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                                                         Few words 

 

 

“THERE IS NO VIRTUE IN NOT KNOWING, WHAT CAN BE KNOWN” 

 

“KNOWING IS NOT DOING, DOING IS DOING” 

 

Welcome to this edition of the book UNDERSTANDING VLSI DESIGN. This book is 

written especially for those who are beginners and seeking their knowledge in the field of 

VLSI DESIGN .it is no doubt that many standard text and materials are available in the 

field of VLSI design, but my effort in bringing this book is to provide the fundamentals 

of the topics which is very hard to cover in single text book. the field of VLSI design is 

huge and has no depth many more is yet to come in future, in this context what I tried 

here is to gather the topics which gives the starting momentum for the readers to 

understand the terms and philosophy behind the VLSI design. in general the text book are 

written which focuses on some major issues but what I sincerely feel is until we have 

sound knowledge in fundamentals it is hard to follow the core topics. This text is 

especially designed to give information in various aspects of VLSI design.  

My teaching experience and the interaction with the students made me to know how the 

things can be put in simplicity so that they get interest in the topic, this is what I have 

tried in this text. what I believe is once  you started knowing the things ,I bet you go 

ahead .my sincere advice to the readers here is please have a patience, go thoroughly with 

the topics, Know the things and yes now you are ready to open the standard text book of 

your choice and topics, I am hopeful you wont find it difficult . 

During the preparation of this text, I have research many textbook as reference; some 

materials are really the best way to understand the basics of the topics, which I have 

incorporated in this text. I have great respects for those authors, which have done such a 

great job. 

Here is how the flow of this book starts.  

 

Chapter 1 is introduction chapter, which deals with various information related to VLSI 

design. It gives the fundamental aspect of VLSI design. Before beginning to the other 

topic I request you to understand thoroughly what is VLSI design. The cover page of this 

text it self shows the abstraction of VLSI design. 

 

Chapter 2 of this text gives you the idea related to the manufacturing process of 

integrated circuit for VLSI design. Obviously, to this date CMOS technology is the 

choice for VLSI design so I have incorporated various cmos process technology in this 

chapter. 
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Chapter 3 is related to the physics of the mos device, their characteristics and various 

design consideration. 

 

Chapter 4 gives the necessary fundamentals to start writing the programming language 

code for VLSI design circuits. i have chosen the verilog hardware description language 

which is widely used in industries these days. 

 

Chapter 5 is related to the design of small hardware modules using CMOS technology. 

Programmable logic device and ASIC design is also introduced. 

 

Chapter 6 is intended for the test that has to be done while and after manufacturing the IC 

Chips. Various test methods and related topics are covered in this chapter. 

Finally, I have included few exercise to recall the chapters. 

 

I have always believed in learning so I look forward for your valuable suggestion to make 

this text better. I will be very much thankful for pointing and rectifying any mistakes that 

I might have committed in this text.  

   Last but not the least I take pride and pleasure in bringing this book in front of you, and 

here goes my sincere thanks to my publisher for the effort in bringing this book,thanks 

are also due to every individual who has supported me on this project. Finally I am 

thankful to my wife for her great encouragement and patience during this project. I 

dedicate this book to  all my family members. 

 

    I hope you will enjoy reading this text as much as I enjoyed writing this. 

                      Wish you all the best. 

                                                    

                                                                  With warm regards 

                                                                   Ritu Raj Lamsal 

                              Email: lamsal.raj@gmail.com   
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1. INTRODUCTION TO VLSI SYSTEMS  

1.1 Historical Perspective 

The electronics industry has achieved a phenomenal growth over the last two 
decades, mainly due to the rapid advances in integration technologies, large-
scale systems design - in short, due to the advent of VLSI. The number of 
applications of integrated circuits in high-performance computing, 
telecommunications, and consumer electronics has been rising steadily, and at a 
very fast pace. Typically, the required computational power (or, in other words, 
the intelligence) of these applications is the driving force for the fast development 
of this field. The current leading-edge technologies (such as low bit-rate video 
and cellular communications) already provide the end-users a certain amount of 
processing power and portability. This trend is expected to continue, with very 
important implications on VLSI and systems design. One of the most important 
characteristics of information services is their increasing need for very high 
processing power and bandwidth (in order to handle real-time video, for 
example). The other important characteristic is that the information services tend 
to become more and more personalized (as opposed to collective services such 
as broadcasting), which means that the devices must be more intelligent to 
answer individual demands, and at the same time they must be portable to allow 
more flexibility/mobility. As more and more complex functions are required in 
various data processing and telecommunications devices, the need to integrate 
these functions in a small system/package is also increasing. The level of 
integration as measured by the number of logic gates in a monolithic chip has 
been steadily rising for almost three decades, mainly due to the rapid progress in 
processing technology and interconnect technology. Table 1.1 shows the 
evolution of logic complexity in integrated circuits over the last three decades, 
and marks the milestones of each era. Here, the numbers for circuit complexity 
should be interpreted only as representative examples to show the order-of-
magnitude. A logic block can contain anywhere from 10 to 100 transistors, 
depending on the function. State-of-the-art examples of ULSI chips, such as the 
DEC Alpha or the INTEL Pentium contain 3 to 6 million transistors. 

ERA    DATE          COMPLEXITY   
 
Single transistor  1959  less than 1 
Unit logic (one gate)  1960  1 
Multi-function   1962  2 - 4 
Complex function  1964  5 - 20 
Medium Scale Integration 1967  20 - 200 (MSI) 
Large Scale Integration  1972  200 - 2000 (LSI) 
Very Large Scale Integration    1978  2000 - 20000(VLSI) 
Ultra Large Scale Integration 1989  20000 - ? (ULSI) 
 
Table-1.1: Evolution of logic complexity in integrated circuits.  
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The most important message here is that the logic complexity per chip has been 
(and still is) increasing exponentially. The monolithic integration of a large 
number of functions on a single chip usually provides: 

• Less area/volume and therefore, compactness  
• Less power consumption  
• Less testing requirements at system level  
• Higher reliability, mainly due to improved on-chip interconnects  
• Higher speed, due to significantly reduced interconnection length  
• Significant cost savings  

Therefore, the current trend of integration will also continue in the foreseeable 
future. Advances in device manufacturing technology, and especially the 
steady reduction of minimum feature size (minimum length of a transistor or 
an interconnect realizable on chip) support this trend. . At 1980  a minimum 
feature size of 0.3 microns was expected around the year 2000. The actual 
development of the technology, however, has far exceeded these 
expectations. A minimum size of 0.25 microns was readily achievable by the 
year 1995. As a direct result of this, the integration density has also exceeded 
previous expectations - the first 64 Mbit DRAM, and the INTEL Pentium 
microprocessor chip containing more than 3 million transistors were already 
available by 1994, pushing the envelope of integration density. 

It can be observed that in terms of transistor count, logic chips contain 
significantly fewer transistors in any given year mainly due to large consumption 
of chip area for complex interconnects. Memory circuits are highly regular and 
thus more cells can be integrated with much less area for interconnects. 
Generally speaking, logic chips such as microprocessor chips and digital signal 
processing (DSP) chips contain not only large arrays of memory (SRAM) cells, 
but also many different functional units. As a result, their design complexity is 
considered much higher than that of memory chips, although advanced memory 
chips contain some sophisticated logic functions. The design complexity of logic 
chips increases almost exponentially with the number of transistors to be 
integrated. This is translated into the increase in the design cycle time, which is 
the time period from the start of the chip development until the mask-tape 
delivery time. However, in order to make the best use of the current technology, 
the chip development time has to be short enough to allow the maturing of chip 
manufacturing and timely delivery to customers. As a result, the level of actual 
logic integration tends to fall short of the integration level achievable with the 
current processing technology. Sophisticated computer-aided design (CAD) tools 
and methodologies are developed and applied in order to manage the rapidly 
increasing design complexity. 
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1.2 VLSI Design Flow 

The design process, at various levels, is usually evolutionary in nature. It starts 
with a given set of requirements. Initial design is developed and tested against 
the requirements. When requirements are not met, the design has to be 
improved. If such improvement is either not possible or too costly, then the 
revision of requirements and its impact analysis must be considered. The Y-chart 
(first introduced by D. Gajski) shown in Fig. 1.1 illustrates a design flow for most 
logic chips, using design activities on three different axes (domains) which 
resemble the letter Y.  

 
 
 
Figure-1.1: Typical VLSI design flow in three domains (Y-chart representation).  
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The Y-chart consists of three major domains, namely:  

• behavioral domain,  
• structural domain,  
• Physical (geometrical layout) domain.  

The design flow starts from the algorithm that describes the behavior of the target 
chip. The corresponding architecture of the processor is first defined. It is 
mapped onto the chip surface by floor planning. 

 The next design evolution in the behavioral domain defines finite state machines 
(FSMs) which are structurally implemented with functional modules such as 
registers and arithmetic logic units (ALUs). These modules are then 
geometrically placed onto the chip surface using CAD tools for automatic module 
placement followed by routing, with a goal of minimizing the interconnect area 
and signal delays.  

The third evolution starts with a behavioral module description. Individual 
modules are then implemented with leaf cells. At this stage the chip is described 
in terms of logic gates (leaf cells), which can be placed and interconnected by 
using a cell placement & routing program. The last evolution involves a detailed 
Boolean description of leaf cells followed by a transistor level implementation of 
leaf cells and mask generation. In standard-cell based design, leaf cells are 
already pre-designed and stored in a library for logic design use. The simplified 
version of the VLSI design flow is shown in figure 1.2. 
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Figure-1.2: A more simplified view of VLSI design flow.  

Figure 1.2 provides a more simplified view of the VLSI design flow, taking into 
account the various representations, or abstractions of design - behavioral, logic, 
circuit and mask layout. Note that the verification of design plays a very important 
role in every step during this process. The failure to properly verify a design in its 
early phases typically causes significant and expensive re-design at a later 
stage, which ultimately increases the time-to-market. 
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Although the design process has been described in linear fashion for simplicity, 
in reality there are many iterations back and forth, especially between any two 
neighboring steps, and occasionally even remotely separated pairs. Although 
top-down design flow provides an excellent design process control, in reality, 
there is no truly unidirectional top-down design flow. Both top-down and bottom-
up approaches have to be combined. For instance, if a chip designer defined an 
architecture without close estimation of the corresponding chip area, then it is 
very likely that the resulting chip layout exceeds the area limit of the available 
technology. In such a case, in order to fit the architecture into the allowable chip 
area, some functions may have to be removed and the design process must be 
repeated. Such changes may require significant modification of the original 
requirements. Thus, it is very important to feed forward low-level information to 
higher levels (bottom up) as early as possible.  

In the following, we will examine design methodologies and structured 
approaches which have been developed over the years to deal with both 
complex hardware and software projects. Regardless of the actual size of the 
project, the basic principles of structured design will improve the prospects of 
success. Some of the classical techniques for reducing the complexity of IC 
design are: Hierarchy, regularity, modularity and locality. 

1.3 Design Hierarchy 

The use of hierarchy or “divide and conquer” technique involves dividing a 
module into sub- modules and then repeating this operation on the sub-modules 
until the complexity of the smaller parts becomes manageable. This approach is 
very similar to the software case where large programs are split into smaller and 
smaller sections until simple subroutines, with well-defined functions and 
interfaces can be written. In Section 1.2, we have seen that the design of a VLSI 
chip can be represented in three domains. Correspondingly, a hierarchy structure 
can be described in each domain separately. However, it is important for the 
simplicity of design that the hierarchies in different domains can be mapped into 
each other easily. 

As an example of structural hierarchy, Fig. 1.3 shows the structural 
decomposition of a CMOS four-bit adder into its components. The adder can be 
decomposed progressively into one- bit adders, separate carry and sum circuits, 
and finally, into individual logic gates. At this lower level of the hierarchy, the 
design of a simple circuit realizing a well-defined Boolean function is much easier 
to handle than at the higher levels of the hierarchy. 

In the physical domain, partitioning a complex system into its various functional 
blocks will provide a valuable guidance for the actual realization of these blocks 
on chip. Obviously, the approximate shape and size (area) of each sub-module 
should be estimated in order to provide a useful floorplan. Figure 1.3 shows the 
hierarchical decomposition of a four-bit adder in physical description (geometrical 
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layout) domain, resulting in a simple floorplan. This physical view describes the 
external geometry of the adder, the locations of input and output pins, and how 
pin locations allow some signals (in this case the carry signals) to be transferred 
from one sub-block to the other without external routing. At lower levels of the 
physical hierarchy, the internal mask 

 
 
Figure-1.3: Structural decomposition of a four-bit adder circuit, showing the 
hierarchy down to gate level.  

 
 
 
.  
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Figure-1.4: Overview of VLSI design styles. 
 
 
 
 
1.4 Semiconductor technology 
Semiconductors can be made from crystalline silicon into which impurities have 
been introduced: 
_ A pentavalent atom implant such as phosphorous gives free electrons, creating 
an n-type region. 
_ A trivalent atom implant such as boron gives free holes, creating a p-type 
region. 
The junction of an n-type and a p-type region in a single crystalline lattice creates 
a diode which only conducts if it is forward biased with the p-type region (the 
anode) more positive than the n-type region (the cathode). 
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A light emitting diode has the additional property that it glows when current is 
flowing through it. It is prudent to limit this current to a few milli-Amps by means 
of a kilo ohm series resistor. 
Digital switching 
Most digital logic is based on the idea of switching signals between a high 
voltage (which we will usually treat as being 5V, although modern systems more 
commonly use 3.3V or less) and a low voltage (0V, or ground). The sense may 
be determined by current flowing or not (as in bipolar circuits) or by the presence 
or absence of charge (as in MOS circuits). A logic function takes some input 
signals and computes an output function using pull-up and pull-down circuits 
Which may be passive (always switched on) or active (selectively switched). 
 

 
 
 
Passive pull-up and active pull-down 
The figure 1.5 shows a circuit with an active pull-down and a passive pull-up. The 
pull-down can be thought of as a remote-control switch, usually made from 
transistors but possibly relays or valves. 
A further complexity with MOS circuits is that the charge on wires persists after 
they have ceased to be driven; this means that the wires have a memory 
(typically lasting a thousandth of a second or so) of the last value driven on them. 
 
1.4.1 Bipolar circuits 
A bipolar transistor is formed by a sandwich of n-type, p-type and n-type regions 
in a single crystalline lattice. It can be thought of two diodes connected anode-to-
anode such that a current through the forward biased diode overwhelms the 
reverse biased diode. 
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npn bipolar transistor: 
A small current flowing from the base to the emitter of an npn transistor induces a 
large current from the collector to the emitter. A pnp transistor has the opposite 
polarity.These can be used to construct a NAND gate using transistor-transistor 
logic (TTL). 
 
 
 
 

 
 
 
 
 
 
1.4.2  MOS circuits 
 

 
 
 
 
 
An enhancement mode, n-channel, metal-oxide-silicon field-effect transistor 
(nMOS FET) is formed on a crystal of p-type silicon. Two n-type regions (known 
as diffusion) lie on either side of a region of the p-type substrate which is covered 
by a thick layer of insulating silicon dioxide (or oxide) and a metal plate. 
When the gate is positive with respect to the source, an n-type channel is formed 
under the gate and current is conducted from drain to source. Even when turned 
on, a MOS transistor has a resistance of about 10 kΩ. 
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The construction of the transistor is symmetric with respect to the source and 
drain - the labels merely indicate the relative voltages. This contrasts with the 
different processing used to make the collector and emitter of a bipolar transistor. 
 
1.4.3 A p-channel MOSFET 

 

 
pmos mosfet has the opposite polarity and conducts when its gate is low. 
However, the resistance of a p-type channel is about 2½ times that of an n-type 
channel of the same size. In integrated circuits, the metal gate is replaced by one 
made from polycrystalline silicon (or polysilicon) for ease of fabrication. 
 
     
1.4.4 The nMOS transistor operates in three modes: 
 
_ Off              when Vgs < Vt 
_ saturated   when Vgs > Vt and Vds > Vgs – Vt 
_ Linear         when Vgs > Vt and Vds < Vgs – Vt 
 
Where Vt is the threshold voltage ( = 0.2 Vdd = 1V for a 5V system) 
Note that, even when the transistor is turned on, the source voltage can not rise 
above the gate voltage less the threshold voltage. 
The threshold voltage can be adjusted by implanting further impurities into the 
channel regions.It can even bemade negative (Vt = -0.8 Vdd = -4V), giving a 
depletion mode nMOS FET which always conducts. This can be used as a 
compact way of making a resistor. 
 
1.5 Various form of PULL UP   
.There are three ways that the pull-up could be made: 

• A resistor – using polysilicon (which is the most resistive material 
available in a MOS process) this would have to be several hundred times 
the size of the pull-down transistor. 

• An enhancement mode transistor with its gate wired high – this could 
never pull the output above Vdd – Vt. 

 
• A depletion mode transistor with its gate wired to its source is used in 

practice. 
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Figure 1.6 shows the various form of pull up device used to construct the inverter 
circuit 
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1.6 MOS Transistor Layers: 
There are several layers in an nMOS chip:  
 

• a p-type substrate 
•  paths of n-type diffusion 
•  a thin layer of silicon dioxide 
•  paths of polycrystalline silicon 
• a thick layer of silicon dioxide 
• paths of metal (usually aluminium) 
• a further thick layer of silicon dioxide With contact cuts through the silicon 

dioxide where connections are required. 
 

The three layers carrying paths can be considered as independent conductors 
that only interact where polysilicon crosses diffusion to form a transistor. These 
tracks can be drawn as stick diagrams with  
 
_ Diffusion in green 
_ Polysilicon in red 
_ Metal in blue 
 
Using black to indicate contacts between layers and yellow to mark regions of 
implant in the channels of depletion mode transistors.refer figure 1.7. 
 
With CMOS, there are two types of diffusion: n-type is drawn in green and p-type 
in brown. These are on the same layers in the chip and must not meet. In fact, 
the method of fabrication required that they be kept relatively far apart. 
Modern CMOS processes usually support more than one layer of metal. Two are 
common and three or more are often available. 
Actually, these conventions for colours are not universal; in particular, industrial 
(rather than academic) systems tend to use red for diffusion and green for 
polysilicon. Moreover, a shortage of coloured pens normally means that both 
types of diffusion in CMOS are coloured green and the polarity indicated by 
drawing a circle round p-type transistors or simply inferred from the 
context. Coloring for multiple layers of metal are even less standard. 
There are three ways that an nMOS inverter might be drawn: 
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1.7 Inverter designs in nMOS 
 
 

 
The three different representations are useful in different contexts: 
_ a circuit diagram – used to plan the logic of the system; 
_ a stick diagram – used to plan the topology of a layout, committing signals to 
    particular layers; and 
_ layout – final decisions of sizes 
 
The equivalent pictures in CMOS are: 
 
Inverter designs in CMOS 
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This layout shows the input arriving through polysilicon on the left and the output 
leaving through metal on the right. A second layer of metal might be used to 
allow connections above and below the invertor with a third layer left free to run 
other, quite separate, signals (such as a global clock) across the top of the 
invertor.The following design runs power and ground in the second metal layer 
and signals in the first, with the polysilicon hidden underneath it. 
We will discuss about the layout diagram more in details later in this text. 
 
1.8 WHY MOS transistor in VLSI DESIGN: 
As the name VLSI suggest that there are millions of transistors inside a single 
chip. Each transistor needs a power to operate and it dissipates some power. 
Consider a single transistor which dissipates power in microwatts, now if you 
combine those millions of transistor the total power dissipation will be huge in 
watts. If you look at the Mos transistor structure the gate of the mos transistor is 
isolated by the insulator hence it has very high input impedance which leads the 
mos device to consume less power. Also the Mos device provides good logic 
than bipolar device. The packing density (i.e number of transistor in given area) 
of Mos Technology is more than Bipolar Junction technology. However bipolar 
transistor also proves superior to mos in some aspects like current delivering, 
transconductance, operating frequency etc. so there is a need of fabricating both 
the mos device and bipolar device in single technology called bicmos process to 
achieve advantage of both device. The mos device is place at the input side for 
low power consumption and good logic level and bipolar device at the output side 
for driving large load. The comparison between bipolar and cmos technology can 
be summarized as follows. 
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          CMOS technology                                              Bipolar technology 
 

� Low static Power dissipation                           high power dissipation 
� High input impedance          low input impedance 
� Scalable threshold voltage 
� High noise margin                                           low voltage swing logic 
� High packing density          low packing density 

 
� High delay sensitivity to load                    low delay sensitive to load 
� (Fan–out limitations) 
� Low output drive current                                 high output drive current 
� Low Transconductance          high Transconductance 
� Bidirectional capability 
� (Drain and source are interchangeable)          high Ft at low current 

 
� A near ideal switching device                         essentially unidirectional 

 
     1.9    Various mos transistor: 
 
 So to get the advantage of both technology BICMOS process is introduced but 
with increase in cost. Generally Bicmos process technology is used for mixed 
signal design where both analog and digital parts are fabricated in a single chip.  
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Chapter 2 

The aim of this chapter is to make readers familiar with the technology and 
manufacturing process of semiconductor device especially CMOS 
Technology. 
 
 
2.0   Overview of silicon semiconductor technology: 

Silicon technology is the term which refers to the process and technology to 
manufacture the semiconductor device (also integrated circuit (IC)).as we know 
that pure semiconductor materials like silicon, germanium are added with 
pentavalent and trivalent material to make ntype and ptype semiconductor 
materials. Semiconductor device are composed of materials like 
ntype,ptype,substrate,oxide etc,whatever the scale of integration be it small scale 
or very large scale integration the silicon has to under go various process to form 
a device. Several steps are required to process the silicon to realize a physical 
semiconductor device. Some of the basic process involved in manufacturing the 
IC is as follows. 

