, mycobacteria are considered fungus like bacteria.

During the 1960s microbiologist Louis Dienes popularized the terms "cell wall-deficient" and "L form" to encompass bacterial growth stages that exist at one extreme as small filterable virus-sized forms, and at the opposite extreme as large (50 micron or larger) spherical forms that he termed "large bodies." These so-called large bodies are what I believe Russell bodies represent.
 
It must be understood that microbes are partially "classified" in microbiology according to size. Viruses are submicroscopic and cannot be visualized with an ordinary light microscope. Unlike bacteria, viruses can only replicate inside a cell. Bacteria can be seen microscopically, but smaller submicroscopic and filterable bacterial forms (now known as nanobacteria) are also known. Fungi and yeast forms are much larger than bacteria, and "mold" can obviously be seen with the naked eye.
 
Larger Russell bodies are indeed similar in size to certain spore forms of fungi. However, what is generally not appreciated is that bacteria can grow into fungal-sized large bodies, depending on certain laboratory conditions. Thus, bacteria in this form can easily be mistaken for fungi and yeast organisms.

Giant-sized L-forms greatly resemble large-sized Russell bodies. The century-old history of research into atypical growth forms of bacteria is reviewed in Lida Mattman's seminal text, Cell Wall Deficient Forms: Stealth Pathogens (1993). A knowledge of this somewhat esoteric branch of microbiology is essential to understand the proposed microbiology of cancer.
 
The most impressive electron microscopic photographs I have ever observed of cell wall-deficient L-forms of mycobacteria were taken by the late C Xalabarder of Barcelona. In a series of papers and books (1953-1976) published in Spanish (with English-language summaries) by the Publicaciones del Instituto Antituberculoso "Francisco Moragas", Xalabarder totally transformed my concept about how tuberculosis-causing mycobacteria reproduce and grow and drastically change their appearance. In medical school we were taught that "simple" bacteria simply divide in two equal halves by "binary fission". However, nothing could be further from the truth, and it is only by a refutation of this simplistic concept that a serious study of the microbiology of cancer can be undertaken.

Tuberculosis and Cancer
 
Because cancer is produced by a microbe similar to the bacteria that cause TB, much can be learned from experiments like those performed by Xalabarder in 1967. Using "atypical mycobacteria" grown from TB patients who had taken long courses of drug therapy, Xalabarder then injected these bacteria into guinea-pigs and rabbits. Amazingly, he was able to experimentally produce lesions which microscopically resembled cancer! He also produced experimental lesions characteristic of so called "collagen disease"- a type of lesion seemingly unrelated to cancer.
 
During the 1960s I discovered unusual pleomorphic acid-fast bacteria in a collagen disease called scleroderma, and later in another collagen disease called lupus erythematosus. The germs I grew from these patients closely resembled scleroderma microbes that were reported by Virginia Livingston in 1947, and which subsequently led to her discovery of similar acid-fast microbes in cancer.

In 1969 Xalabarder manipulated different developmental stages of TB bacteria and inoculated them into one thousand guinea pigs. In the process, he produced the microscopic picture of sarcoidosis in the animals. Sarcoidosis is a human disease closely related to TB but one in which TB germs cannot be found. Xalabarder's most impressive sarcoid lesions were produced by inoculating sputum specimens from TB patients who "converted", meaning that their TB bacteria could no longer be cultured from their sputum. Controversy over the cause of sarcoidosis is still not settled, although I reported bacteria similar to cancer microbes in this disease in the 1980s.

The most spectacular electron microphotographs of cell wall-deficient mycobacteria are presented in Xalabarder's L-forms of mycobacteria and chronic nephritis (1970). In the earliest growth stages of mycobacteria in culture the smallest elements appear as tiny submicroscopic forms visualized only with the electron microscope. These filterable forms of tuberculosis bacteria - the so-called "tuberculosis virus"- have been known to cause cancer in animals since the 1920s. By adding antibiotics to the lab culture media Xalabarder was able to induce many unusual growth forms of tuberculosis bacteria. Using serial images, he was able to trace the development of these tiny submicroscopic forms up to the size of ordinary cocci - and then up to the size of "large body" forms reaching and even surpassing the size of red blood cells. Some of the large bodies of mycobacteria also exhibit internal structure, similar to what Gaylord noted in his Russell body research.

Cont ...
PART 4