Wafer preparation 
Oxidation 
Epitaxy 
Deposition 
Ion implantation 
Diffusion 

 
Wafer preparation: 

Wafers are the base material for manufacturing the integrated chips. Wafers are 
thin silicon cylindrical disks cut from the silicon ingot.(it resembles like a cdrom 
disk).The diameter of the wafer  range from 75mm to 230 mm and the thickness 
less than  1 mm. A single wafer may house number of chips depending upon the 
complexity and size of the chip.(refer figure 1.0) 

 

          
           Figure 1.0    crystal growth wafer formation and chip 

 

CHIP 
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The molten silicon is added with impurities to get desired electrical properties 
.single crystal is grown towards the rotation and the growth direction of the 
molten silicon produce the silicon ingot (figure 1.0). The wafers are then sliced by 
the diamond saw. The rate of the growth varies from 30 mm to 180mm/hr.The 
wafer is polished flat in one of the surface, to make it scratch free. 

 
Oxidation: 

Oxidation is the process of forming oxide layer that is silicon dioxide sio2. 
Oxidation process is carried out using wet oxidation or dry oxidation process. in 
wet oxidation process the wafer is placed in the moisture ( water vapor) with the 
temperature around 1000 degree centigrade . The reaction takes place and oxide 
layer is formed. in dry oxidation the wafer is heated in pure oxygen with the 
temperature around  1200 degree centigrade. 

In the process of oxidation, some silicon is consumed. Since the volume of sio2 
is double than the silicon it extends vertically equal in source and drain region of 
mos transistor and is known as field oxide. The figure 1.1 shows the oxidation 
and photoresist process. 

 

 
Figure 1.1 oxide formation and photoresist for mask 

Epitaxy: the semiconductor device is formed with n type and p type materials   
with different doping concentration and proportion. Epitaxy is one of the method 
to create thin film of dopant materials which may form a thin layer of desire type 
and property. 

Ion Implantation: 
This is the process by which highly energized acceptor or donor atoms  are 
impinged on the silicon substrate .these atoms travels below the silicon surface 
with varying concentration, with the silicon heated around 800 degree centigrade  
the diffusion process takes place i.e. the impurities  from higher concentration 
region comes towards lower concentration region and equal distribution of 
impurities occurs on that region. 
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Deposition: 

This process is carried out to evaporate the dopants from the region to reduce 
the concentration, to completely remove the dopants,or to drive the impurities 
from the surface of the silicon to the bulk. 

Beside this basic process various maskings are used. The masking is used to 
create several structures like polysilicon gate,diffusion region and thinand thick 
oxide regions.The mask can be of materials like photoresist, sio2,polysilicon and 
silicon nitride.  

2.1 Basic cmos technology 

cmos refers to the combination of nmos and pmos transistor which are build in 
same substrate.so in any cmos technology the goal is to fabricate two transistor 
nmos and pmos in same substrate(Bulk).There are mainly four basic cmos 
process technology which is used to manufacture cmos devices. They are  

� n-well process  
� p-well process  
� twin-tub process  
� silicon on insulator 

2.1 Nwell process: 

In nwell process, the starting material is p substrate. A pure silicon wafer is 
doped with p type impurities to form p substrate. Now the various processes are 
done in this wafer to form the cmos device. These processes are given below. 

Wafer and oxide formation: 

Start with blank wafer (typically p-type where NMOS is created) . Grow SiO2 on 
top of Si wafer .the wafer is heated to 900 – 1200 C with H2O or O2 in oxidation 
furnace to create this oxide layer. 

                         

Photoresist mask and etching 

Add photoresist layer over the oxide layer.     Photoresist is a light-sensitive 
organic polymer which Property changes when exposed to light. photoresist 
materials gets polymerized and becomes harder when exposed to ultra violet 
rays. Expose photoresist to Ultra-violate (UV) light through the n-well mask, Strip 
off exposed photoresist with chemicals. Etch oxide with hydrofluoric acid (HF) 
which Only attacks oxide where photoresist has been exposed .Strip off 
remaining photoresist 

     

         psubstrate 
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NWELL FORMATION: 

• Remove oxide and photoresist layer where n-well should be built (4 to 5 
micron deep). .nwell is created by Implantation or diffusion of  n dopants into 
exposed wafer to form n-well. Diffusion is achieved by placing wafer in 
furnace with arsenic-rich gas and heating until As(arsenic) atoms diffuse into 
exposed Silicon. Ion Implantation is carried out with following steps: 

� Blast wafer with beam of As ions 
� Ions are blocked by SiO2 and only enters where si is exposed 
� SiO2 shields (or masks) areas which remain p-type 

•  

•  

 

 

 

 

 

 

POLYSILICON PATTERN FOR GATE STRUCTURE: 
     Deposit very thin layer of gate oxide( < 20 Å ). 

• Polysilicon is deposited using chemical vapour deposition for gate 
structure. 

Use gate-oxide/Polysilicon and masking to expose where n+ dopant should be 
diffused or implanted 

 

 

 

N+diffusion: 

N+ diffusion is formed in p substrate to form source and drain region and this 
becomes the nmos transistor.while masking is done to cover the nwell region 

p substrate 
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2 
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n well
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where pmos transistor is to be formed.To create n device, Pattern oxide and form 
n+ regions. This is Self-aligned process where gate blocks n-dopants. While 
forming n device the mask is used to block the nwell region.   

 

 

 

P+DIFFISION: 
The mask opposite to the N+ process is used to prevent  the ndevice region and 
p+ diffusion is formed in nwell region by diffusion or impalantation method.this P+ 
diffusion region creates the sorce and drain region for pmos transistor which 
resides in Nwell. 

 

 

 

 

CONTACTCUTS AND METTALIZATION: 
Now we need to wire together the devices, Cover chip with thick field oxide 
(FO).Etch oxide where contact cuts are needed. place  aluminium or copper over 
whole wafer. Pattern to remove excess metal, leaving wires.hence two transistor 
nmos and pmos is formed in p substrate and this device is known as cmos 
device. 

 

 

 

 

Summary of nwell process: 

The steps in nwell process can be summarized as 

• Start with p substrate 

• create n well region  in p substrate (4-5 micron deep) 
• define nmos and pmos active area( gate, source and drain region) 
• field and gate oxidation(Thinox region) 
• form and pattern Polysilicon for gate structure. 

n well
p substrate

n+n+ n+

p substrate
n well

n+n+ n+p+p+p+

p substrate

Metal

Thick field oxide

n well

n+n+ n+p+p+p+
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• P+ diffusion 
• N+ diffusion 
• Contact cuts,metallization,bonding pads and packaging. 

 

2.2 Pwell process: 

The steps for p well process are similar to nwell process .in pwell process the 
starting substrate is n type .pwell is created in this nsubstrate.in pwell N+ 
diffusion region is created by diffusion or ion implantation method which defines 
source  and drain region.the polysilicon is patterned which forms a gate 
structure.so nmos device is created in pwell. pmos device is formed in n 
substrate. The basic steps are summarized as follows. 

 

• Start with n type substrate  

• Define the area in which deep pwell diffusions are to take place the depth 
of the well is around 4 to 5 micron. 

• Define the nmos and pmos active areas( diffusion region). 
• Define thinox region. 
• Form and pattern polysilicon for gate region 
• N+diffusion 
• P+diffuson 
• Contact cuts 
• Metallization ,bonding pads and packazing. 

2.3 Twin-Tub (Twin-Well) CMOS Process: 

This is advance cmos process. in this process both nmos and pmos device are 
formed in separate nwell and p well, hence the name twin tub .nmos device is 
formed in Ptub and pmos device is formed in Ntub. Generally, the starting 
material is a n+ or p+ substrate, with a lightly doped epitaxial layer on top. This 
epitaxial layer provides the actual substrate on which the n-well and the p-well 
are formed. Since two independent doping steps are performed for the creation 
of the well regions, the dopant concentrations can be carefully optimized to 
produce the desired device characteristics. This technology provides the basis 
for separate optimization of the nMOS and pMOS transistors, thus making it 
possible for threshold voltage, body effect and the channel transconductance of 
both types of transistors to be tuned independently. In the conventional n-well 
CMOS process, the doping density of the well region is typically about one order 
of magnitude higher than the substrate, which, among other effects, results in 
unbalanced drain parasitics.this helps to prevent the latchup problem which 
occurs due to the formation of parasitic components,we will discuss latchup 
phenomenon later in this text.The twin-tub process avoids this problem. 
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The process sequence is similar to nwell apart from the tub formation where both 
pwell and nwell are formed. Some of the basic steps for twin tub process are 

• Tub formation(formation of separate Nwell and p well in a substrate) 
• Thin oxide construction 
• Source and drain implantations. 
• Contact cut definition 
• Metallization. 

The figure (2.0) shows the cross section of twin tub cmos process where both n 
and p type transistor resides in p tub and n tub respectively. 

 

Figure-(2.0) : Cross-section of nMOS and pMOS transistors in twin-tub CMOS 
process.  

2.4 Silicon-on-Insulator (SOI) CMOS Process 

silicon on insulator is also an advance semiconductor technology where silicon is 
replaced as a substrate material.Rather than using silicon as the substrate 
material, technologists have sought to use an insulating substrate to improve 
process characteristics such as speed and latch-up susceptibility.(we will discuss 
Latchup later in this text). The SOI CMOS technology allows the creation of 
independent, completely isolated nMOS and pMOS transistors virtually side-by-
side on an insulating substrate (for example: sapphire). The main advantages of 
this technology are the higher integration density (because of the absence of well 
regions), complete avoidance of the latch-up problem, and lower parasitic 
capacitances compared to the conventional n-well or twin-tub CMOS processes. 
A cross-section of nMOS and pMOS devices in created using SOI process is 
shown in Fig. (2.1). The SOI CMOS process is considerably more costly than the 
standard n-well CMOS process. Yet the improvements of device performance 
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and the absence of latch-up problems can justify its use, especially for deep-sub-
micron devices.  

 

 
 

Figure 2.1 SOI process 

The basic SOI process can be explain as follows .the figure numbers refers to 
the steps. 

 
A thin film 7-8 micrometer of very lightly doped n type si is grown 
over an insulator. Sapphire or sio2 is a commonly used insulator. 
Anisotropic etching is required to etch away the silicon except 
where a diffusion area will be needed. 

 
 
 
 
p and n island are formed  by implanting p type and n type impurities.photoresist 
mask is used for forming island separately. 
Thin gate oxide is grown all over the silicon using oxidation process. 
Polysilicon film is deposited over the oxide; it is then pattern and mask to form 
gate structure in both P Island and N Island. 
Now n+ diffusion and p+ diffusion process is carried to form source and drain 
structures in both the island. Contact cuts, metallization and packaging is done 
finally. 
 
The steps can be summarized as below in the figure2.2. 
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 Step 1.Sapphire as an insulator 
 

  
Step2: place lightly doped silicon (n-) over sapphire. 

        
Step3: create P Island and N Island over the lightly doped silicon 

 
Step4: cover the p and N Island with thin oxide and place the polysilicon for gate 
structure. 

 

   
Step5: remove the thin oxide layer to create N and p diffusion region 
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Step6: source and drain region are formed in both island using n+ and p+ 
diffusion, oxidation and metallization is done for contacts . 
 

Figure 2.2 fabrication steps of silicon on insulator process. 
 

                           Advantages:  
• Closer packing of p- and n-transistors, due to absence of wells.  
• Absence of latch-up problems. 
• Only “sidewall” areas of source and drain diffusions contribute to parasitic 

junction capacitance, faster devices.  
• Leakage currents to substrate and adjacent devices almost eliminated.  
• Enhanced radiation tolerance.  
                        Disadvantages:  
• No substrate diodes, inputs more difficult to protect.  
• Device gains are lower, I/O structures must be larger.  
• Density of contemporary digital processes is actually determined by 

number and density of metal interconnection layers.  
• Sapphire and silicon on SiO 2 substrates are considerably more 

expensive.  
Cmos process enhancements: 

Many additional enhancement is added to cmos process for various reasons like, 
to increase the routablity, to provide high quality capacitor and resistors .to 
achieve this the process includes, Various metal layers (double,triple,quad) and 
Two or more poly layers. 

 

3.interconnects: 

Due to the technology advancement, it is now, possible to house millions of 
transistors in a single chip. These transistors has to be interconnected to realize 
the circuit, this .is very cumbersome process hence to make it easy generally 
transistors are formed in one layer and interconnecting wires are formed in other 
layers. Generally 2 layers are used for interconnection,(now a days more than 2 
layers are used for interconnection, routing) .there may be several case where 
different type of interconnection is required. The interconnection can be  

• metal interconnection 
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• polysilicon/refractory metal interconnection 

• local interconnection 

Metal interconnect: 

Signals like clock and power has to be connected for many device inside the IC 
and the problem is to interconnect the signals .the routing of signals is done 
using various metal layers. Normally metal1 is used for horizontal routing and 
metal2 is used for vertical routing. Aluminum is generally used as metal .more 
than two layers of metals are used theses days for routing the signals .the first 
layer of metal and the second layer of the metal is contacted using via .contact 
cuts are used to connect metal and poly or diffusion. Minimum separation is 
required for contact cut and via. Metal interconnection is especially used for 
global routing. The two metal processes can be briefly summarized as: 

 

 

 

 

 

 

 

 

 

 

• The oxide below the first metal layer is deposited by atmoshpheric 
Chemical vapor deposition method. 

• The second oxide layer between the two metal layer is applied in similar 
manner. 

• Depending on the process removal of the oxide is done using plasma 
etching (via) 

Polysilicon metal interconnect: 

The gate of the transistor is made up of polysilicon material however for long 
interconnection the polysilicon introduces delay because of its internal 
resistance. The sheet resistance of doped polysilicon is around 20 to 40 
ohms/square. the sheet resistance of the polysilicon can be reduced by 
combining it with refractory metal .combining polysilicon with slicide(sheet 
resistance 1 to 5 ohms/square) forms polycide which can be used as a gate 
material. This process reduces the complexity for interconnection of second layer 
as it can be used to interconnect instead of metal. This can be used for moderate 
distance interconnection. 

Metal2 

Metal1 

Via 
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Local interconnect: 

Interconnection within the cell can be done using slicide, local interconnection 
allows direct interconnection between the polysilicon and diffusion thus avoiding 
metal interconnection (also avoids contacts hence consuming less space).the 
polysilicon and diffusion can be interconnected using local interconnection. 

 
4 .circuit elements  

Beside transistor, resistor and capacitors are also the major circuit element to 
realize the device. The general resistor is difficult to fabricate in cmos technology 
and also takes large space, hence the resistor in cmos technology are made up 
of polysilicon with varying doping concentration. 

 
4.1 resistors and capacitors: 
  Polysilicon if left undoped is highly resistive material. This property is used to 
build resistors are in the range of tera ohms.1012 ohms. 

For mixed signals a resistive material such as nichrome may be added to 
produce high value, high quality resistors. The resistor produced can have good 
accuracy .the resistor formed with this approach has excellent temperature 
stability and reliability. 
Capacitors are essential part in dynamic memories and switch capacitor analog 
circuits. Small high value/area capacitors are required for memory elements 
where as good quality capacitors are needed for switch capacitor circuits. as we 
know if two conducting layer is separated by the insulator a capacitor is formed, 
with this concept the capacitor in cmos technology is built by adding additional 
polysilicon layer with oxide as insulator .so two polysilicon layer is sandwich with 
oxide layer in between to form the capacitor. refer figure(4.0) 
 
 
 
 
 
 

Figure 4.0 structure of capacitor in cmos technology. 
 

 
As we know dynamic memory device uses large number of capacitor so the 

packing density must be large. For this, there is a need to increase 
capacitance per area. This is achieved by forming a capacitor with trench 
structure. 

Polysilicon 1 

 

Polysilicon 2 

 

        Oxide 
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5. Electrically alterable ROM :( EPROM and EEPROM Technology) 
An EPROM transistor looks like a normal MOS transistor except it has a second, 
floating, gate (gate1 in Figure a). Applying a programming voltage V PP (usually 
greater than 12 V) to the drain of the n- channel EPROM transistor programs the 
EPROM cell. A high electric field causes electrons flowing toward the drain to 
move so fast that they “jump” across the insulating gate oxide where they are 
trapped on the bottom of floating gate. We say these energetic electrons are hot 
and the effect is known as hot-electron injection or avalanche injection. 
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Figure 5.0     EPROM technology 
 
EPROM technology is sometimes called floating-gate avalanche MOS (FAMOS). 
The figure 5.0 is described as (a) With a high (> 12 V) programming voltage, VPP, 
applied to the drain, electrons gain enough energy to “jump” onto the floating 
gate (gate1). (b) Electrons stuck on gate1 raise the threshold voltage so that the 
transistor is always off for normal operating voltages. (c) Ultraviolet light provides 
enough energy for the electrons stuck on gate1 to “jump” back to the bulk, 
allowing the transistor to operate normally. Electrons trapped on the floating gate 
raise the threshold voltage of the n- channel EPROM transistor. Once 
programmed, an n- channel EPROM device remains off even with VDD applied 
to the top gate. An unprogrammed n- channel device will turn on as normal with a 
top-gate voltage of VDD. The programming voltage is applied either from a 
special programming box or by using on-chip charge pumps. Exposure to an 
ultraviolet (UV) lamp will erase the EPROM cell. An absorbed light quantum 
gives an electron enough energy to jump from the floating gate. To erase a part 
we place it under a UV lamp the time to erase may take up to 1 hour. The 
manufacturer provides a software program that checks to see if a part is erased.  
The packages get hot while they are being erased, so that windowed option is 
available with only ceramic packages, which are more expensive than plastic 
packages. Programming an EEPROM transistor is similar to programming an 
UV-erasable EPROM transistor, but the erase mechanism is different. In an 
EEPROM transistor, an electric field is also used to remove electrons from the 
floating gate of a programmed transistor. This is faster than using a UV lamp and 
the chip does not have to be removed from the system. If the part contains 
circuits to generate both program and erase voltages, it may use ISP (in system 
programming). 
 
6. BICMOS Process: 
Bicmos process is the fabrication technology where both the cmos device and 
bipolar transistors (Bipolar Junction Transistors) are fabricated in a single 
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substrate. First, we need to know that what the advantage is doing this. So 
before going to the technology process let us recall the advantages of bipolar 
device over Cmos and vice Versa. The advantage and disadvantage of bipolar 
device over Cmos is briefly summarized below. 
Advantage of bipolar device: 

• high current drive capability 
• higher Transconductance 
• higher operation frequency 
• faster than cmos 

The disadvantage of bipolar transistor over mos transistor are 
• high power consumption 
• less packing density (number of transistor/unit area) 
• poor logic level (less voltage swing) 

 
Bicmos process is the process technology where bipolar transistors and mos 
transistors are fabricated in a single substrate to achieve higher performance that 
is advantage of both mos and bipolar transistor. Usually in mixed signal design 
(analog and digital in a single chip) bicmos technology is preferred. For analog 
circuit bipolar transistor has superior performance than mos device. For digital 
circuit logic cmos provides excellent result. 

6.1 BiCMOS Process Flow: 

bicomos process is carried out by taking a substrate and fabrication nmos and 
pmos device along with the bipolar device in the same substrate.the steps below 
shows the fabrication of nmos,pmos and npn bipolar device in a single substrate. 

the basic bicmos process flow can be summarised as follows: 

� start up with a lightly-doped P-type wafer.  
� form the buried N+ layer by ion implantation of antimony into the 

respective mask pattern. 
� Form p+ buried layer by ion implantation of boron . 
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� 

 

 

 

� create n epitaxial layer. 
� Form pwell. 
� Form nwell. 
� Form n base ion impalnt. 
� Form collector region with n+ . 

 

�  

 

 

� form p-base ion implantaion . 
� form gate structure by patterning polysilicon. 
� form emitter with polysilicon. 
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� form n+diffusion region (source,drain) in pwell. 
� form p+ diffusion region (source,drain )in Nwell. 
� contact cuts and mettalization. 

 

 

The final diagram for bicmos process is shown in figure 6.0.                                                                                       

 

                        

Figure 6.0: bipolar device in bicmos process 

 
7. Latchup and prevention 

Latch up in Bulk CMOS 

A latchup is unintensional phenomenon which creates the low impedence path  
between the power supply rails (between VDD and VSS in Cmos) in  electronic 
component due to the formation of parasitic structure (transistor,resistor) and  
triggering a parasitic structure, which then acts as a short circuit, disrupting 
proper functioning of the part and possibly even leading to its destruction due to 
overcurrent. the figure 7.0 shows that the nwell cmos inverter.parasitic PNP 
transistor is formed in nwell and parasitic transistor NPN is formed in substrate 
.the substrate and well also constitutes parasitic resistors. so there are two 
transistor and resistor in the form of parasitic components. The parasitic structure 
is usually an equivalent of a thyristor (or SCR), a PNPN structure which acts as a 
PNP and an NPN transistor stacked next to each other. During a latchup when 
one of the transistors is conducting, the other one begins conducting too. . They 
both keep each other in saturation for as long as the structure is forward-biased 
and some current flows through it - which usually means until a power-down. 
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Figure 7.0 formations of parasitic components in bulk cmos. 

The SCR parasitic structure is formed as a part of the totem-pole PMOS and 
NMOS transistor pair on the output drivers of the gates. 

A byproduct of the Bulk CMOS structure is a pair of parasitic bipolar transistors. 
The collector of each BJT is connected to the base of the other transistor in a 
positive feedback structure. A phenomenon called latchup can occur when (1) 
both BJT’s conduct, creating a low resistance path between Vdd and GND and 
(2) the product of the gains of the two transistors in the feedback loop, b1 x b2, is 
greater than one. The result of latchup is at the minimum a circuit malfunction, 
and in the worst case, the destruction of the device. Latchup may begin when 
Vout drops below GND due to a noise spike or an improper circuit hookup (Vout 
is the base of the lateral NPN Q2). If sufficient current flows through Rsub to turn 
on Q2 (I Rsub > 0.7 V), this will draw current through Rwell. If the voltage drop 
across Rwell is high enough, Q1 will also turn on, and a self-sustaining low 
resistance path between the power rails is formed. If the gains are such that b1 x 
b2 > 1, latchup may occur. Once latchup has begun, the only way to stop it is to 
reduce the current below a critical level, usually by removing power from the 
circuit. 
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figure 7.1 parasitic components adds up to form a scr like structure and behaves 
the same. 

The latchup does not have to happen between the power rails; it can happen at 
any place where the required parasitic structure exists. A spike of positive or 
negative voltage on an input or output pin of a digital chip, exceeding the rail 
voltage by more than a diode drop, is a common cause of latchup. Another cause 
is the supply voltage exceeding the absolute maximum rating, often from a 
transient spike in the power supply, leading to a breakdown of some internal 
junction. This frequently happens in circuits which use multiple supply voltages 
that do not come up in the proper order after a power-up, leading to voltages on 
data lines exceeding the input rating of parts that have not yet reached a nominal 
supply voltage. 

 Another common cause of latchup is ionizing radiation. 

It is possible to design chips that are latchup-resistant, where a layer of insulating 
oxide (called a trench) surrounds both the NMOS and the PMOS transistors. This 
breaks the parasitic SCR structure between these transistors. Such parts are 
important in the cases where the proper sequencing of power and signals cannot 
be guaranteed (e.g., in hot swap devices). Most silicon-on-insulator devices are 
inherently latchup-resistant. 

Another possibility for a latchup prevention is the Latchup Protection Technology 
circuit. When a latchup is detected, the LPT circuit shuts down the chip and holds 
it powered-down for a preset time. 

Formation of SCR 

I 

V 

Current, voltage (V,I) relation of SCR 

Transition from high resistance to low resistance 
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The most likely place for latchup to occur is in pad drivers, where large voltage 
transients and large currents are present. 

Preventing Latchup: 

Fab /Design Approaches 

1. Reduce the gain product b1 x b1  
o move n-well and n+ source/drain farther apart increases width of 

the base of Q2 and reduces gain beta2 > also reduces circuit 
density  

o buried n+ layer in well reduces gain of Q1  
2. Reduce the well and substrate resistances, producing lower voltage drops  

o higher substrate doping level reduces Rsub  
o reduce Rwell by making low resistance contact to GND  
 
3. Create Guard rings around p- and/or n-well, with frequent contacts 
to the rings, reduces the parasitic resistances.  

 

4. Using twin tub structures (twin tub process) 

5. Silicon on insulator process also is latch up free. 

8.0 Layout Design Rules 

The physical mask layout of any circuit to be manufactured using a particular 
process must conform to a set of geometric constraints or rules, which are 
generally called layout design rules. These rules usually specify the minimum 
allowable line widths for physical objects on-chip such as metal and polysilicon 
interconnects or diffusion areas, minimum feature dimensions, and minimum 
allowable separations between two such features. If a metal line width is made 
too small, for example, it is possible for the line to break during the fabrication 
process or afterwards, resulting in an open circuit. If two lines are placed too 
close to each other in the layout, they may form an unwanted short circuit by 
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merging during or after the fabrication process. The main objective of design 
rules is to achieve a high overall yield and reliability while using the smallest 
possible silicon area, for any circuit to be manufactured with a particular process.  

Note that there is usually a trade-off between higher yield which is obtained 
through conservative geometries, and better area efficiency, which is obtained 
through aggressive, high- density placement of various features on the chip. The 
layout design rules which are specified for a particular fabrication process 
normally represent a reasonable optimum point in terms of yield and density. It 
must be emphasized, however, that the design rules do not represent strict 
boundaries which separate "correct" designs from "incorrect" ones. A layout 
which violates some of the specified design rules may still result in an operational 
circuit with reasonable yield, whereas another layout observing all specified 
design rules may result in a circuit which is not functional and/or has very low 
yield. To summarize, we can say, in general, that observing the layout design 
rules significantly increases the probability of fabricating a successful product 
with high yield. 

The design rules are usually described in two ways : 

• Micron rules, in which the layout constraints such as minimum feature 
sizes and minimum allowable feature separations, are stated in terms of 
absolute dimensions in micrometers, or, 

• Lambda rules, which specify the layout constraints in terms of a single 
parameter (L) and, thus, allow linear, proportional scaling of all 
geometrical constraints. 

Lambda-based layout design rules were originally devised to simplify the 
industry- standard micron-based design rules and to allow scaling capability for 
various processes. It must be emphasized, however, that most of the submicron 
CMOS process design rules do not lend themselves to straightforward linear 
scaling. The use of lambda-based design rules must therefore be handled with 
caution in sub-micron geometries.     

Lambda based Cmos Design Rules: 
Nwell rule: 
 Nwell width of 10 L ,space between well if it is in same potential is 8L 
and if it is in different potential it is 6L. 
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Diffusion Rule:  
 
   Minimum active area(diffusion)width  3 L 
   Minimum active area spacing   3 L 
 
 
 
 
 
 
 
 
 
 
 
 
 
Poly Rule: 
 
    Minimum poly width    2 L 
   Minimum poly spacing    2 L 
   Minimum gate extension of poly over active 2 L 
   Minimum poly-active edge spacing   1 L 
   (poly outside active area) 
               Minimum poly-active edge spacing   3 L 
                      (poly inside active area)  
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Metal Rule: 
 
  Minimum metal1 width    3 L,  
  Minimum metal1 spacing    3 L 
                           Minimum metal2 width    3 L,  
  Minimum metal2 spacing    4 L 
 
 
 
 
 
 
 
 
 
 
 
 
 
Contact cuts and via rule: 
 
   Poly contact size                 2 L 
   Minimum poly contact spacing   2 L 
   Minimum poly contact to poly edge spacing 1 L 
   Minimum poly contact to metal edge spacing 1 L 
   Minimum poly contact to active edge spacing 3 L 
  
   Active contact size    2 L 
   Minimum active contact spacing   2 L 
                       (on the same active region)    
   Minimum active contact to active edge spacing 1 L 
   Minimum active contact to metal edge spacing 1 L 
   Minimum active contact to poly edge spacing 3 L 
   Minimum active contact spacing   6 L 
   (on different active regions)  
 

 
 

Physical Design: 
The physical structure of the cmos device is drawn as layout diagram, 

which meets the design rules and helps to produce correctly working device. The 
layout diagram is the physical geometrical representation of the device. We will 
discuss the layout diagram of basic gates. The layout diagram consists of 
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number of rectangles which represents Metal,Polysilicon,Diffusion,Contact 
Cuts,Via,etc.and has to obey the design rules. 
Now let us see how the transistor is formed using layout diagram. 
Whenever the polysilicon crosses the diffusion transistor is formed. 
 

 
 
  

Polysilicon defines for the gate region and diffusion defines for source and 
drain regions.remember that source and drain region cannot be physically 
distinguish until they are connected to power rails.for nmos if the diffusion contact 
is connected to Vdd that is drain ,and the other end connected to ground is 
source, for Cmos it is just opposite. 

8.1 CMOS Inverter Layout Design: 

In the following, the mask layout design of a CMOS inverter will be examined 
step-by-step. The circuit consists of one nMOS and one pMOS transistor.  

First, we need to create the individual transistors according to the design rules. 
Assume that we attempt to design the inverter with minimum-size transistors. 
The width of the active area is then determined by the minimum diffusion contact 
size (which is necessary for source and drain connections) and the minimum 
separation from diffusion contact to both active area edges. The width of the 
polysilicon line over the active area (which is the gate of the transistor) is typically 
taken as the minimum poly width . Then, the overall length of the active area is 
simply determined by the following sum: (minimum poly width) + 2 x (minimum 
poly-to- contact spacing) + 2 x (minimum spacing from contact to active area 
edge). The pMOS transistor must be placed in an n-well region, and the 
minimum size of the n- well is dictated by the pMOS active area and the 
minimum n-well overlap over n+. The distance between the nMOS and the pMOS 
transistor is determined by the minimum separation between the n+ active area 
and the n-well . The polysilicon gates of the nMOS and the pMOS transistors are 
usually aligned. The final step in the mask layout is the local interconnections in 
metal, for the output node and for the VDD and GND contacts. Notice that in 
order to be biased properly, the n-well region must also have a VDD contact.  
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Step 1. 

Draw two supply rails Vdd and Vss. 

  
 
 
 
 
 
 
 
 
 
 
Step 2. 
         Draw vertical diffusion between rails. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step3. 

     Now   polysilicon is crossed with diffusion to form two transistor one pmos and 
other,nmos . 
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Another design style can be made if the polysilicon is placed vertically between 
the rails. 

 

 

 

 

 

 

 

 

 

 

 

Figure-8.1: Complete mask layout of the CMOS inverter.  

 
  

Layout of CMOS NAND and NOR Gates 

The mask layout designs of CMOS NAND and NOR gates follow the 
general principles examined earlier for the CMOS inverter layout. Figure below 
8.3 and 8.4 shows the sample layouts of a two- input NAND gate and a two-input 
NOR gate, using single-layer polysilicon and single-layer metal. Here, the p-type 
diffusion area for the pMOS transistors and the n-type diffusion area for the 
nMOS transistors are aligned in parallel to allow simple routing of the gate 
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signals with two parallel polysilicon lines running vertically. Also notice that the 
two mask layouts show a very strong symmetry, due to the fact that the NAND 
and the NOR gate are have a symmetrical circuit topology.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure-8.3: Sample layouts of a CMOS NAND gate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-8.4: Sample layouts of a CMOS NAND gate 
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Computer added design tools (CAD Tools) 

VLSI design is now rich with many cad tools further adding ease for the designer 
in several phases of the design. Some of the cad tools used in VLSI design is: 

Design entry tools: 

VLSI design starts with the design specification and transforming it in to some 
specific representation. This entry of specification can be textual or graphic form. 
VHDL and Verilog HDL are two commonly used textual representation. 
Schematic diagrams are used for graphical representation. Almost all the cad 
tools have editor which supports both the method for design entry. some cad 
tools support state diagram for sequential logic. 

Functional verification (Simulation tools): 

These tools are used to verify the functionality of the design. Designs are 
simulated using cad tools; the result is verified viewing wave form or list of the 
desired output. Modelsim is one of the popular simulation tools. 

Synthesis tools: 

This tools converts higher level of abstraction to lower level of abstraction. this 
tools incorporated design translation engine to translate various level of 
abstraction in to gate level logic. Optimization engine optimizes the logic reducing 
redundant logic and technology mapping is done for implementing in target 
device (fpga implementation) .various vendors have their own synthesis tools  

Design rule checker tools: 

DRC. Is used to verify if the design has violated any design rule and also may 
suggest the correct. To realize the physical device the design rule has to be 
strictly followed. The DRC checks the space and width for various structures and 
verifies if it has been violated with the given technology. 
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                                                                                  CHAPTER 3 

 

The aim of this chapter is to make readers familiar with Cmos transistor, 
their operation and characteristics. 

3. Mos transistor: 
A mos transistor (or device) has four terminals: gate, source, drain, and a fourth 
terminal substrate or bulk. Gate and body are conducting materials .the gate and 
body (bulk or substrate) are separated by a silicon dioxide which is good 
insulator. There are fundamentally two different type of mos transistor. They are 
nmos (n channel) and pmos (p channel) transistor. Cmos transistor is also mos 
transistor family which contains both nmos and pmos transistor .the figure (3.0) 
below shows n mos and pmos transistor. 
Mos transistor structure and symbols: 
 
� Four terminal device: gate, source, drain, body

� Gate – oxide – body stack looks like a capacitor
� Gate and body are conductors (body is also called the substrate)

� SiO2 (oxide) is a “good” insulator (separates the gate from the body

� Called metal–oxide–semiconductor (MOS) capacitor, even though 
gate is mostly made of poly-crystalline silicon (polysilicon)

n+

p

GateSource Drain

bulk Si

SiO2

Polysilicon

n+

SiO2

n

GateSource Drain

bulk Si

Polysilicon

p+ p+

NMOS PMOS  
 
 
 
 
 
 
 
figure 3.0. nmos,pmos transistors and symbols 
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3.1 classification of mos transistor: 
 
General classification of mos transistor is shown in figure 3.1 Nmos transistor 
can be enhancement type or depletion type. In enhancement type of transistor 
there is no conducting channel present initially hence it is normally called off 
device. Certain voltage known as threshold voltage (to be discussed later) is 
required to form the channel to bring transistor in to conduction. In depletion type 
of device initially the conducting channel is present (at the time of manufacturing 
ion implantation is done to form the channel) and is normally called on device.  

 
 

 
                   Figure 3.1    classification of mos transistor 
 
 
3.2 MOS transistor structure 

3.2.1 Mos transistors structure and  operation 

The operation of an mos transistor is considerably easier to explain than that of a 
bipolar transistor. An mos transistor is nothing more than a voltage-controlled 
switch. It has three connection points: a source, a drain, and a gate . 
A cross section of the metal-oxide-silicon sandwich that forms the transistor is 
shown in figure (3.2) below 

 
 

                       Figure (3.2) mos transistor structure 

 

The bottommost material layer is made of silicon, an insulating oxide layer sits on 
top of it, and the topmost layer is the metal gate. (More modern integrated circuit 
processes have replaced the metal layer with a material called polycrystalline 
silicon, but the older “metal gate” terminology still holds.) The source and drain 

MOS Transistor 

NMOS PMOS CMOS 

ENHANCEMENT 
        TYPE 

DEPLETION 
TYPE 
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regions contain silicon material with a large excess of electrons separated by the 
slightly positively charged bulk silicon. The source and drain are called diffusion 
regions because of the chemical process used to create them it means that 
source and drain region are formed by diffusion process. Negatively charged ions 
(atoms with extra valence electrons) are placed onto the silicon surface and are 
diffused into the surface by heating the silicon material. The materials of the 
source and drain are identical. Hence source and drain terminals are 
interchangeable in mos transistor. To distinguish source and drain terminal node 
remember the lower potential is source and other one is drain for nmos i.e drain 
is connected to Vdd and source is connected to Vss (Ground) and for pmos 
source is connected to Vdd and drain to Vss (Ground). 

 

3.2.2 Operation: 
The electrical behavior of the transistor is generally as follows. When a positive 
voltage is placed on the gate, electrons from the silicon bulk (substrate) are 
attracted to the transistor channel, an initially nonconducting region between the 
source and drain very close to the silicon surface. When the gate voltage 
becomes sufficiently positively charged, enough electrons are pulled into the 
channel from the bulk to establish a charged path between the source and the 
drain. Electrons flow across the transistor channel, and the voltage-controlled 
switch is conducting. If a 0 or very small voltage is placed on the gate, no 
electrons (or at least very few) are attracted to the channel. The source and drain 
are disconnected, no current flows across the channel, and the switch is not 
conducting. Because they are made from materials with different affinities for 
electrons, the two transistor types behave quite differently. The transistor 
operation described above is actually for the nmos transistor. The bulk is 
positively charged, while the diffusion is negatively charged. The transistor switch 
is “closed” (conducting) when a logic 1 is placed on its gate and “open” 
(nonconducting) when the gate is connected to a logic 0. The pmos transistor is 
complementary. The diffusion regions are positively charged and the silicon bulk 
is negatively charged. A pmos transistor behaves in a complementary way: it is 
“closed” (conducting) when a logic 0 is placed on the gate and is “open” 
(nonconducting) when a logic 1 is placed there.  
The symbols for the two different kinds of transistors make it easy to remember 
how they operate. An nmos transistor conducts when the gate voltage is 
asserted in positive logic. The pmos transistor conducts when the gate is 
asserted in negative logic. This is why there is a polarity bubble on the gate of 
the pmos transistor’s symbol. figure (3.3) below shows the nmos and pmos  
switching condition. Nmos conducts(on) when gate input is ‘1’ and pmos 
conducts when gate input is’0’.the dim portion in figure shows that transistor is 
off. 

Figure (3.3  a) is for nmos and (b) for pmos transistor. 
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                    Figure (3.3) switching of nmos and pmos transistor. 
 
 
 

3.3 Nmos Enhancement type of transistor modes of operation: 

 
As we know that enhancement type of device (transistor) does not have 
conducting channel at the beginning so to make the device functional we have to 
create a channel between source and drain. The physical structure of nmos 
transistor is shown in the figure (3.4). Since there are n+ and p region in source 
drain, and substrate the formation of back to back parasitic diode prevents any 
current to flow, while the device is in neutral form (no external voltages applied). 

Now if we look at the transistor gate and below gate region we can conclude that 
it forms a structure similar to capacitor. Gate material (aluminium, polysilicon) is 
one conductor and bulk (substrate) is other conductor. In-between these 
conductors the insulator in the form of silicon dioxide is present. This structure is 
also known as mos capacitor. As per the fundamental of the capacitor when one 
conductor is positively charged negative charge is induced in other conductor. 
Now let us see what happens to this mos capacitor when different gate voltage is 
applied. The application of different gate voltage results in 3 modes of operation. 
They are accumulation, depletion and inversion. This is the basic fundamental 
working principle of mos transistor.The voltage at gate terminal is required for the 
transistor to operate. Depending upon the voltage applied at the gate terminal the 
transistor enters in to these 3 modes. Refer figure (3.4). 

 

Accumulation mode: 

When Vgs is  negative (Vgs<<Vt) positive charges are attracted near the source 
and drain below the gate .this is known as accumulation mode since more no 
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positive charges are induced due to the negative voltage applied at the gate 
terminal. This prevents the formation of channel. 

Depletion mode:  

When the gate terminal voltage is small positive voltage which is equal to 
threshold voltage vt (threshold voltage is the minimum voltage which is required 
for the transistor to conduct) the positive charge at the top of the substrate near 
source and drain gets repelled and electrons tries to come up but due to 
insufficient voltage  at the gate terminal it cannot completely move up hence a 
gap comes in to existence known as depletion layer where no charge carriers are 
present. 

Inversion mode: 

When the gate voltage is sufficiently positive (vgs>vt) the negative charge are 
attracted and moves up ,positive charge are repelled further and goes down 
hence a ntype layer is created which establishes  the conducting path between 
source and drain and referred as channel. Since the channel is now inverted 
originally from p type to n type it is known as inversion. Once the channel is 
created the path is established for the electrons in source terminal to reach drain 
terminal however to pull the electrons from the source to drain terminal additional 
force is required this additional force is derived from the other terminal voltage 
vds (drain to source voltage).now depending upon the vds the transistor enters in 
different region of operation .cutoff,nonsaturation(linear) and saturation region. 
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     Figure (3.4) effect of Vgs in Nmos Transistor channel area (MOS Capacitor) 

As we have discussed earlier that enhancement type of transistor can be 
operated in various region depending upon the applied voltage between drain 
and source terminal of course Vgs also. These regions are as follows. 
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Cutoff region:   

when the gate to source voltage Vgs is less than threshold voltage Vt no current 
flows from drain to source (no flow of electron from source to drain as the 
conducting path is not established) .there is no effect of Vds when Vgs<<Vt and 
this region is known as cutoff region.(when  Vgs is small positive but less than Vt  
a very small amount of current flows due to a weak inversion and known as 
subthreshold current).Vt for nmos enhancement type of transistor is 
approximately 0.2Vdd .collectively subthreshold region is also termed in cutoff 
region. So the current voltage relation at cutoff region is 

When gate to source voltage is less than Vt i.e   Vgs<Vt  

Ids = 0 

Nonsaturation (linear, triode) region: 
This region is defined as when Vgs > Vt and Vds <Vgs – Vt. in this region the 
current Ids varies almost linearly with the Vds. 

The relation between current and voltage in this region is  

� Ids=β((vgs-vt).vds-vds2/2) 

Since in this region Vds is small so the quadratic terms can be neglecting then 
the overall effect will be linear. 

In this region  the gate voltage will drop along with the channel length therefore 
there is less gate voltage at the drain end compare to the source end. that  

Saturation region: 

When Vds becomes more positive i.e Vds>vgs-vt the more drop takes place 
along the length of the channel and due to insufficient gate voltage near the  
drain end the formation of inversion layer is seized ,this condition is known as 
Pinch Off, how ever  the current completes its path as diffusion process after the 
pinch off occurs. 

Saturation region starts when Vds is greater than or equal to ( Vgs-Vt ).for our 
convenience let us assume Vds=Vgs-Vt ,then  substituting Vds=Vgs-Vt in above 
equation we get 
� Ids=β/2(Vgs-Vt)2 
In this region current Ids is independent of Vds and is constant. i.e increase in 
Vds doesn’t increase the current Ids rather it is constant .refer the V I 
characteristics curve.(due to channel length modulation a small variation is 
possible we will neglect this until we see second order effects later in this text.) 
 

The figure.(3.5) and (3.6) shows the three region and the relation of current and 
voltage in various regions. 

The operation for pmos transistors is similar to nmos except that the voltage 
polarity has to be altered. The gate to source voltage should be negative unlike 
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positive in nmos transistor. Similarly the polarity for drain to source voltage is 
also altered. The current and voltage are in reverse direction. 

                           

 
              Figure (3.5) nmos various operation regions 
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                        Figure (3.6) nmos enhancement transistor V, I characteristics 
curve  
 
3.5 Mos current volage equations (Mos device equations) 
Let us derive the relation of current and voltage for nmos enhancement type of 
transistor. The derivation is self explanatory. 
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In Nonsaturation region the voltage along with the length of the channel varies 
therefore the average electric field between the gate and channel is thus ((Vgs-
Vt)-Vds/2)/ t. then the expression for charge can be written as QC=Eg.ε W.L 
Where ε is permittivity. W and L are width and length of the gate. 
 

 
Hence in non saturation region the relation of Ids and Vds, Vgs is 
� Ids=β((Vgs-Vt).Vds-Vds2/2) 

In non saturation If Vds is small voltage than the quadratic term Vds2/2can be 
ignored than the current has linear relation with voltage. 
 
Saturation region: 

Eg: Average electric field

(gate to channel)

ε: permittivity of insulator between gate and channel
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We know the saturation starts when Vds >= Vgs-Vt  
for simplicity let us take Vds=(Vgs-Vt)   substituting this value of Vds in the 
relation  

  Ids=β((vgs-vt).vds-vds2/2)   

And solving to find Ids we get 

� Ids=β/2(vgs-vt) 2. 
 
Summary Of the mos equation: 
  

 
 
 
 
3.6 Threshold voltage:Vt. 
 
Threshold voltage is defined as the minimum voltage that is required for the mos 
transistor to conduct. (The origin of threshold voltage is due to the charge 
trapped in silicon substrate interface below the gate region. to neutralize this 
charge carrier additional voltage is required). Threshold voltage depends on 
number of parameters like 

• Gate material (conductor) 
• Gate insulator material(gate oxide) 
• Insulator thickness(oxide thickness) 
• Impurities t silicon substrate interface 
• Voltage at source and substrate 

 

Combining all the above parameter the threshold voltage equation can be written 
as: 

Vt = Vtmos + Vfb 

Where Vtmos is ideal threshold voltage where there is no work function 
difference between gate and substrate materials. And Vfb is flat band voltage. 

Vtmos=2Φb +Qb/Cox where Φb is bulk potential which accounts for doping 
concentration of the substrate. Φb=KT/Q ln(Na/Ni).where k is Boltzman 
constant(1.38x10-23 joule/0k).T is the temperature, and q is the electronic charge. 
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For room temperature around 300ok the term KT/Q comes around 26 mv. Na and 
Ni are acceptor concentration and intrinsic doping concentration. 

Qb is bulk charge and is equal to = √ (2 εsiQNa 2Φb.) 

The flat band voltage is given by Vfb=Φms-Qfc/Cox, where Φms is the work 
function difference between gate material and substrate (Φm- Φs). Qfc is the 
surface charge accumulated due to the imperfection in silicon - oxide interface. 
Cox is oxide capacitance. Combining all this parameters we can write the final 
threshold voltage equation as 

� Vt = Vtmos + Vfb 

� 2Φb +Qb/Cox+ Φms-Qfc/Cox 

 

2.7 Body Effect and its impact on threshold voltage: 

Body effect is the term which refers to the increase in threshold voltage due to 
increase in source to substrate voltage (Vsb) .As we have noticed that the entire 
device in mos is made on a common substrate. Normally the source and 
substrate are connected  so Vsb=0.how ever there may arise the situation that 
the device have to be connected in series for example nmos transistor are 
connected in series to form nand gate in this situation Vsb1=0v but Vsb2 ≠ 0v.so 
the bottom transistor do not have body effect since both source and substrate are 
biased to ground(common point).However as we move up to top transistor than 
the source and substrate are biased at different point hence the Vsb2 may not be 
equal to 0.this may cause the depletion region to increase further as shown in 
figure and the number of charge carriers trapped in this region may increase  and 
the overall effect is increase in threshold voltage to hold the charge neutrality. 

Vsb < 0 for PMOS
Source Gate Drain

P-Substrate NAVSB

NMOS Example

� Example with body effect

without body effect
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                                   Figure 3.7 body effect 

The change in threshold voltage due to body effect is given as  

� ∆Vt= γ (Vsb)1/2  

Where γ is constant and depends on substrate doping concentration, 
thickness of oxide. typical values  for γ is in the range 0.4 to 1.2.  

Now we have to modify the equation for threshold voltage considering the 
body effect (body effect is one of the Second Order effect to be discuss next 
in this text).the equations related to body effect is as follows. 
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Vt = Vfb +2 b+
φ 2  siqNA(2 b+ Vsb )ε φ

Cox

Vt = Vt0+   [   (2 b+ Vsb ) 2  b ]γ φ φ

Vfb flat-band voltage
φ
b Fermi potential

Vsb substrate bias 

Vt0 Vt for VSB=0

γ =           2  siqNA=ε
tox

ox
ε

Cox

1
2  siqNAε

NA substrate doping concentration

εox : permitiv ity of gate oxide

3-5
 

 

3.8 Second order effect: 

while deriving the mos various DC equations (current voltage relation in various 
region) we have over simplified and made assumptions. However the accuracy 
lies in fact considering other effects that may come in to existence for several 
reasons. These second order effects has several side effects for the general 
equations derived earlier, as we have already seen the effect of body effect in 
threshold voltage and modified the equation. Some of the second order effects 
are 

• Body effect and threshold voltage 

We have already discussed about the body effect and its impact on threshold 
voltage, so if you have any doubt still on your mind kindly refer section 3.6 
and 3.7. 

• subthreshold  current 

we generally say that when Vgs < Vt there is no flow of current (Ids) however 
what about if Vgs>0 but less than Vt. when 0<Vgs<Vt  ,it indicates a small 
positive voltage but which is less than threshold voltage there for it can be 
said it is insufficient to establish a complete inversion layer however a weak 
inversion layer is formed and a very small current flows between source and 
drain. This current is known as subthreshold current. The point to remember 
here is that even though the current Ids is very small it has an exponential 
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relation with the voltage Vds, Vgs. this current have both advantage as well 
as disadvantage. It can be utilized for low power circuits in the mean time it 
may affect the operation in circuits like dynamic charge storage nodes. 

• Channel length modulation 

It is observed that the length of the channel is not constant; while the device is 
operating in saturation the actual channel length is decreased. simplified 
equations that describe the behavior of an MOS device assume that carrier 
mobility is constant ,and do not take into account the variation in channel length 
in drain-to –source voltage ,Vds’. for long channel length ,the influence of channel 
variation can be ignored. However for short channel device ( as devices are 
scaled down), this variation should be taken into account. 

 
          When an MOS device is in saturation, the effective channel length actually 
is decreased such that  
 
                  L Eff  = L – L short 
Where 
 

           L Short      = √2 (εsi  / QNA  (Vds  ---(Vgs –Vt))      
 
 
        The reduction in channel length increases the (W/L) ratio, there by 
increasing β as the drain voltage increase. Thus rather than appearing as a 
constant current source with infinite output impedance, the MOS device has finite 
output impedance. An approximation that takes this behavior into account 11 is 
represented by the following equation: 
 
               Ids   = k W / 2L (Vgs -Vt) 

2(1+λVds) 
 
 Where k is the process gain factor µε /tox and λ is an empirical channel length 
modulation factor having a value in the range 0.02v-1 to 0.005v-1. in the SPICE 
level 1 model 1λ is the parameter LAMBDA. 

• Drain punch through 

when the drain is at high enough potential with respect to the source the 
depletion region around the drain may get extended towards the source end and 
this may cause the current to flow from the source to drain irrespective of gate 
voltage. This condition is known as drain punch through; this effect can be 
utilized in I/O protection circuit to limit the voltage across internal nodes. 

• Mobility variation 
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Mobility is related to the velocity with which electron or holes travels in applied 
electric field.   The mobility, µ, describes the ease with which carriers drift in the 
substrate material .it is defined by  

        µ(Mobility) =average carrier drift velocity ( V ) /Electric Field (E) 
If the velocity, V, is given in cm/sec, and the electric field, E, in V/cm, the 

mobility has the dimension cm2/v-sec. The mobility may vary in a number of 
ways. Primarily, mobility varies according to the type of charge carrier. Electrons 
(negative –charge carriers) in silicon have a much higher mobility than holes 
(positive –charge carriers), (approximately electron has 2.5 times higher mobility 
than holes.) Resulting in n-devices having higher current- producing capability 
than the corresponding p-devices. Mobility decreases with increasing doping –
concentration and increasing temperature. The temperature variation becomes 
less pronounced as the doping density increases.  

• impact ionization (Hot electrons) 

   As the length of the gate of an MOS transistor is reduced, the electric field at 
the drain of a transistor in saturation increases (for a fixed drain voltage). For 
submicron gate length, the field can become so high that electrons are imparted 
with enough energy to become what is termed “hot.” These hot electrons impact 
the drain, dislodging holes that are then swept toward the negatively charged 
substrate and appear as a substrate current. This effect is known as impact 
ionization. Moreover, the electrons can penetrate the gate oxide causing a gate 
current.  Eventually this can lead to degradation of the CMOS device parameters 
(threshold voltage, subthreshold current, and transconductance), which in turn 
can lead to the failure of circuits. While the substrate current may be  used in a 
positive manner to estimate the severity of the hot-electron effect, it can lead to 
poor refresh times in dynamic memories , noise in mixed signal systems, and 
possibly latchup. Hot holes do not normally present a problem because of their 
lower mobility. 
 
• Fowler –Nordheim Tunneling  
 
               When the gate oxide is very thin, a current can flow from gate to source 
or drain by electron tunneling   through the gate oxide. This current is 
proportional to the area of the transistor as follows: 
 

� I FN =C1 WLE OX 
2e    

–E o / E 
ox             

 
Where         EOX ≈Vgs / t OX   is the electric field across the gate oxide and  
 
               E0 and C1 are constants. 
  
This effect limits the thickness of the gate oxide as processes are scaled. 
However, it is of great use in the electrically alterable programmable logic 
devices. 
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3.9 Mos Models: 

 The mos device can be modeled as DC model and Small signal AC Model. spice 
parameters can be used to model the device. The mos structure is shown in the 
figure below along with the parasitic capacitors from various regions. In small 
signal analysis we try to find out channel resistance and transconductance when 
the device is in nonsaturation and in saturation region. 
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Figure 3.8    Mos device parasitic capacitance and small signal Model. 

To find the channel resistance in nonsaturation (Linear) region let us look at the 
basic equation 

� Ids=β((vgs-vt).vds-vds2/2) 

We know that output conductance is ∂ ids/ ∂ Vds.differentiating the above 
equation with respect to Vds we get output conductance as Gds=∂ ids/ ∂ Vds 
= β (vgs-vt). 

Therefore channel resistance  

� Rclinear= 1/β(vgs-vt). 
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For saturation region we take the equation   Ids=β/2(vgs-vt)2.,and if we try to 
differentiate this equation with respect to Vds the result is 0 that means there 
is no change in output current with change in output voltage.hence it behaves 
as a constant current source in saturation region. 

To determine the transconductance when the device is in linear region 
(Nonsaturation) 

We know that transconductance gm is defined as output current divided by input 
voltage. 

Hence gm =∂ Ids/ ∂ Vgs.so differentiating the equation Ids=β((vgs-vt).vds-
vds2/2) with respect to Vgs  we get 

� gm(linear) =∂ Ids/ ∂ Vgs= β.vds 

Similarly to find the transconductance in saturation we differentiate the 
equation Ids=β/2(vgs-vt) 2   with respect to Vgs.       

� gm(sat) =∂ Ids/ ∂ Vgs= β.(vgs-vt). 

 

3.10 Complimentary Mos (Cmos) Inverter: 

Cmos  inverter is formed with interconnecting the gate terminals of both nmos 
and pmos transistor which are connected in series as shown in figure together 
.the input is applied to this common gate terminal.the output is taken from the 
common point drain of both the transistor.when input Vin is ‘0’  pmos transistor 
conducts and nmos transistor remains off therefore Vout =”Vdd”(logic 1).simillarly 
when Vin=’1’ then pmos is off and nmos transistor is on therefore the output is 
pulldown to Vss or Low logic. 
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 Figure 3.9 cmos inverter with substrate connection,and without substrate 
connection. 
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� Relations between voltages for the three
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Graphical representation of transfer characteristics (input/output relation) 
of Cmos Inverter: 

To determine the transfer characteristics of the Cmos inverter we first look at the 
individual current voltage relation ship of the pmos and nmos transistor. In the 
figure below RHS from the current axis is for nmos and LHS is for pmos. 
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Nmos V-I characterstics 
Pmos V-I characterstics 
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If we take the absolute value for idsp (the pmos plot is shifted upwards when we 
take the absolute value of current of p device) the plot looks as shown below. 

- Vdsp

|Idsn|,|I dsp |

-VDD VDD

Vgsn

Vdsn0

-Vgsp

� Load line
 

 

now rotating the pmos v-I curve about the axis to right side we get intersection 
points for each curve (1-1,2-2,3-3 etc).this points are equal current points. 
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the input output transfer  curve is determined now by the points of common 
intersections.substutiing Vinn=Vinp and Idsn=Idsp results in the transfer 
characterstics of Cmos Inverter. 
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Transfer characteristics Curve (Input /output curve)  

Now we will see how the inverter output is related to the input.we will  
gradually apply the input  from 0 volt to 5 volt (Vdd) and see how the output 
behaves.this input output relationship is know as the transfer characteristics 
curve X axis is input Vin and Y axis is output Vout.see the figure 3.11.when 
input Vin is 0 The output Vout is Vdd.There are five different regions on 
transfer characteristics curve namely Region A,B,C,D,E.The figure 3.11 
shows these regions and the state of the nmos and pmos transistors. 

 

 

                          Figure 3.11 cmos inverter characteristics. 

Region A : (0 < Vin < Vtn) 

This region is defined when input Vin is between 0v and Vtn (threshold voltage of 
nmos transistor).in this region the pmos transistor is on and it conducts in triode 
(linear,nonsaturation) region where as nmos transistor is Off(Cut Off). Hence the 
output Vout = Vdd. 

Region B:(Vtn ≤ Vin <Vdd / 2 ) 
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In this region as the input is greater than the threshold voltage  of nmos 
transistor it starts conducting in saturation  (observe that the Vds > Vgs-Vt) 
and pmos is conducting in linear region. 

When the device conducts in saturation region it can be modeled as constant 
current source and when the device is conducting in linear region it can be 
modeled as resistive. The equivalent diagram for the region B can be drawn 
as pmos as resistive and nmos as constant current source. (Refer figure 3.12) 
since both the transistor are connected in series the current flowing in both 
transistor must be same. our aim now is to equate both the transistor current 
idsn= - idsp and derive Vin and Vout relations. 

 

Figure 3.12 equivalent diagram of Cmos inverter in different region 

Now let us recall the fundamental equations  

� Ids=β((vgs-vt).vds-vds2/2)        nonsaturation (linear,triode) region 
 
�  Ids=β/2(Vgs-Vt)2                                    saturation region 
 

Now for region B the nmos device is in saturation so writing the equation in 
saturation device for nmosIdsn = βn/2 (Vgs-Vtn)2       here Vgs for nmos transistor 
is Vin              
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inverter with substrate connections 
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Therefore Idsn = βn/2 (Vin - Vtn)2        

Now for pmos transistor it is in triode region the equation for this region is 

Idsp= - βp((vgsp-vtp).vdsp-vdsp
2/2) 

For pmos vgsp = Vin –Vdd and Vdsp =(Vout - Vdd)  refer the figure above. 

Now substituting these values and equating both the currents we have  

 
Region C: 

In this region the input voltage is close to half of the Vdd (.5 Vdd)  and both the 
transistor enters in to saturation region. This is the main region where the cmos 
inverter dissipates more power due to the flow of short circuit current between 
Vdd and Vss.since both the transistor are conducting in saturation there is direct 
short circuit between Vdd rail and Vss rail. The figure 3.14 shows the magnitude 
of current in various regions .in region 1 and 5 there is no current because Nmos  
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and Pmos transistor are off respectively in these region. in region 2 and 4 small 
amount of current starts flowing ,however in region 3 more amount of current 
flows because both the transistor are in saturation.Now let us relate the current 
Idsn = -Idsp where both the device are in saturation.       
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Region D ( .5Vdd < Vin < Vdd +Vtp) 

This region is similar to region B, except that here nmos transistor remains in 
saturation and pmos transistor conducts in nonsaturation region (just opposite to 
region B).the current equations now are altered. I encourage the reader to derive 
the input output relation in this region. 

Region E  Vin > Vdd+Vtp 

In this region the nmos transistor is fully on and pmos transistor is now fully off 
because  at least some negative voltage (threshold voltage for p mos transistor 
Vtp) is require for pmos to conduct .so the current in this region is Idsn = - idsp = 
0. 

3.11. Noise margin: 

as we know that the digital  logic device requires some voltage level to determine 
the logic high or logic low. in general terms we define this logic level as 1 and 
0.but what actually logic 1 means and logic 0 means. To answer this questions 
the logic 1 and logic 0 can be defined as different level of voltage level. let us 
assume a positive logic where say +5 Volt is used to represent logic (1) High and 
0 Volt for logic 0 or low. Now if we closely observe the transfer characteristics of 
the inverter curve we have seen that there are various voltage levels in between 
0 and 5 volt. So what do we do with this different levels .the solution might be we 
can assume some range say 3 volt to 5 volt for logic 1 and 0 to 1.5 volt as logic 
0,and ignored the range 1.5 to 3 volt as undefined logic. Yes this is what a noise 
margin is concerned. Also there might be the need when device are connected in 
cascade the output of first device is input to second device and so on.so noise 
margin is related to input output curve. For example figure below shows that two 
inverters are connected in series. The output of first inverter is input for second 
inverter. 

 

 

 

 

Noise margin is defined as the maximum allowable noise at the input of the 
device so that the device correctly assumes the logic as high or low and 
perfumes the operation correctly. The figure 3.15 shows  that there are two 
inverters in series. The output of the first inverter is input to the second inverter. 
There is a range for the output of the first inverter for logic 0 and logic 1.now how 

Inverter 1 
Inverter 2 
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much noise at the input side can second inverter allow for logic 1 or zero is the 
noise margin. 

Before going further to noise margin let us see some parameters (Range for low 
and high logic) related to noise margin. Refer to the figure 3.15. 

VOLMAX: maximum Low output voltage (First inverter output for max low logic) 

VILMAX: maximum Low input voltage   (second inverter input for max low logic) 

VOHMIN: Minimum high output voltage    (First inverter output for min high logic) 

VIHMIN: Minimum high input voltage   (second inverter input for min high logic) 

Noise margin is described in two parameters, 

NM L low noise margin (for logic 0).it is the modulas difference between the 
maximum Low input voltage   and maximum Low output voltage. 

� NM L = | ViL max - VOL max | 

NM H  High noise margin is defined as the modulas difference  of Minimum high 
input voltage   and Minimum high output voltage     

NM H = | VIH min - VO H min |. 

The figure 3.15 shows the noise margin representation, the transfer 
characteristics curve has two points where the slope is unit and known as unity 
gain point. These two points determines the parameter four above 
parameters.VOL, VIL, VOH, VIH. 
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Figure 3.15 Noise margin and the characteristics curve. 

  

 

3.12 PASS TRANSISTOR: 

nmos and pmos transistors can be used to transmit the logic level from input to 
output hence the name pass transistor.nmos transistor degrades the high logic 
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value by an amount Vt(Threshold voltage) i.e out put is Vdd-Vtn at the output due 
to threshold voltage but passes logic zero without degradation so it is only 
suitable to pass logic zero not for logic 1. nmos transistor passes weak one and 
strong 0.similarly pmos transistor passes logic 1 as good and degrades logic 0 
.now the question arises what if we want to pass both the logic 0 and 1 as good , 
the solution for this is if we combine both the transistor in parallel we are able to 
get good logic for both the logic. this combination is termed as transmission gate. 

 

 

                  Figure 3.16 pass transistor 

3.13. Cmos transmission gate 

If pmos and nmos transistors are connected in parallel (refer figure 3.17) it forms 
the transmission gate. We will see the individual operation of nmos and pmos 
pass transistor .let us connect the load capacitor at the one terminal (either 
source or drain does not matter) and other terminal with Vdd, assume the 
capacitor is discharged initially, and the gate terminal is connected to Vdd. the 
capacitor starts charging towards Vdd but cannot reach Vdd (due to threshold 
voltage). The maximum voltage at the capacitor will be Vdd -Vtn. so nmos 
transistor degrades logic 1.now if the input source is made 0 the capacitor starts 
discharging towards 0.same approach can be made for pmos transistor also .if 
pmos transistor is connected instead of nmos transistor the capacitor is fully 
charged towards Vdd when gate is connected to 0,thus giving good logic for 
1,however due to threshold voltage while discharging the capacitor voltage 
cannot fall completely to 0,thus  providing poor logic for 0. 
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Now we will see what happens when we combine both the transistor .the goal of 
doing this is to get good logic for both logic levels 0 and 1. 

The figure 3.17 below shows the structure and operation of the transmission 
gate. Transmission gates are used to pass both the logic 0 and logic 1 as good. 
Let us consider that g=0 and gb=1 then both the transistor are off so it does not 
allow the input to pass at the output. when g=1 and gb=0 both the transistor are 
on and input is connected to output. now if the input is logic 0 nmos transistor 
passes good logic for 0 and if the input is high pmos transistor passes good logic 
to output.  

 

Figure 3.17-transmission gate. 

3.14 Cmos tristate inverter: 

Tristate refers to the logic level which has three states. Beside logic high and low 
(1 or 0) tristate device has third logic state which is neither high nor low, this state 
is known as high impedance state. Generally the devices are in this state when 
they are idle and help to save power. The control input alters the condition of 
device either to set in active mode where it operates as normal device or in 
tristate mode where it becomes idle and remains in high impedance state. 
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When the inverter is cascaded with transmission gate tristate inverter is formed 
as shown in the figure below. The control inputs clkn and clkp controls the 
inverter.clkn refers to negative and clkp refers to positive level. When clkp and 
clkn are asserted (enable) the inverter works normally however if the control 
input are not asserted than the inverter remains in high impedance state. the 
figure shows the cmos inverter cascaded with the transmission gate(figure 3.18 
(a) .the link can be broken (figure b) and the transistor can be arranged in stack 
form as shown in figure3.18  (c).finally the symbol for tristate inverter is shown in 
figure d. 

 

                      Figure 3.18   Tristate Inverter  
3.15 Determination of Rise and fall time Of Cmos Inverter: 
The speed of the mos transistor is determined by deriving the rise and fall time of 
the mos device. as we have seen already that certain time is required for the 
cmos inverter to transit from high state to low state and vice versa. Rise time Tr is 
defined as the time taken by the signal to reach 10% to 90% of its peak value. 
Similarly fall time Tf is defined as the time taken by the signal to fall from 90% to 
10% of its peak value. Now our aim is to find rise and fall time so that we can 
determine the switching speed of the device. here I would like to put a simple 
derivation for finding the rise time, and in the similar manner a fall time can be 
calculate. When we apply logic 0 to the cmos inverter input the nmos transistor is 
off and Pmos Transistor is on. Let us assume that throughout the rise time the 
Pmos transistor remains in saturation. The figure shows the equivalent diagram. 
The figure below shows that the with the application low “0” input the pmos 
transistor is in saturation and the nmos transistor is fully off. The current Idspsat 
flows from Vdd and the load capacitor starts charging towards Vdd. The out put 
voltage Vout = Charge stored in capacitor (Qc) / load capacitance (CL) 
 
Vout=Qc/CL ……………….                 (A)   
We know that Qc=Idspsat .T,  
Now substituting the value of Idspsat at saturation i.e. 
Idspsat=Bp (Vgs-Vtp)

2/2, 
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Remember Vtp is the Threshold Voltage for Pmos and we are taking here 
absolute value of .2Vdd. 
Substituting the value of Qc and Idspsat in equation (A) we get 
Vout= Bp (Vgs-Vtp)

2/2.T/CL 
Now we know the output is Vdd when input is “0”  
So substituting Vout=Vdd   and Vtp =.2Vdd 
Also Vgsp=Vdd and T=Tr (rise time)  
We approximately get the relation as 
 

� Tr ~ 3CL/BpVdd 
In general 
 Tr =K CL/BpVdd 

  Where K is constant and can vary from 3 to 4. 
 
For fall time calculation when the input Vin is High ( “Vdd” )than the pmos 
transistor is off and nmos transistor is On. The capacitor now starts 
discharging towards ground”0”.the fall time is calculated similarly and can be 
written as 
 
� Tf=kCL/Bn.vdd 
 
Now let us see that if rise time and fall time are same ,from the guess work 
we can say that fall time is less compared to rise time, because the mobility of 
holes is less than mobility of electrons. Pmos transistor is on for rise time and 
it constitutes of Holes. Where as nmos transistor is associated with fall time 
and has majority carriers as electron. Remember in mos transistor current 
constitute only majority carriers either by electrons or by holes unlike bipolar 
transistor where both electron and holes represents the current. 
 

3.16 Cmos power dissipation: 
Cmos circuits consume very less power compared to the Bipolar devices because 
of the insulated gate structure. Let us now see what are the factors which leads the 
cmos device to dissipate the power. There are major two factors which constitute 
the power dissipation for cmos circuit. These are Static and dynamic power 
dissipation.Static power means the power dissipated when the device remains in 
one state i.e when there is no transition of logic. Static dissipation occurs due to                             
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• Reversed biased current                           . 
• Subthreshold current  
As we have seen the structure of cmos device which contains many junction 
and pwell ,nwell made up of p and n type material. This forms a reverse 
biased junction and causes the reverse biased current to flow. This current 
dissipates the power as power is the product of current and voltage. This 
reverse leakage current is given as. 

                 I 0 = I s (e q v/ kT -1)  
Where     reverse saturation current 
               Vt=kT/q= thermal voltage 
               I0 =  leakage current 

 
 
 
 
Also when Vgs<Vt a weak inversion takes place and a very small current 
flows in mos device known as subthreshold current. This current will also 
cause the power to dissipate. 
 
 
 
 
 
        

 
So total power dissipation can be written as 
PStatic= ∑ (leakage current X supply voltage) 
The summation refers to the total number of transistor leakage current in the 
circuit or system. 
 
Dynamic Power dissipation: 
 
Dynamic power dissipation occurs when the logic is changing either from logic 0 
to logic1 or logic1 to logic 0 .in this transition from one logic to another 
momentarily there is a flow of current from Vdd  to Vss rail which is termed as 
short circuit current. Also to charge and discharge the load capacitor certain 
amount of current is required which is termed as charging and discharging 
current. This two current are the major factor which causes the major power 
dissipation factor in Cmos transistor. 
 
Dynamic power dissipation occurs due to 

• Charging and discharging of load capacitor 
• Short circuit current.  
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Dynamic power dissipation: now let us derive the power dissipation due to 
charging and discharging of load capacitance. let us assume a switching 
frequency fsw which is the frequency of charging and discharging the load 
capacitor. The time period is T then we can define average power as  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Hence the dynamic power dissipation due to charging and discharging of load 
capacitance depends upon the capacitance, the switching frequency and the 
supply voltage. To reduce the power dissipation  due to charging and 
discharging current the most important thing is to reduce the power supply 
voltage because it has the quadratic effect( square term).more the logic 
transition more power dissipation so switching frequency can be reduced for 
low power. The capacitance can be also decreased to reduce dynamic power 
dissipation. 
 
 
Short circuit power dissipation: 

The short –circuit power dissipation is given by the product of  current (mean 
value) and supply voltage  
 
 P sc = I mean .V DD.  
 
 For the input wave form shown in figure.         
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  Imean = 2 * [1/T ∫ t1 

t2    I(t) dt+1/T  ∫t2  
t3    I(t) dt] 

 
  Assuming that  
Vtn =  - Vtp and  β n= β p  =  (β)   
 and that the behavior is  symmetrical  around t2 

 
                              t2

 

     =2 * 2/T  ∫ t1  
   β/2 (V in (t) – Vt)

2 dt,  
 

With 
   
      V in (t) =V DD. t / t r   
 
            t 1 =V t . t r / V DD        

            t 2 = t r /2 .  
 

Thus for an inverter without load ,assuming that  t r =t f ( t r f ), 
 
P sc =β/12   (V DD -2Vt) 

3 trf /t p. 
 
Where t p is period of the input wave form .The derivation shows that the short 
circuit current is dependent on β and the rise and fall time of input wave form 
Total power dissipation In Cmos : 
Now we can say that the total power dissipation in cmos is the sum of static 
power dissipation, short circuit power dissipation and dynamic(charging and 
discharging) power dissipation 
Hence  
 Ptotal = Pstatic + Pdyn + Pshortckt 
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Chapter 4 
The aim of this unit is to make the readers familiar with one of the 
Hardware description language VerilogHDL. 
 
4.0 Basic concept:  
Early days circuit designer followed, the classical design method (Schematic, 
manual) to design a circuit these method has now become obsolete due to sheer 
complexity of the design. With the emerge of VLSI design technology it is very 
difficult if not impossible to follow the old design methodology. Computer based 
design language are now very popular among the designer. with the availability 
of computer aided design tools designer find very comfortable working with this 
tools .circuit of large size and complexity are designed using the language called 
Hardware description language HDL (a software used to design the digital 
function).today integrated circuits (ICs) may contain as many as millions of gates 
which is virtually impossible to sketch in paper .the most commonly used HDL 
language are verilog HDL and VHDL (Very high speed integration circuit HDL) 
 

 
 
4.1 VLSI Design Flow: 
 
VLSI design starts with the design specification (ideas).after the 
conceptualization is done VLSI design goes in two more design phase. The first 
phase is logical design and the second one is Physical design.the figure 3.0 
shows the VLSI design flow. 
Logical Design: 
 In this phase the design specifications are enter in some design entry tools. This 
tool supports textual as well as graphical form. Textual representation is done 
with HDL languages (VHDL, VerilogHDL).graphical representation is in the form 
of schematic capture or state diagram .once the design is entered in this format it 
is validate for functional verification. Cad tools can verify the functionality of the 
design .the design can be written in various coding style. These include 
structural, behavioral, dataflow, gate and switch level (in verilog). 
The implementation of the design can be in Programmable logic devices like 
FPGA and CPLDs or Building a chip. 
After the verification of the design it can be synthesize to lower level of 
abstraction. Up to this phase it is referred as logical design. 
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Physical design: 
Physical design refers to the actual mask layout of the chip, which has several 
phases .once the circuit is synthesize to gate level it is partitioned in smaller sub 
circuits, than floor planning is used to arrange this sub circuits in proper place 
such that the size of the chip is optimal also the routing of wires is minimum, after 
floor planning, Placement and routing are performed. Placement is used to 
arrange the cells in side the module and routing is used to interconnect each 
cells and modules .Finally mask layout is prepared and fabrication, packaging is 
done which we call Integrated circuit(IC). 

 
 

                           Figure 3.0 VLSI design flow 
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   4.1.1 Design Flow using Verilog 

The diagram below summarizes the high level design flow for an ASIC (ie. gate array, 

standard cell) or FPGA. In a practical design situation, each step described in the 

following sections may be split into several smaller steps, and parts of the design flow 

will be iterated, as errors are uncovered. 

 

System-level Verification 

As a first step, Verilog may be used to model and simulate aspects of the complete 

system containing one or more ASICs or FPGAs. This may be a fully functional 

description of the system allowing the specification to be validated prior to commencing 

detailed design. Alternatively, this may be a partial description that abstracts certain 

properties of the system, such as a performance model to detect system performance 

bottle-necks. 

Verilog is not ideally suited to system-level modelling. This is one motivation for 

SystemVerilog, which enhances Verilog in this area. 

RTL design and testbench creation 

Once the overall system architecture and partitioning is stable, the detailed design of each 

ASIC or FPGA can commence. This starts by capturing the design in Verilog at the 

register transfer level, and capturing a set of test cases in Verilog. These two tasks are 
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complementary, and are sometimes performed by different design teams in isolation to 

ensure that the specification is correctly interpreted. The RTL Verilog should be 

synthesizable if automatic logic synthesis is to be used. Test case generation is a major 

task that requires a disciplined approach and much engineering ingenuity: the quality of 

the final ASIC or FPGA depends on the coverage of these test cases. 

For today's large, complex designs, verification can be a real bottleneck. This provides 

another motivation for SystemVerilog - it has features for expediting test bench 

development. See the SystemVerilog section of Knowhow for more details. 

RTL verification 

The RTL Verilog is then simulated to validate the functionality against the specification. 

RTL simulation is usually one or two orders of magnitude faster than gate level 

simulation, and experience has shown that this speed-up is best exploited by doing more 

simulation, not spending less time on simulation. 

In practice it is common to spend 70-80% of the design cycle writing and simulating 

Verilog at and above the register transfer level, and 20-30% of the time synthesizing and 

verifying the gates. 

Look-ahead Synthesis 

Although some exploratory synthesis will be done early on in the design process, to 

provide accurate speed and area data to aid in the evaluation of architectural decisions 

and to check the engineer's understanding of how the Verilog will be synthesized, the 

main synthesis production run is deferred until functional simulation is complete. It is 

pointless to invest a lot of time and effort in synthesis until the functionality of the design 

is validated. 

 
 
4.2 VERILOG HARDWARE DISCRIPTION LANGUAGE: 
 
 Digital design using verilog starts with the design entity called module and ends 
with the endmodule. In between module and endmodule, various language 
constructs and modeling styles can be accommodated. We will now see how to 
write verilog module. Remember that verilog Is Case Sensitive for example a is 
not same as A. 
 
4.2.1 Module and ports. 
Every Verilog design consists of module. A module is a basic entity of the design. 
Module consists of design name and port list. Design can have one or more 
module instantiation. 
The syntax for defining the module is: 
module  design_name  (portlist); 
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input list; 
output list; 
inout list; 
; 
. 
. 
endmodule 
Design name is identifier for the name of the design.portlist includes all the input 
and output of the design. input keyword is used for inputs. output key word is 
used for outputs.inout key word is used for bidirectional (input and output). 
 Let us look for few examples to define module and ports. 
The figure below is 3 input and gate. here the gate name is r_and (to distinguish 
from and keyword in verilog because keywords cannot be  used as identifier.) 
 
 
 
 
 
 
 
 
 
module r_and (A,B,C,Y);                    \\module  design name and portlist 
input   A;                     \\direction 
input   B; 
input   C; 
output Y; 
.. 
.. 
endmodule 
 Verilog module and port definition for 3 input and gate; here design name is 
r_and. port list contains input and output so A,B,C,Y. where A,B,C are input and 
Y is output.Every verilog statement ends with semicolon. Module must be 
terminated with endmodule keyword. To write comments// sign is used. Note that 
verilog is case sensitive hence every keyword has to be written in small case. 
Instead of defining input /output separately they can be defined in one statement 
separated by comma as shown below. 
module r_and (A,B,C,Y);  
input A,B,C; 
output Y; 
Now let us take a look how a 4:1 multiplexer  module and ports can be define in 
verilog 

A 

C 

B Y 
R_and 



 

 

97 

97 

 
 
module mux4_1(a,b,c,d,s1,s0,y);    \\ identifier cannot start with digit so mux4_1 
Input a,b,c,d;                                      \\input  
Input s1,so; 
Output y;                                             \\ output 
.. 
.. 
.. 
endmodule 
 
 
In above example all the inputs and outputs are single bit, these are referred as 
scalars. Verilog provides the flexibility to define multi bit inputs and outputs. Multi 
bits are referred as vectors. 
Now consider the input as I [0], I [1], I [2], I [3],  s [1],  s[2] ,here I is an array of 
length 4 and s is array of length 2. 
 
 
 

 
 
Module mux4_1(I,S,Y);    //   I and s will be defined as vector 
Input [3:0] I;                        // here  I  is vector of length 4 starting from I[0] to i[3]. 
Input [1:0] S;   // s  is vector of length 2. 
Output Y; 
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Now let us examine the figure below. it is a basic sr latch. at first sight we might 
say that y and ybar are output but examine carefully they are output as well as 
input also.y and y bar are connected at the input side of nand gates along with 
other two inputs r and s.hence y and ybar  has to be declared with inout keyword 
not output..  
 
 

 
    
 
module sr_latch(r,s,q,qbar); 
input r,s; 
inout q,qbar; 

4.2.2 Identifiers: 

Identifiers are names that are given to elements such as modules, registers, 
ports, wires, instances, and procedural blocks. An identifier is any sequence of 
letters, digits, and the underscore (_) symbol except that: 
the first character must not be a digit, and the identifier must be 1024 characters 
or less.  

Verilog Identifier Naming Conventions  

An identifier in a Verilog file must adhere to the following conventions. For more 
information see the IEEE Standard Description Language Based on the Verilog™ 
Hardware Description Language manual.  

• Must begin with an alphabetic or underscore character (a-z, A-Z, or _)  
• Can contain alphanumeric (a-z, A-Z, 0-9), underscore (_), or dollar 

sign ($) characters  
• May use any character by escaping with a backslash (\) at the 

beginning of the identifier and terminating with a white space (a 
blank, tab, newline, or formfeed). For example, the identifier 
"reset*" is not acceptable but the identifier "\reset* " is acceptable.  

• Can be up to 1024 characters long  
• Cannot contain white space  

Note Identifiers are case sensitive. 

 



 

 

99 

99 

Verilog is case sensitive, ie Upper and lower case letters are considered to be 

different. System tasks and system functions are identifiers that always start with 

the dollar symbol. Escaped identifiers allow for any printable ASCII character to 

be included in the name. Escaped identifiers begin with white space. The 

backslash (“\”) character leads off the identifier, which is then terminated with 

white space. The leading backslash character is not considered part of the 

identifier. Examples of escaped identifiers include:  

 \flip-flop 

 \a+b  

Escaped identifiers are used for translators from other CAD systems. These 

systems may allow special characters in identifiers. Escaped identifiers should 

not be used under normal circumstances. 

Verilog Keywords 

Verilog keywords are reserved words which are predefined .verilog is case 

sensitive language .keywords are written in small case.the below mention key 

words cannot be used to define as module name ,variable name  or constant 

name. 

always 
and 
assign 
attribute 
begin 
buf 
bufif0 
bufif1 
case 
casex 
casez 
cmos 
deassign 
default 
defparam 

endmodule 
endprimitive 
endspecify 
endtable 
endtask 
event 
for 
force 
forever 
fork 
function 
highz0 
highz1 
if 
ifnone 

large 
macromodule 
nand 
negedge 
nmos 
nor 
not 
notif0 
notif1 
or 
output 
parameter 
pmos 
posedge 
primitive 

reg 
release 
repeat 
rnmos 
rpmos 
rtran 
rtranif0 
rtranif1 
scalared 
signed 
small 
specify 
specparam 
strength 
strong0 

tranif0 
tranif1 
tri 
tri0 
tri1 
triand 
trior 
trireg 
unsigned 
vectored 
wait 
wand 
weak0 
weak1 
while 
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disable 
edge 
else 
end 
endattribute 
endcase 
endfunction  

initial 
inout 
input 
integer 
join 
medium 
module  

pull0 
pull1 
pulldown 
pullup 
rcmos 
real 
realtime  

strong1 
supply0 
supply1 
table 
task 
time 
tran  

wire 
wor 
xnor 
xor  

 

White Space and Comments 

White space is defined as any of the following characters: blanks, tabs, new 

lines, and form feeds. These are ignored except for when they are found in 

strings. There are two forms of comments. The single line comment begins with 

the two characters // and ends with a new-line. A block comment begins with the 

two characters /* and ends with the two characters */. Block comments may span 

several lines. However, they may not be nested. 

4.2.3 Verilog data types: 
Unlike other programming language verilog is used to model digital hardware 
logic circuits so it is rich in data types that can be supported. it supports signal, 
and time in addition to constant and  variables etc. 
Verilog has two families of fixed data types:Nets and register. Nets establishes 
structural connectivity, registers stores information temporarily. 
 
Net (Signal Is referred as net in verilog) 
 
Net data types are  
 
Wire, tri , wand , wor, triand, trior, supply0 , suppl1, trireg 
 
Example if p,q are internal node of any logic circuits we can define these signals 
as 
Wire p,q;    \\ indicates p and q are signals 
tri p;            \\ indicates p is tristate signal. 
Supply0 and supply1 refres to ground and power respectively. 
Wand :a net that is connected to the output of multiple primitives. this models as 
wired and logic. 
Trireg  models a net which stores charge in node. 
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Verilog  variable 
Variable are the data which can change their value anytime throughout the 
program. To define variable the keyword reg, integer, real, realtime are used. 
reg refers for register variable which is used only when the sequential statements 
are used to hold the data temporarily. Register variable are assigned values by 
procedural (sequential) statements within an always keyword or initial block. 
Register variables hold their value until an assignment statement changes them.  
 
Types of register variables 
Reg,integer,real,realtime,time 
 
reg variable is used for temporary storage  it does not corresponds to physical 
memory or hardware register.reg type data has default initial value of X 
(unknown) and until an unless specified the size is one bit.. 
Example of reg type 
reg  y;               \\ y is a scalar variable which is 1 bit in size and default value is X 
reg [3:0]  y;         \\y is vector   and  is 4 bit in size y[0],y[1],y[2],y[3].       
reg [3:0] x , y ;     \\ both x and y are 4 bit in size     
reg [7:0]  mem [3:0]        \\corrosponds to memory name mem  which size is 8*4 
bit. 
Integer variable: 
The data type integer supports numeric computation in procedural statements. 
Integers are represented internally to the word length of the host machine (at 
least 32 bit).a negative integer is stored in 2s completed format. Integer type has 
initial default value of 0. 
Integer x; 
Integer  y,z ; 
Integer q [4:0]; 
 
Real data type 
 
Real data type is denoted with keyword real. It is used to represents the real type 
of data .The default value is 0.0 
 
Real pi = 4.4; 
Real  a,b,c; 
 
Time data type 
The data type time are used for time related computation in procedural code. 
Realtime data type is also supported by verilog and has default initial value of 
0.0. 
 
Verilog constant: 
 
In verilog constants are defined with keyword parameter. Parameter deals only 
with unsigned numbers unlike integer which can be used for signed numbers. 
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Example 
Parameter  count=8; 
Parameter  sum=10; 
Parameter one=1; 
 
4.2.4 Verilog operators: 
Verilog has sets of operators which can operate with different data 
types.operators are similar to c language operator.verilog unary  operators 
operates on single operand..it operates bit wise. These are also known as 
reduction operator.the table below shows the list of operators. 
Unary operators and their precedence: 

Operator Name 

! logical negation 

~ bitwise unary negation 

& unary reduction and 

~& unary reduction nand 

| unary reduction or 

~| unary reduction nor 

^ unary reduction xor 

~^  ^~ unary reduction xnor 

+ unary plus 

- unary minus 

 
 

?: (conditional opearator) Trinary operator. 

|| (logical or 

&& (logical and 

| (bitwise or)     , ~| (bitwise nor)  

^ (bitwise xor)   , ^~ ~^    (bitwise xnor, equivalence)  

& (bitwise and)    ,      ~& (bitwise nand)  

== (logical equal)      ,      != (logical not equal)  

< (less than) ,<= (lt or equal)  ,> (greater than) , >= (gt or equal)  

<< (shift left) , >> (shift right)  

+ (addition) , - (subtraction)  

* (multiply) ,  / (divide) , % (modulus)  

Unary operators: !, ~ ,&  ,~,& ,| ,~| , ^ , ~^ , ^~,  +,  -  
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 Example of unary reduction operator 
 & 4'b1111  is        1'b1,    
 & 2'bx1 is             1'bx,     \\ x is unknown 
 & 2'bz1 is             1'bx \\ z is high impedance 
 
Unary reduction nand~& 
 

~& 4'b1111   is    1'b0, 
 ~& 2'bx1      is     1'bx 
 
Binary operator operates on 2 operands 
example: a&b                   \\a and b 
a^v                                    \\axor b 
a+b                                   \\a plus b 
 
Ternary operator operates on 3 operands. 
 
Example: the conditional statement 
 
Y=S ? a : b    \\if s=’1’(true) then  Y is assigned to a  i.e (Y=a) ,if s=0(false) then 
Y=b; 
 
some of the operators in verilog: 
  
Arithmetic: bitwise 
 
+ , - , * , / , % 
 
Reduction operators 
 
&,~&,|,^,~^,^~ 
 
Example   
 
If A=0111  
Starting from left, bits are operated bit by bit. 
&A  results to 0. from left to write first it ands 0 with 1,result is 0,this is anded with 
1,result is 0,this is finally anded with 1 still the result is 0. 
| A results to 1.0 is ored with 1, result is 1,this result is ored with 1, result is 1,and 
so on. 
This unary operator compares bit by bit and determines the result. 
Logical operator 
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!    \\logical not 
&&  \\logical and 
||       \\logical or 
!=   \\not equal to 
=== case equality 
Example 
 
If ( a==b ) 
If ( a==b && b!=c) 
 
Relational operators 
<,>,<=,>=, 
Example 
if (a>b) 
if (a<=c) 
Shift operators: 
<<    \\left shift 
>>     \\right shift 
Example 
If a=0010 
a<< 1         results in 0100    \\shifts left one bit position 
a<<2         results in 1000   \\shifts 2 bit position to left 
 
 
Conditional operator  
 
?   This is conditional operator. 
Y = s ? a : b  \\if s =’1’ (true)then y gets the value a ,if s=’0’(false) y gets the 
value ob b; 
 
Concatenation operator: 
 
{       } 
 
This operator is used to combine two or more operands to single operand. 
 
Example 
If a=01 and b=11 then  
{a , b}results in 0111. 
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4.3 Verilog gate primitives: 
 
Verilog has 26 sets of primitives for modeling the functionality of combinational 
and switch level logic. The output terminals are listed first and the input terminal 
are listed last. Some of the primitives are: 
Buffer primitives: buf, bufif0 , bufif1 
Not Primitive:   not ,notif0 , notif1 
Transceiver (bidirectional buffer): Tranif0,Tranif1 
Logic gates primitives: and ,Or , xor , nand ,nor 
Mos switch primitives:Nmos,Pmos,Cmos 
Resitive switch primitives:Rcmos(out,in,control), Rnmos, Rpmos 
 
Buffer   
The syntax is  buf (out,in) 

 
 
Module buffer (A,B); 
Input A; 
Output B;                                                                
buf (B,A); 
endmodule 
                                                                                  
Bufif1  
This is also a buffer primitive but it passes the input to the output only when 
control input cntrl is 1. 

 
module bufferhigh (A,B,cntrl); 
Input A,cntrl; 
Output B;                                                                
bufif1  (B,A,cntrl); 
endmodule 
similarly  the buffer which is control by low input is represented by 
bufif0(out,in,cntrl) 
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Not Primitive: verilog gate primitive consist of inverter with or without control 
input the syntax is not (out,in) ,notif0(out,in,cntrl) , notif1(out,in,cntrl) 
 
 

 
module notprim (A,B) 
input A; 
output B; 
not (B,A) 
endmodule 
 
Transreciver (bidirectional buffer): 
verilog provides the use of bidirectional buffer with or without control input.the 
syntax is given below. 

 
 
tran(inout1,inout2) 
tranif0(inout1,inout2,cntrl) 
tranif1(inout1,inout2,cntrl) 
 
And primitive: 
 
and gate primitive syntax is and (out,input1,input2) 
 

 
module andprim (a,b); 
input a; 
output b; 
and(c,a,b); 
endmodule 
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Or primitive: 

  
module orprim (a,b); 
input a; 
output b; 
or (c,a,b); 
endmodule 
 
Xor primitive syntax is xor (out,in1,in2); 

 
Nand syntax is  nand (out,in1,in2); 

 
Nor 
 
Mos switch primitives:verilog  can be used to model at switch level where 
nmos ,pmos and cmos transistor cabn be used as a switch. 
Nmos 
   nmos (out, ground, in);    // instantiate nmos switch out is drain d,ground is 
source s,and in is gate g. 

 
Pmos 

  
pmos (out, power, in);     // instantiate pmos switch 
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Cmos transistor primitive is represented by cmos(out,in1,in2,out); 
Resitive switch primitives:the nmos,pmos and cmos transistor can also be 
used as a resistor .these resistive primitives are: 
rcmos (out,in,ncontrol,pcontrol) 
rnmos (out,in,control) 
rpmos (out,in,control) 

4.4 Verilog Number and value set:  

verilog is rich in numbering system and values to be set .decimal, hexadecimal, 
octal, binary number systems can be used to represent the values of the 
variable. it supports unknown value x and high impedence value z.the following 
table gives the clear view how the number are represented in verilog and how 
they are stored. 

 

  Notes: 

• 1: Active high bit  
• 0: Active low bit  
• z: high impedance  

• x: Uncertain/ Don't care  

• If not mentioned, length is 32 bit and data type is decimal integer by default.  

• If value is larger than the length, left most bits will be truncated  

• If value is smaller, 

o 0's are filled to the left if left most bit is 0 or 1  

o 'z' are filled if left most bit is z  

o 'x' are filled if left most bit is x  
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4.5 Gate delays: 
 
 When the inputs are applied to the gate it takes certain amount of time to 
produce the output, we do not notice it because the delay is very small fraction of 
second. This delay is due to the internal resistance and parasitic effect along with 
load capacitance. This delay can be also termed as propagation delay from input 
to output.the figure below shows that the two input and gate which is having a 
delay of 5-time unit. This means that the gate produces the output after 5-time 
unit delay. # symbol is used to model gate delay . 
  
 
 
 
 
 
 
Verilog code to model the gate above delay is 
 
module r_and (A,B,C);      \\r_and is the name of design  
Input A,B; 
output C; 
and #5 (C,A,B) ;   \\ 
endmodule 
 
 
The figure  below shows the and and or gate in cascade .the first gate and has 
delay of7 time unit  and or gate has delay of 10 time unit. 
 
 
 
 
 
 
 
 
 
Verilog  code: 
 
module and_or (A,B,C,F); 
Input A,B,C; 
output F; 
Wire X;                    \\x is not input or output it is internal node so it declared wire 
and  #7 ( X,A,B ); 
Or #10  (F,X,C); 
endmodule; 

X 

    A 

 C 
    B 

    

   #5 

F 

    A 

  
    B 

    

#7 
#10 

C 
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gate delays can be further classified as a rise time delay, fall time, turn off 
delay.this delays are separated by comma .for instance let us assume a and gate 
with a and b as input and c as output with rise time delay #2,fall time delay #3 
and turn off daly #5 unit.. 
verilog statement for this is: 
 
module r_and (a,b,c);       
Input a,b; 
output C; 
and # (2,3,5) (c,a,b);   \\here  rise ,fall and turn off time are separated by comma. 
endmodule 
 
Now at the end we will just see this gate delays can also have maximum, 
minimum and typical values associated with each rise, fall and turn off delay 
time. 
Syntax for this is as follows observe carefully comma separates the rise, fall and 
turn off delay and semicolon separates maximum, minimum and typical. 
 and # (4:2:3,5:3:4,5:8:6) (c,a,b); 
the gate has rise time specification as maximum of 4unit. Minimum of 2 unit and 
typical of 3 unit. Fall time maximum of 5 units, minimum of 3 units and typical of 4 
unit. And so on for turn off  delay . 
 
 
4.6 Structural level modeling: 
 

Structural level modeling in verilog uses various gate primitives and other 
primitives which are connected together to realize the logic circuit. Structural 
level modeling refers to the architecture of the logic circuit. Nets data type are 
used to connect intermediate nodes. Let us see a simple example, 

F= C.D+A.B 
 
 
module example(a,b,c,d,f); 
    input a; 
    input b; 
    input c,d; 
    output f; 
     wire x,y; 
  and a1(x,a,b); 
  and a2(y,c,d); 
  or o1(f,x,y); 

 
 

endmodule 
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multiplexer2:1 
 
module mux2_1(a,b,s,y); 
input a,b,s; 
output y; 
wire p,q,r; 
         not n1(p,s); 
         and a1(q,a,p); 
         and a2(r,s,b); 
         or o1(y,q,r); 
endmodule 
 
 
 

 

 

 

 

2 : 4 DECODER: 

 

module decode24(s1,s0,a,b,c,d); 

input s1,s0; 

output a,b,c,d; 

wire   m,n; 

not   (m,s1); 

not   (n,s0); 

and   (a,n,m); 

and   (b,m,s0); 

and   (c,n,s1); 

and   (d,s0,s1); 

endmodule 
 

 

 

 

 

D-FF: 

 

module DFF(D,CLK,Q,Qb); 

input D,CLK; 

inout Q,Qb; 

wire Dn,a,b; 

not    (Dn,D); 

nand  (a,D,CLK); 

nand  (b,Dn,CLK); 

nand  (Qb,b,Q); 

nand  (Q,a,Qb); 

        endmodule 
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EQUALITY  DETECTOR: 

If a and b are equal the output is 1. 

 

module equdetect(a,b,y); 

input a,b; 

wire an,bn,g1,g2; 

output y; 

not(an,a); 

not(bn,b); 

and(g1,a,b); 

and(g2,an,bn); 

or(y,g1,g2); 

endmodule 
 

 

 

 

 
 

 

 

HALFADDER: 

 

module halfadd(a,b,sum,carry); 

input a,b; 

output sum,cout; 

and(carry,a,b); 

xor(sum,a,b); 

endmodule 
 

 

 

 

 

 

FULLADDER: 
 

 

module fulladd(a,b,c,sum,carry); 

input a,b,c; 

output sum,carry; 

wire a1,a2,a3; 

xor(sum,a,b,c); 

and(a1,a,b); 

and(a2,b,c); 

and(a3,c,a); 

or(carry,a1,a2,a3); 

endmodule 
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RIPPLE CARRY ADDER: 

The four bit ripple carry adder is design using structural 

modeling as shown. 

 

module RCA(CIN,A,B,S,COUT); 

input[3:0]A,B; 

output[3:0]S; 

output COUT; 

input CIN; 

wire C0,C1,C2; 

fulladd f1(CIN,A[0],B[0],S[0],C0); 

fulladd f2(C0,A[1],B[1],S[1],C1); 

fulladd f3(C1,A[2],B[2],S[2],C2); 

fulladd f4(C2,A[3],B[3],S[3],COUT); 

endmodule 

 

 

 

 

 

 

In the above example, the four-bit ripple carry adder four-fulladd primitive is 
instantiated. This fulladd primitive is 1 bit full adder and it must be available in library 
or can be written and compile together so we have to write the code for fulladd 
primitive. 
 
fulladd primitive 
 

module fulladd(cin, a,b,sum,cout); 

input a,b,cin; 

output sum,cout; 

wire p,q,r; 

xor(sum,a,b,cin); 

and(p,a,b); 

and(q,cin,b); 

and(r,a,cin); 

or(cout,p,q,r); 

endmodule 
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4.7  Switch-Level Modeling:  

Verilog can be used to model the logic circuit at the switch level also. the mos 
transistors are used as switch. The keywords for switch level are: nmos, pmos, 
cmos, tran, tranif0, tranif1, rnmos, rpmos, rcmos, rtran, rtranif0, rtranif1, supply. 
Switch level models are used to allow detailed construction of logical gates 
and functions and also to allow complex delay modeling to be used.  

MOSFET switches 

There are six different transistor models used in Verilog, nmos, pmos and cmos and 
the corresponding three resistive versions rnmos, rpmos and rcmos. The cmos type 
of switches have two gates and so have two control signals.  

 

Syntax: keyword unique_name (drain. source, gate);  

 

e.g. nmos transistor1 (out, gnd, in); 
 cmos transistor2 (out, gnd, in_n, in_p);   
                              

Resistive devices reduce the signal strength which appears on the output by one level.  

All the switches only pass signals from source to drain, incorrect wiring of the devices will 

result in high impedance outputs.  

Transmission gates 

Transmission gates are bi-directional and can be resistive or non-resistive.  
 

Syntax: keyword unique_name (inout1, inout2, control);  

 

e.g. tranif0 trans_gate1 (net5, net8, cnt); 
 rtranif1 rtrans_gate2 (net5, net12, cnt);   

Transmission gates tran and rtran are permanently on and do not have a control line. Tran can 

be used to interface two wires with separate drives, and rtran can be used to weaken signals.  

Delays 
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Real transistors have resolution delays between the input and output. This is modeled in 

Verilog by specifying one or more delays for the rise, fall, turn-off and turn off time 

seperated by commas.  

 

Syntax: keyword #(delay{s}) unique_name (node specifications);  

e.g. rnmos #(5,3,10) slow_nmos1 (out, gnd, in);   

Note that the transmission gate primitives tran and rtran cannot be delayed because they 

never switch state.  

Switch element Number Specified delays 
 of delays  
Switches 1 Rise, fall and turn-off times of equal length 
 2 Rise and fall times 
 3 Rise, fall and turn off 
(r)tranif0, (r)tranif1 1 both turn on and turn off 
 2 turn on, turn off 
(r)tran 0 None allowed 
 

This section provides two examples of implementing circuit designs at switch-level.  

1. CMOS Inverter 

 

The switch-level description has a similar structure to that of the behavioural, functional or 

gate level codes, as in this example of a CMOS inverter:  
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// Switch-level description of a CMOS inverter 
 
   module inv_sw (out, in); 
    
   output  out;                                      // inverter output 
   input   in;                                         // inverter input 
    
   supply1 power;                               // "power" connected to Vdd 
   supply0 ground;                             // "ground" connected to Gnd 
    
   pmos (out, power, in);                    // instantiate pmos switch 
   nmos (out, ground, in);                   // instantiate nmos switch    
  endmodule 
 

Connection to the Vdd power supply is made using the supply1 net, declared as "power". 

Similarly, the "ground" terminal is connected to the supply0 net. Using the pmos and nmos 

switch-level primitives the respective transistors are instantiated. 

 1-bit 2-1 Multiplexer 

 

This circuit assigns the output out to either inputs in1 or in2 depending on the low or high 

values of ctrl respectively.  

// Switch-level description of a 1-bit 2-1 multiplexer 
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// ctrl=0, out=in1; ctrl=1, out=in2 
 
module mux21_sw (out, ctrl, in1, in2); 
    
   output out;                                                                       // mux output 
   input  ctrl, in1, in2;             // mux inputs 
   wire   w;                          // internal wire 
    
   inv_sw I1 (w, ctrl);               // instantiate inverter 
module 
    
   cmos C1 (out, in1, w, ctrl);      // instantiate cmos switches 
   cmos C2 (out, in2, ctrl, w);    
endmodule 
 

An inverter is required in the multiplexer circuit, which is instantiated from the previously 

defined module.  

Two transmission gates, of instance names C1 and C2, are implemented with the 
cmos statement, in the format cmos [instancename]([output],[input],[nmosgate],[pmosgate]). 
The instance name C1,C2 is optional. 
 

4.8 Timing Controls and Delay 

The statements within a sequential block are executed in order, but, in the absence 
of any delay, they all execute at the same simulation time--the current time step. In 
reality there are delays that are modeled using a timing control. 

Timing Control 

A timing control in verilog can be classified as: 

• Delay control  

• Event control.  

A delay control delays an assignment by a specified amount of time. A timescale 
compiler directive is used to specify the units of time followed by the precision 
used to calculate time expressions, 

`timescale 1ns/10ps // Units of time are ns. Round times to 10 ps. 

Time units may only be s , ns , ps , or fs and the multiplier must be 1, 10, or 
100. We can delay an assignment in two different ways: 



 

 8 

• Sample the RHS immediately and then delay the assignment to the 

LHS.(intra assignment delay) 

• Wait for a specified time and then assign the value of the LHS to the RHS.  

Here is an example of the first alternative (an intra-assignment delay): 
x = #1 y;            // intra-assignment delay 
this assignment assigns the value of y to x by 1 unit time delay but 

The second alternative is delayed assignment: 
#1 x = y; // delayed assignment 

These two alternatives are not the same. The intra-assignment delay is 
equivalent to the following code: 

 
begin                 // Equivalent to intra-assignment delay. 
hold = y;            // Sample and hold y immediately. 
#1;                      // Delay. 
x = hold;            // Assignment to x. Overall same as x = #1 y. 
end  

 

In contrast, the delayed assignment is equivalent to a delay followed by an 
assignment as follows: 

 
begin                             // Equivalent to delayed assignment. 
#1;                                 // Delay. 
x = y;                            // Assign y to x. Overall same as #1 x = y. 
end  
 
assign sum= #5 a^b;   \\continious assignment expression for Half adder 
assign cout=#5 a&b; 
in the above example the value a^b is sampled immediately but it is assigned to sum 
after the delay of 5 unit time. the value assigned to a and b is exactly at the 0 
simulation time Now let us see delayed version timing control 
assign #5 sum=  a^b; 
in this expression the statement is delayed 5 time unit first so the execution of a^b 
takes place only after 5 time unit delay and the value assigned to a and b is also at 
that delayed time. 
Hence the expression assign sum= #5 a^b; and   assign #5 sum=  a^b; 
Yields completely different value for sum. 
 
 
Event control: 

The other type of timing control, an event control, delays an assignment until a 
specified event occurs. Event is referred as the transition .for example if the clock 
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pulse is changing from 0 to 1or 1 to 0, than we can say event has occur .this 
transition can be used to control the timing .for example we may postponed the 
assignment  until there is a transition from 0 to 1 at clock ,this is referred as 
posedge (Positive edge clock) in verilog.the event control timing control uses the 
keyword always @ ,and the event name .this indicates that until that particular 
event happens do not execute the statements in that block.Here is the formal 
definition: 

event_control ::= @ event_identifier | @ (event_expression) 
 event_expression ::= expression | event_identifier 
  | posedge expression | negedge expression 
  | event_expression or event_expression 

(Notice there are two different uses of 'or' in this simplified BNF definition--the last 
one, in bold, is part of the Verilog language, a keyword.) A positive edge (denoted 
by the keyword posedge ) is a transition from '0' to '1' or 'x' , or a transition from 'x' 
to '1 '. A negative edge ( negedge ) is a transition from '1' to '0' or 'x' , or a transition 
from 'x' to '0'. Transitions to or from 'z' do not count. Here are examples of event 
controls: 

 
 
module delay_controls;  
reg X, Y, Clk, Dummy; 
always #1 Dummy=!Dummy;          // Dummy clock, just for graphics. 
 
 // Examples of delay controls: 
always  
begin  
#25 X=1; 
#10 X=0; 
#5;  
end 
 
 
// An event control: 
 
always @(posedge Clk)  
Y=X;                        // Wait for +ve clock edge. 
  
always #10 Clk = !Clk;  // The real clock. 
initial begin Clk = 0; 
  $display("T   Clk X Y"); 
  $monitor("%2g",$time,,,Clk,,,,X,,Y); 
  $dumpvars; 
#100 $finish;  
end 



 

 10 

endmodule 
T   Clk X Y 
 0  0    x x 
10  1   x x 
20  0   x x 
25  0   1 x 
30  1   1 1 
35  1   0 1 
40  0   0 1 
50  1   0 0 
60  0   0 0 
65  0   1 0 
70  1   1 1 
75  1   0 1 
80  0   0 1 
90  1   0 0 

The dummy clock in delay controls helps in the graphical waveform display of 
the results (it provides a one-time-tick timing grid when we zoom in, for example). 

 below shows the graphical output from the Waves viewer in VeriWell (white 
is used to represent the initial unknown values). The assignment statements to 'X' 
in the always statement repeat (every 25 + 10 + 5 = 40 time ticks). 

.
 

  
 
                          FIGURE Output from the module delay_controls 

 

Events can be declared (as named events), triggered, and detected as follows: 
module show_event; 
reg clock; 
always #10 clock = ~ clock;                             // We need a clock. 
initial clock = 0; 
 
event event_1, event_2;                                   // Declare two named events. 
always @(posedge clock) -> event_1;               // Trigger event_1. 
always @ event_1  
begin  
$display("Strike 1!!"); -> event_2; end                // Trigger event_2. 
always @ event_2 
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 begin 
 $display("Strike 2!!"); 
 $finish;  
end                                                                    // Stop on detection of event_2. 
endmodule  
 
4.9 Coding style in verilog: 
The digital design using verilog hdl can be done in various coding styles. The coding 
style differs depending upon the complexity of the design. The design style can be of 

• Structural modeling, 
• Behavioral  
• Switch level modeling. 
 Structural modeling 
Structural modeling style defines the architecture of the design. Structural gate 
level modeling refers to the design model which is decomposed in gate level and 
the gate primitive are instantiated from the library. These primitives are 
interconnected to form the circuit. The designer writing codes in this style knows 
the architecture of the design .for example to design a full adder ,the designer 
draws the gate level circuit and starts coding it.now for 4 bit adder the designer 
cascades the 1 bit, 4 adders and defines the structure.in this way large design 
can be accomplished instantiating the primitives.we have already discuss some 
of the circuit designs using this style. 
 Behavioral modeling: 
This modeling style describes the function of the design rather than the 
architecture. The function of the design can be verified  in the form of verbal 
expression (yes,correct,No etc) or in the form truth table .Behavioral modeling 
can be data flow modeling or procedural modeling. Data flow modeling is used 
for concurrent operations in combinational logic circuit. Continuous assignments 
statements (assign) are used for this type of modeling. blocking and non blocking 
statement ( = , <= ) are used . We will discuss blocking and non blocking 
statements later in this text. The data can me made to flow in registers clocked 
by clock to perform the pipelined operation, so Register transfer level (RTL) also 
is part of data flow model. 
Procedural modeling: 
Basically Hardware description  language are designed to handle concurrent 
activities which models the actual hardware. however there is also a need of 
sequential operation where the statements are executed sequentially, and in the 
order they are defined. The ordering of the statements is extremely important for 
sequential operation.The sequential operation in verilog is performed by using 
procedural assignment which includes always block. The statements like if ,if 
else, case, loop,etc are sequential statement and are present inside always 
block.switch level modeling is the lowest abstraction level modeling which uses 
nmos,pmos and cmos transistor and resistive transistor to function as a 
switch.the chart below shows the various coding styles in verilog. 
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          figure:     chart showing various coding styles  
 
4.9.1 Continuous assignment statements 
These statements are concurrent .concurrent means the statements executes 
parallel and the ordering of the statement is not important.the right side of the 
expression is continiously assigned to the left hand side of the expression. the key 
word assign is used for continuous assignment statements. 
For example  let us take an example of half adder expression 
assign sum= (a ^ b); 
assign cout=(a & b); 
The above statement indicates that the sum and carryout (cout) are evaluated 
concurrently, and the order of the statement does not matter. the statement can be 
written as 
assign cout=(a & b); 
assign sum= (a ^ b); 
Now let us see few examples of continuous assignment statements: 
Full adder using continuous assignment statements: 
 
Module fulladdr(a,b,cin,sum,cout); 
Input a,b,cin; 
Output sum,cout; 
assign sum=a^b^cin; 
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assign cout=( a &b) | ( b & cin) |( a & cin); 
endmodule 
 
 Full adder using + operator and concatenation: 
 
Module fulladdr(a,b,cin,sum,cout); 
Input a,b,cin; 
Output sum,cout; 
assign {cout,sum} = a + b + cin ; 
endmodule 
 
2:1 multiplexer: 
 
2 to 1 multiplexer is shown below.if s=0,Y=a else if s=1 ,Y=b; 
 
 
 
 
 
 
 
The code  can be written as 
 
module mux21(a,b,s,Y); 
input a,b,s; 
output y; 
assign Y=(a&~s) | ( b&s); 
endmodule 
Let us now see the 8-bit adder example using continuous assignment statements: 

        module adder(a, b, ci, sum, co); 
        input        ci; 
        input  [7:0] a; 
        input  [7:0] b; 
        output [7:0] sum; 
        output       co; 
        wire   [8:0] tmp; 
        assign tmp = a + b + ci; 
        assign sum = tmp [7:0]; 
        assign co  = tmp [8]; 
        endmodule 
 
 
\\ Verilog code for an unsigned 8-bit greater or equal comparator. 
  
  module compar(a, b, cmp); 
  input  [7:0] a; 

2:1 
Mux 

a

b

s 

Y 
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 input  [7:0] b; 
 output       cmp; 
   assign cmp = (a >= b) ?  1’b1 : 1’b0; 

              endmodule 
 
 
 

4.9.2 Procedural Continuous Assignment: 

Procedural statements refer to the sequential operation. Sequential statements like 
if, else if, case, loop, for, while etc are executed inside the procedural block and in 
the order they are kept. Always block is used to perform the repetitive execution 
inside the procedural block when any events occurs at the sensitivity list .initial 
block instead of always block is used for only one time execution of the procedural 
block. Remember all the input must be included in sensitivity list and out put must be 
defined with reg variable 

The structure of procedural block 

always @ (sensitivity list ) 

begin 

If statement….. 

Else if…… 

Case…… 

For….. 

Loop…. 

end 

 

 

4.9.3  Blocking and Non Blocking statements: 

Procedure assignment can be evaluated in two ways: Blocking and nonblocking 

assignments. If execution of other statements is blocked after evaluation of right 
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hand side of a statement until assignment to left hand side is done, it is called 

blocking statement. That is, if you use a nonblocking statements in your code, right 

hand side of the statements to be executed without an timing delay in between will 

be evaluated first, and assigned later. Only if timing delay exists between two 

nonblocking assignments, assignment to LHS of one statements will be done 

before evaluation RHS of another statement. In blocking style of assignment, 

execution will be depending on the order in which statements are written. But in 

non-blocking statements, result will be independent of order. To understand it more 

clearly, consider these examples. "=" represents blocking and "<=" represent 

nonblocking in Verilog.  

We will try to swap values in registers a and b, assume the value of a and b before 

the clock is a = 0 and b = 1. 

always@ (posedge clk) 
begin 
    a = b; 
    b = a; 
end 
// (1) both a and b becomes 1. 

always@ (posedge clk) 
begin 
    a <= b; 
    b <= a; 
end 
//(2)  a becomes 1 and b becomes 0. 

Here, code (1) do not give us required result. Because when a=b is executed until b 

is assigned to a it doesn’t execute next statement b=a.now when the first 

assignment is over the old value of a is lost and next statement b=a gets the value of 

b,so no swapping is done. 

In code 2 both the statement is executed concurrently such that the current value of 

a and b are sampled and stored temporarily .now when the assignment is done the 

values are restored and the swapping operation is performed. 

 

A procedural continuous assignment statement (sometimes called a 
quasicontinuous assignment statement) is a special form of the assign statement 
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that we use within a sequential block. For example, the following flip-flop model 
assigns to q depending on the clear, clr, and preset, pre, inputs. 
module dff_clr_pre(q, d ,clear ,preset , clock); 
output q; 
 input d,clear,preset,clock;  
reg q; 
always @(clear or preset) 
  If (clear) assign q = 0;                            // active-high clear 
  else if(preset) assign q = 1;                   // active-high preset 
  else deassign q; 
always @(posedge clock) q = d; 
endmodule  

We have now seen all of the different forms of Verilog assignment statements. 
The following skeleton code shows where each type of statement belongs: 
module all_assignments 
 
assignment (assign) statements              //... continuous assignments.   
 
always                                                     // beginning of procedure 
  begin                                                    // beginning of sequential block 
  //... blocking procedural assignments. 
  //... nonblocking procedural assignments. 
  //... procedural continuous assignments. 
  end 
endmodule 

Summary of different types of statement: 

Verilog assignment statements. 

Type of 
Verilog 

assignment 

Continuous 
assignment 
statement 

Procedural 
assignment 
statement 

Nonblocking 
procedural 
assignment 
statement 

Procedural 
continuous 
assignment 
statement 

Where it 
can occur 

outside an always 
or initial statement, 
task, or function 

inside an 
always or initial 
statement, task, 
or function 

inside an 
always or initial 
statement, task, 
or function 

always or initial 
statement, 
task, or 
function 

Example 

wire [31:0] DataBus; 
assign DataBus = 
 Enable ? Data : 
 32'bz 

reg Y; 
always 
@(posedge 
clock) Y = 1; 

reg Y; 
always Y <= 1; 

always 
@(Enable) 
if(Enable) 
assign Q = D; 
else deassign 
Q; 
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Valid LHS of 
assignment 

net 
register or 
memory 
element 

register or 
memory 
element 

net 

Valid RHS 
of 
assignment 

<expression> 
net, reg or memory 
element 

<expression> 
net, reg or 
memory 
element 

<expression> 
net, reg or 
memory 
element 

<expression> 
net, reg or 
memory 
element 

 
 

 

4.10 Sequential statements: 

Now we shall see  individual sequential statement and their uses.following that we 
will see few examples which are behavioral modeling styles. 

If statement 

If statement 
The if statement in Verilog is a sequential statement that conditionally executes 
other sequential statements, depending upon the value of some condition. An if 
statement may optionally contain an else part, executed if the condition is false. 
Although the else part is optional, for the time being, we will code up if statements 
with a corresponding else rather than simple if statements. In order to have more 
than one sequential statement executed in an if statement, multiple statements are 
bracketed together using the begin..end keywords, 
Let us take an example of 2:1 multiplexer to describe the if statement function 
 
module mux2_1(a,b,sel,Y); 
input a,b,sel; 
output Y; 
reg Y;      
always @(sel or a or b) 
begin 
  if (sel == 1) 
   Y = b; 
else  
Y = a; 
end 
endmodule 
note: To synthesize combinational logic using an always block, all inputs to the 
design must appear in the sensitivity list. 
If statements can be nested if you have more complex behavior to describe: here is 
a random example for nested if statement. 

2:1 
Mux 

a 

b 

sel 

Y 
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reg f, g; 
always @(sel or sel_2 or a or b) 
  if (sel == 1) 
    begin 
      f = a; 
      if (sel_2 == 1) 
        g = ~a; 
      else 
        g = ~b; 
    end 
  else 
    begin 
      f = b; 
      if (sel_2 == 1) 
        g = a & b; 
      else 
        g = a | b; 
    end 
Notice that the code is beginning to look a little bit confusing! In the code above, 
begin. .end blocks have only be used where they must be used, that is, where we 
have multiple statements. It is probably a good idea to use begin..end blocks 
throughout your Verilog code - you end up typing in a bit more Verilog but it's easier 
to read. Also, if you have to add more functionality to an always block later on (more 
sequential statement), at least the begin..end block is already in place.  

 

Case statement: 

Case statement is used  instead of multiple if ,else if statement. The syntax for case 
statement is  

Case( selection expression) 

Selection option1: statement; 

Selection option2: statement; 

; 

; 

default :statement 

endcase 
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 example 

Verilog Code for a 4-to- 1 MUX using a Case statement. 
 module mux (a, b, c, d, s, o); 
 input        a, b, c, d; 
 input  [1:0] s; 
 output       o; 
 reg          o; 
 always @(a or b or c or d or s) 
 begin 
    case (s) 
       2’b00   : o = a; 
       2’b01   : o = b; 
       2’b10   : o = c; 
       default : o = d; 
    endcase 
   end 
         endmodule 

 

Loop statements: 

Loop statements are used to control repeated execution of one or more statements. 
There are 4 types of looping statements in Verilog:these are 

forever statement; 

repeat (expression) statement; 

while (expression) statement; 

for (initial_assignment; expression; step_assignment)  statement; 

We can combine more than one statements using begin -- end block in a looping 
instruction. Looping statements should be used within a procedural block. 

forever Loop: 

The forever instruction continuously repeats the statement that follows it. Therefore, 
it should be used with procedural timing controls (otherwise it hangs the simulation). 
Consider this example: 

initial  
begin  
   clk = 0;  
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   forever #5 clk = ~clk;  
end  
 
repeat Loop: 

Repeats the following instruction for specified times. The number of executions is set 
by the expression or constant value. If expression evaluates to high impedance or 
un-known, then statement will not be executed.  

initial  
begin  
  x = 0;  
  repeat( 16 )  
  begin  
     #2 $display("y= ", y);  
     x = x + 1;  
  end  
end  
 

while Loop:  

while loop repeats the statement until the expression returns true. If starts with false 
value, high impedance or unknown value, statement will not be executed.  

initial  
begin  
  x = 0;  
  while( x <= 10 )  
  begin  
     #2 $display("y= ", y);  
     x = x + 1;  
  end  
end  
 
for Loop: 

Executes initial_assignment once when the loop starts, Executes the statement or 
statement group as long as the expression evaluates as true and executes the 
step_assignment at the end of each pass through the loop.  

for(initial_assignment; expression; step_assignment) statement; 

Syntax is similar to C language except that begin--end is used instead of {--} to 
combine more than one statements. Remember that we don't have ++ operator in 
Verilog. 
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for( i = 0; i <= 10; i++ )  
   mem[i] = 0;  

 

             Some examples of  procedural verilog codes: 
Verilog code for an unsigned 8-bit adder/subtractor. 
 
 module addsub(a, b, oper, res); 
 input        oper; 
 input  [7:0] a; 
 input  [7:0] b; 
 output [7:0] res; 
 reg    [7:0] res; 
 always @(a or b or oper) 
 begin 
    if (oper == 1’b0) 
       res = a + b; 
    else 
       res = a - b; 
        end 

        endmodule 
Verilog code for a 4-to-1 MUX using an If statement. 
 module mux (a, b, c, d, s, o); 
 input        a,b,c,d; 
 input  [1:0] s; 
 output       o; 
 reg          o; 
 always @(a or b or c or d or s) 
 begin 
    if (s == 2’b00) 
       o = a; 
    else if (s == 2’b01) 
       o = b; 
    else if (s == 2’b10) 
       o = c; 
    else 
       o = d; 
 end 
        endmodule 
Verilog Code for a 4-to- 1 MUX using a Case statement. 
 module mux (a, b, c, d, s, o); 
 input        a, b, c, d; 
 input  [1:0] s; 
 output       o; 
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 reg          o; 
 always @(a or b or c or d or s) 
 begin 
    case (s) 
       2’b00   : o = a; 
       2’b01   : o = b; 
       2’b10   : o = c; 
       default : o = d; 
    endcase 
   end 
         endmodule 
 
Verilog code for a 3-to-8 decoder. 
 
        module dec3to8 (sel, res); 
        input  [2:0] sel; 
        output [7:0] res; 
        reg    [7:0] res; 
        always @(sel or res) 
        begin 
           case (sel) 
              3’b000  : res = 8’b00000001; 
              3’b001  : res = 8’b00000010; 
              3’b010  : res = 8’b00000100; 
              3’b011  : res = 8’b00001000; 
              3’b100  : res = 8’b00010000; 
              3’b101  : res = 8’b00100000; 
              3’b110  : res = 8’b01000000; 
              default : res = 8’b10000000; 
           endcase 
        end 
        endmodule 

            simple d flipflop: 
 module flop (clk, d, q); 
 input  clk, d; 
 output q; 
 reg    q; 
         
 always @(posedge clk) 
 begin 
    q <= d; 
 end 
        endmodule  
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Verilog code for a flip-flop with a negative-edge clock and 
asynchronous clear. 
 
 module flop (clk, d, clr, q); 
 input  clk, d, clr; 
 output q; 
 reg    q; 
 always @(negedge clk or posedge clr)  
        begin 
    if (clr) 
       q <= 1’b0; 
    else 
       q <= d; 
 end 
        endmodule 
         
 
verilog code for the flip-flop with a positive-edge clock and 
synchronous set. 
        module flop (clk, d, s, q); 
        input  clk, d, s; 
        output q; 
        reg    q; 
        always @(posedge clk) 
        begin 
           if (s) 
              q <= 1’b1; 
           else 
              q <= d; 
        end 
        endmodule 
Verilog code for a latch with a positive gate and an asynchronous clear.  
        module latch (g, d, clr, q);  
        input  g, d, clr; 
        output q; 
        reg    q; 
 always @(g or d or clr)  
        begin 
           if (clr) 
              q <= 1’b0; 
           else if (g) 
              q <= d; 
        end 
        endmodule 
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 Verilog code for a 4-bit latch with an inverted gate and an 
asynchronous preset. 
        module latch (g, d, pre, q); 
        input        g, pre; 
        input  [3:0] d; 
        output [3:0] q; 
        reg    [3:0] q; 
        always @(g or d or pre) 
        begin 
           if (pre) 
              q <= 4’b1111; 
           else if (~g) 
              q <= d; 
        end 
        endmodule 
      
         
 
 Verilog code for a 3-bit 1-of-9 Priority Encoder. 
 module priority (sel, code); 
 input  [7:0] sel; 
 output [2:0] code; 
 reg    [2:0] code; 
 always @(sel) 
 begin 
    if (sel[0])  
       code = 3’b000; 
    else if (sel[1])  
       code = 3’b001; 
    else if (sel[2])  
       code = 3’b010; 
    else if (sel[3])  
       code = 3’b011; 
    else if (sel[4])  
       code = 3’b100; 
    else if (sel[5])  
       code = 3’b101; 
    else if (sel[6])  
       code = 3’b110; 
    else if (sel[7])  
       code = 3’b111; 
    else  
       code = 3’bxxx; 
 end 
        endmodule 
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 Verilog code for a logical shifter. 
 module lshift (di, sel, so); 
        input  [7:0] di; 
 input  [1:0] sel; 
 output [7:0] so; 
 reg    [7:0] so; 
 always @(di or sel) 
 begin 
    case (sel) 
       2’b00   : so = di; 
       2’b01   : so = di << 1; 
       2’b10   : so = di << 2; 
       default : so = di << 3; 
    endcase 
 end 
        endmodule 
      

 
               

 

Verilog Summary:  

  Verilog feature Example 

Comments 
a = 0; // comment ends with newline 
/* This is a multiline or block 
comment */ 

Constants: string and numeric 
parameter BW = 32 // local, use BW 
`define G_BUS 32 // global, use `G_BUS 
4'b2  1'bx 

Names (case-sensitive, start with 
letter or '_') 

_12name  A_name  $BAD  NotSame  
notsame  

Two basic types of logic signals: wire 
and reg 

wire myWire; reg myReg; 

Use a continuous assignment 
statement with wire 

assign myWire = 1; 

Use a procedural assignment 
statement with reg 

always myReg = myWire; 

Buses and vectors use square 
brackets 

reg [31:0] DBus; DBus[12] = 1'bx; 

We can perform arithmetic on bit reg [31:0] DBus; DBus = DBus + 2; 
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vectors 

Arithmetic is performed modulo 2 n reg [2:0] R; R = 7 + 1; // now R = 0 

Operators: as in C (but not ++ or - -)  

Fixed logic-value system 1, 0, x (unknown), z (high-impedance) 

Basic unit of code is the module 

module bake (chips, dough, cookies); 
input chips, dough; output cookies; 
assign cookies = chips & dough; 
endmodule 

Ports 
input or input/output ports are wire 
output ports are wire or reg 

Procedures model things that 
happen at the same time 
and may be sensitive to an edge, 
posedge,  negedge, 
or to a level. 

always @rain sing; always @rain dance; 
always @(posedge clock) D = Q; // flop 
always @(a or b) c = a & b; // and gate 

Sequential blocks model repeating 
things: 
always: executes forever 
initial: executes once only at start of 
simulation 

initial born; 
always @alarm_clock begin : a_day 
metro=commute; bulot=work; dodo=sleep; 
end 

Functions and tasks 
function ... endfunction 
task ... endtask 

Output $display("a=%f",a);$dumpvars;$monitor(a) 

Control simulation $stop; $finish // sudden or gentle halt 

Compiler directives `timescale 1ns/1ps // units/resolution 

Delay 
#1 a = b;  // delay then sample b 
a = #1 b;  // sample b then delay 
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                                    3.10      VERILOG QUICK RECALL;;; 

 

 

 

 

 

 

 



 

 28 

 

 

 

 

 

 

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 29 

 

 

 

 

 

 

 

                                                                                                                                                                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

RESTRICTION ON DATA TYPES 

 

MEMORY MODELLING 



 

 35 

                                                
 
 
 
 
 

                     CHAPTER 5 
 

o Mos transistor as a switch     
o Basic logic design in cmos137 
o How to realize gate structure with cmos logic 

    
o Pass transistor      
o D-Latch      
o D-Flip Flop     
o Programmable interconnect (antifuse)  

   
o ASIC Design Flow     
o Types of ASIC 

o Full custom asic 

o Semicustom Asic 

o Standard cell base ASIC 

o Channel,channelless, structural gate array ASIC 

    
o Programmable logic devices  
o Xilinx FPGA                                

 
 
 
 
 
 
 
 
 
 
 
 
 
    
 



 

 36 

 
 
CHAPTER 5 
  

The aim of this chapter is to make readers familiar with logic 
design with Cmos logic and introduction to application specific CHAPTER 

6integrated circuit design. 
 
5.1      Mos transistor as a switch: 
 
Mos transistors can be used as switch. the figure below shows how 

nmos and pmos transistor acts as open and close switch .nmos transistor acts as 
open switch when low logic level “0” is applied at the gate terminial,and acts as 
close switch when high logic “1” is applied to the gate terminial.pmos transistor 
operates just opposite to that. So we can conclude that nmos transistor conducts 
when its gate terminal is at high logic and pmos transistor conducts when low 
logic is at the gate terminal. 

 
 

 
 
 
5.2 Basic logic gates in cmos: 
 
Using the above property of the nmos and pmos transistor it is possible 

to construct various gate functions. Cmos uses both nmos and pmos transistor to 
realize gate function and other logic structure. The figure below shows the cmos 
inverter constructed from cmos logic. Refer figure 4.1. 
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5.2 .1 HOW TO REALIZE GATE STRUCTURE WITH MOS TRANSISTORS 
 
Cmos design uses both pmos and nmos transistor to realize the gate structure. Each 
input corresponds to two transistors, one for nmos and one for pmos.nmos 
transistors forms pull down network and pmos transistors forms pull up network. pull 
down means it is the path to ground and results in low level logic at the output.pullup 
network connects to the supply and results in logic high at the output.  
 Refer figure 4.3 
 
 
 
 
 
      
 
  
 
 
 
 
 
 
 
 
                                    Figure 4.3 cmos logic structure 
 
Here is the simple rule how you can draw the cmos logic structure; 

Pullup 

pmos 

Pulldown 

nmos 

Inputs 

output 

Vdd 

vss 
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For and, nand type of operation nmos transistors are connected in series and pmos 
transistors are connected in parallel. 
For or, nor structure nmos transistors are connected in parallel and pmos transistors 
are connected in series. 
For example for two input nand gate nmos transistors (pull down network) are 
connected in series and pmos transistors (pull up network) are connected in parallel. 
For nor gate it is vice versa. refer to the figure below. 
 
Cmos Nand gate: 
 
To construct 2 input cmos nand gate first find out the combination for nmos and 
pmos transistor.as mention earlier the nmos transistor are connected in series and 
pmos transistors are connected in parallel. The output is then connected through the 
junction of nmos and pmos network. when the input a and b both are “0” both pmos 
transistor conducts and output is pulled up or is high because pull up network is tied 
to vdd.when both the input are at high logic”1” nmos both nmos transistor conducts 
and connects the output to low logic as pulldown network is connected to 
ground.similarly remaining combination is shown in figure 4.4. 
 
 
 
            
            
            
            
            
    
         
         
         
         
         
         
         
  
 
          
 
 

Figure 4.4 two and three input nand gate 
 
CMOS NOR gate: 
Similarly for nor gate nmos network is connected in parallel and pmos network in 
series. Applying similar approach readers are encouraged to verify the truth table for 
nor gate. Figure 4.5 below shows the two and three input nor gate. 
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Nor gate: 
         
         
         
         
         
         
         
         
         
         
         
         
          
 
    
                        Figure 4.5 cmos two and three    input nor gate. 
CMOS Compound gates: 
The above rules can be extended to form complex gates beside simple gates as 
described earlier. The example below shows the construction of and or invert 
structure (AOI). 
 
 
First, determine the nmos and pmos network. Since input A is and with B so nmos 
transistor in series, likewise C and D is also (refer figure a) and so in series. now this 
structure are or hence they should be connected in parallel (figure b).now next for 
pmos it is just opposite to that of nmos (figure c and d).Now this nmos and pmos 
structure are combined together( figure 4.6) to get the desire function.. 
 

 
 
Some Examples of the compound gate structures Using Cmos Logic. 
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Figure 4.6 cmos compound gate structures 
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5.3 PASS TRANSISTOR: 

nmos and pmos transistors can be used to transmit the logic level from input to 
output hence the name pass transistor.nmos transistor degrades the high logic value 
by an amount Vt (Threshold voltage) i.e out put is Vdd-Vtn at the output due to 
threshold voltage but passes logic zero without degradation so it is only suitable to 
pass logic zero not for logic 1. nmos transistor passes weak one and strong 
0.similarly pmos transistor passes logic 1 as good and degrades logic 0 .now the 
question arises what if we want to pass both the logic 0 and 1 as good , the solution 
for this is if we combine both the transistor in parallel we are able to get good logic 
for both the logic. This combination is termed as transmission gate. 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 pass transistor 

 

Transmission gates: 

If pmos and nmos transistors are connected in parallel, (refer figure 4.8)it forms the 
transmission gate. The figure below shows the structure and operation of the 
transmission gate. Transmission gates are used to pass both the logic 0 and logic 1 
as good. Let us consider that g=0 and gb=1 then both the transistor are off so it does 
not allow the input to pass at the output. when g=1 and gb=0 both the transistor are 
on and input is connected to output. now if the input is logic 0 nmos transistor 
passes good logic for 0 and if the input is high pmos transistor passes good logic to 
output.  
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Figure 4.8 transmission gate . 

multiplexer can be realized using transmission gates as shown below in figure 4.9 
.figure below shows 2:1 multiplexer using two transmission gates.when s=0 the 
upper transmission gate is on while bottom transmission gate is off and D0 is passed 
at the output,similarly when s=1 then the bottom transmission gate is on while top 
transmission gate is off so D1 is passed at the output. 

 

 

 

 

 

                 Figure 4.9 cmos multiplexer. 

5.4 D LATCH: 

D latch is constructed using transmission gates and inverters as shown in the figure 
4.10 .latch is a memory device which passes the input at the output while 
maintaining the output until next input is applied.latch are level sensitive that is the 
output is changed during the level of clock When CLK = 1, latch is transparent that 
means the output follows the input. whatever changes in input during clock=1 occurs 
at the output.Q follows D (a buffer with a Delay) .When CLK = 0, the latch is opaque 
that means Q holds its last value independent of D 

S
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CMOS LATCH 

 

 

 

 

 

Figure 4.10 cmos latch 

When clock is 1 the first transmission gate is on while other is off hence D is passed 
at the output Q .when clock =0 the first transmission gate is off and second 
transmission gate is on and the output loops through to provide the output.the 
operation of the latch is easily understood by the figure 4.11  

 

 

 

 

 

 

 

 

 

                      

   Figure 4.11 LATCH and its OPERATION 

 

5.5 D FLIPFLOP: 

Flip flops are constructed using latch.if two latches are connected in cascade for flip 
flop is formed.flip flops are edge sensitive unlike latch which are level sensitive.flip 
flopchanges it output at the rising or falling edge of the clock.a basic d flip flop is 
shown in the figure using two latch connected in seres as master and slave. 
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� When CLK rises, D is copied to Q 
� At all other times, Q holds its value 
� The master and slave latch clock are connected in opposite polarity such that 

when master is enabled slave is disabled and vice versa. The operation of the 
flip flop is easily understood by the figure 4.12.                                        

 

 

 

 

 

 

 

 

 

 

 

                             

                                           Figure 4.12  D flip flop 
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FLIPFLOP OPERATION: 

 when clock=0 input  D is latch at the output as Dbar of first latch i.e 
QMbar=Dbar.now when the clock changes its state from 0 to 1 second latch is 
enabled and the switch is closed which connects the output of first latch to the input 
of second latch hence the output Q=D,in the mean time now the input side switch is 
open which blocks any input if available. 
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5.6 programmable interconnect: 

Programmable logic devices are widely used these days. The benefits in using these 
device is it can be reprogrammed do realize various function. For programmable 
logic device the interconnection is programmed such that the desired connection can 
me made among the internal logic device. This interconnection is programmable that 
means we can make the internal connection among the macrocell inside by 
programming from outer source .the widely used programmable interconnection is 
antifuse. 
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The Antifuse  
An antifuse is the opposite of a regular fuse—an antifuse is normally an open circuit 
until you force a programming current through it (about 5 mA).antifuse commonly in 
use are 

• Poly-diffusion antifuse 
• Metal metal antifuse 
 
Poly-diffusion antifuse 

 In a poly–diffusion antifuse the high current density causes a large power 
dissipation in a small area, which melts a thin insulating dielectric between 
polysilicon and diffusion electrodes and forms a thin (about 20 nm in diameter), 
permanent and resistive silicon link. The programming process also drives dopant 
atoms from the poly and diffusion electrodes into the link, and the final level of 
doping determines the resistance value of the link. Actel calls its antifuse a 
programmable low-impedance circuit element ( PLICE ‘ ).  
Figure 4.13 shows a poly–diffusion antifuse with an oxide–nitride–oxide ( ONO ) 
dielectric sandwich of: silicon dioxide (SiO 2 ) grown over the n -type antifuse 
diffusion, a silicon nitride (Si 3 N 4 ) layer, and another thin SiO 2 layer. The layered 
ONO dielectric results in a tighter spread of blown antifuse resistance values than 
using a single-oxide dielectric. The effective electrical thickness is equivalent to 
10nm of SiO 2 (Si 3 N 4 has a higher dielectric constant than SiO 2 , so the actual 
thickness is less than 10 nm). Sometimes this device is called a fuse even though it 
is an anti fuse, and both terms are often used interchangeably. 

  

FIGURE 4.13  Actel antifuse. (a) A cross section. (b) A simplified drawing. The ONO 
(oxide–nitride–oxide) dielectric is less than 10 nm thick, so this diagram is not to 
scale. (c) From above, an antifuse is approximately the same size as a contact. 

The fabrication process and the programming current control the average resistance 
of a blown antifuse, but values vary as shown in Figure 4.2 . In a particular 
technology a programming current of 5 mA may result in an average blown antifuse 
resistance of about 500 ohms. Increasing the programming current to 15 mA might 
reduce the average antifuse resistance to 100 ohms . Antifuse separate interconnect 
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wires on the FPGA chip and the programmer blows an antifuse to make a 
permanent connection. Once an antifuse is programmed, the process cannot be 
reversed. This is an OTP(one time programming) technology. An Actel 1010, for 
example, contains 112,000 antifuses we typically only need to program about 
2 percent of the fuses on an Actel chip. 
 
 
 
 
 

      
TABLE 4.1  
Number of  
antifuses on 
Actel FPGAs. 

  

Device Antifuses   
A1010 112,000   
A1020 186,000   
A1225 250,000   
A1240 400,000   

A1280 750,000   

  

 

      

FIGURE 4.2  The resistance of blown Actel antifuses. The 
average antifuse resistance depends on the programming 
current. The resistance values shown here are typical for a 
programming current of 5 mA. 

To design and program an Actel FPGA, designers iterate between design entry and 
simulation. When they are satisfied the design is correct they plug the chip into a 
socket on a special programming box, called an Activator , that generates the 
programming voltage. A PC downloads the configuration file to the Activator 
instructing it to blow the necessary antifuses on the chip. When the chip is 
programmed it may be removed from the Activator without harming the configuration 
data and the chip assembled into a system. One disadvantage of this procedure is 
that modern packages with hundreds of thin metal leads are susceptible to damage 
when they are inserted and removed from sockets. The advantage of other 
programming technologies is that chips may be programmed after they have been 
assembled on a printed-circuit board—a feature known as in-system programming ( 
ISP ). 
The Actel antifuse technology uses a modified CMOS process. A double-metal, 
single-poly CMOS process typically uses about 12 masks—the Actel process 
requires an additional three masks. The n- type antifuse diffusion and antifuse 
polysilicon require an extra two masks and a 40 nm (thicker than normal) gate oxide 
(for the high-voltage transistors that handle 18 V to program the antifuses) uses one 
more masking step. Actel and Data General performed the initial experiments to 
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develop the PLICE technology and Actel has licensed the technology to Texas 
Instruments (TI). 
The programming time for an ACT 1 device is 5 to 10 minutes. Improvements in 
programming make the programming time for the ACT 2 and ACT 3 devices about 
the same as the ACT 1. A 5-day work week, with 8-hour days, contains about 2400 
minutes. This is enough time to program 240 to 480 Actel parts per week with 100 
percent efficiency and no hardware down time. A production schedule of more than 
1000 parts per month requires multiple or gang programmers.  

 

 Metal–Metal Antifuse: 

Metal –metal antifuse uses two metal layers metal m1 and metal m2 separated with 
thin insulator. Figure 4.13 shows a Quick Logic metal–metal antifuse (Via Link ‘ ). 
The link is an alloy of tungsten, titanium, and silicon with a bulk resistance of about 
500 mW cm.  

  

FIGURE 4.13 Metal–metal antifuse. (a) An idealized (but to scale) cross section of a 
QuickLogic metal–metal antifuse in a two-level metal process. (b) A metal–metal 
antifuse in a three-level metal process that uses contact plugs. The conductive link 
usually forms at the corner of the via where the electric field is highest during 
programming. 

There are two advantages of a metal–metal antifuse over a poly–diffusion antifuse. 
The first is that connections to a metal–metal antifuse are direct to metal—the wiring 
layers. Connections from a poly–diffusion antifuse to the wiring layers require extra 
space and create additional parasitic capacitance. The second advantage is that the 
direct connection to the low-resistance metal layers makes it easier to use larger 
programming currents to reduce the antifuse resistance. For example, the antifuse 
resistance R v 0.8/ I , with the programming current I in mA and R in W , for the 
QuickLogic antifuse. Figure 4.14 shows that the average QuickLogic metal–metal 
antifuse resistance is approximately 80 ohms (with a standard deviation of about 10 
W ) using a programming current of 15 mA as opposed to an average antifuse 



 

 49 

resistance of 500 W (with a programming current of 5 mA) for a poly–diffusion 
antifuse. 
 
 

FIGURE 4.14 Resistance values for the Quick 
Logic metal–metal antifuse. A higher 
programming current (about 15 mA), made 
possible partly by the direct connections to 
metal, has reduced the antifuse resistance from 
the poly–diffusion antifuse resistance values 
shown in Figure 4.12 .  

  

 
 
 
The size of an antifuse is limited by the resolution of the lithography equipment used 
to makes ICs. The Actel antifuse connects diffusion and polysilicon, and both these 
materials are too resistive for use as signal interconnects. To connect the antifuse to 
the metal layers requires contacts that take up more space than the antifuse itself, 
reducing the advantage of the small antifuse size. However, the antifuse is so small 
that it is normally the contact and metal spacing design rules that limit how closely 
the antifuses may be packed rather than the size of the antifuse itself. 
An antifuse is resistive and the addition of contacts adds parasitic capacitance. The 
intrinsic parasitic capacitance of an antifuse is small (approximately 1–2 fF in a 1 m 
m CMOS process), but to this we must add the extrinsic parasitic capacitance that 
includes the capacitance of the diffusion and poly electrodes (in a poly–diffusion 
antifuse) and connecting metal wires (approximately 10 fF). These unwanted 
parasitic elements can add considerable RC interconnect delay if the number of 
antifuses connected in series is not kept to an absolute minimum. Clever routing 
techniques are therefore crucial to antifuse-based FPGAs.  
The long-term reliability of antifuses is an important issue since there is a tendency 
for the antifuse properties to change over time. There have been some problems in 
this area, but as a result we now know an enormous amount about this failure 
mechanism. There are many failure mechanisms in ICs—electro migration is a 
classic example—and engineers have learned to deal with these problems. 
Engineers design the circuits to keep the failure rate below acceptable limits and 
systems designers accept the statistics. All the FPGA vendors that use antifuse 
technology have extensive information on long-term reliability in their data books 
 
 
 
5.7 ASIC DESIGN FLOW: 
Asic refers to application specific integrated circuit which means that the ICs 
manufacture is used for special applications .for example ICs used in toys, 
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robots,etc.these ICs perform the application oriented task. the design flow is shown 
in figure 4.15. 

 
                                figure 4.15 Asic design flow. 

1. Design entry. Enter the design into an ASIC design system, either using a 
hardware description language ( HDL ) or schematic entry . verilogHDL and 
VHDL are commonly used  HDL language. 

2. Logic synthesis. Use an HDL (VHDL or Verilog) and a logic synthesis tool 
(synthesis tools are CAD tools which are used to convert the design at higher 
level of abstraction tolower level of abstraction) to produce a netlist —a 
description of the logic cells and their connections.  

3. System partitioning. Large circuit is difficult to handle as well as analyse so 
system portioning is to divide a large system into ASIC-sized pieces.  

4. Prelayout simulation. Once the design is ready we have to check wheather it 
functions properly or not for that pre simulation is carried out.  

5. Floorplanning. Floor planning is done to Arrange the blocks of the netlist on 
the chip. (It is similar to estimating the various rooms, kitchen, restroom etc 
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while building the house.)the chip contains several modules ,the module itself 
contains several cells,so the planning where to keep the modules is floor 
planning. 

6. Placement. The module itself has so many cells inside ,the placement is done 
to Decide the locations of cells in a module(block).  

7. Routing. The module ,cells  within the chip has to be interconnected ,the 
process of this interconnection is known as routing. Global routing estimates 
and plans the area and length required for all modules and cells detailed 
routing is actual routing which optimizes the area and delay.  

8. Extraction. Once the routing is over we have to determine the resistance and 
capacitance of the interconnect and also various parasitic that may come in to 
picture. the determination of this resistance and capacitance of the 
interconnect  is called extraction. 

9. Post layout simulation. After the extraction some more resistance and 
capacitance is added to the circuit so we have to verify once again either our 
design is  still working or not. 

5.8 Types of ASICs 

ICs are made on a thin (a few hundred microns thick), circular silicon wafer , with 
each wafer holding hundreds of die (sometimes people use dies or dice for the plural 
of die). The transistors and wiring are made from many layers (usually between 10 
and 15 distinct layers) built on top of one another. Each successive mask layer has a 
pattern that is defined using a mask similar to a glass photographic slide. The first 
half-dozen or so layers define the transistors. The last half-dozen or so layers define 
the metal wires between the transistors (the interconnect). 

A full-custom IC includes some (possibly all) logic cells that are customized and all 
mask layers that are customized. A microprocessor is an example of a full-custom 
IC—designers spend many hours squeezing the most out of every last square 
micron of microprocessor chip space by hand. Customizing all of the IC features in 
this way allows designers to include analog circuits, optimized memory cells, or 
mechanical structures on an IC, for example. Full-custom ICs are the most 
expensive to manufacture and to design. The manufacturing lead time (the time it 
takes just to make an IC—not including design time) is typically eight weeks for a 
full-custom IC. These specialized full-custom ICs are often intended for a specific 
application, so we might call some of them full-custom ASICs.  
We shall discuss full-custom ASICs briefly next, but the members of the IC family 
that we are more interested in are semicustom ASICs , for which all of the logic cells 
are predesigned and some (possibly all) of the mask layers are customized. Using 
predesigned cells from a cell library makes our lives as designers much, much 
easier. There are two types of semicustom ASICs that we shall cover: standard-cell–
based ASICs and gate-array–based ASICs. Following this we shall describe the 
programmable ASICs , for which all of the logic cells are predesigned and none of 
the mask layers are customized. There are two types of programmable ASICs: the 
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programmable logic device and, the newest member of the ASIC family, the field-
programmable gate array. 

5.8.1 Full-Custom ASICs 

In a full-custom ASIC an engineer designs some or all of the logic cells, circuits, or 
layout specifically for one ASIC. This means the designer abandons the approach of 
using pretested and precharacterized cells for all or part of that design. It makes 
sense to take this approach only if there are no suitable existing cell libraries 
available that can be used for the entire design. This might be because existing cell 
libraries are not fast enough, or the logic cells are not small enough or consume too 
much power. You may need to use full-custom design if the ASIC technology is new 
or so specialized that there are no existing cell libraries or because the ASIC is so 
specialized that some circuits must be custom designed. Fewer and fewer full-
custom ICs are being designed because of the problems with these special parts of 
the ASIC. There is one growing member of this family, though, the mixed 
analog/digital ASIC, which we shall discuss next.  

Bipolar technology has historically been used for precision analog functions. There 
are some fundamental reasons for this. In all integrated circuits the matching of 
component characteristics between chips is very poor, while the matching of 
characteristics between components on the same chip is excellent. Suppose we 
have transistors T1, T2, and T3 on an analog/digital ASIC. The three transistors are 
all the same size and are constructed in an identical fashion. Transistors T1 and T2 
are located adjacent to each other and have the same orientation. Transistor T3 is 
the same size as T1 and T2 but is located on the other side of the chip from T1 and 
T2 and has a different orientation. ICs are made in batches called wafer lots. A wafer 
lot is a group of silicon wafers that are all processed together. Usually there are 
between 5 and 30 wafers in a lot. Each wafer can contain tens or hundreds of chips 
depending on the size of the IC and the wafer.  
If we were to make measurements of the characteristics of transistors T1, T2, and 
T3 we would find the following: 

• Transistors T1 will have virtually identical characteristics to T2 on the same 

IC. We say that the transistors match well or the tracking between devices is 

excellent.  

• Transistor T3 will match transistors T1 and T2 on the same IC very well, but 

not as closely as T1 matches T2 on the same IC.  

• Transistor T1, T2, and T3 will match fairly well with transistors T1, T2, and T3 

on a different IC on the same wafer. The matching will depend on how far 

apart the two ICs are on the wafer.  

• Transistors on ICs from different wafers in the same wafer lot will not match 

very well.  
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• Transistors on ICs from different wafer lots will match very poorly.  

For many analog designs the close matching of transistors is crucial to circuit 
operation. For these circuit designs pairs of transistors are used, located adjacent to 
each other. Device physics dictates that a pair of bipolar transistors will always 
match more precisely than CMOS transistors of a comparable size. Bipolar 
technology has historically been more widely used for full-custom analog design 
because of its improved precision. Despite its poorer analog properties, the use of 
CMOS technology for analog functions is increasing. There are two reasons for this. 
The first reason is that CMOS is now by far the most widely available IC technology. 
Many more CMOS ASICs and CMOS standard products are now being 
manufactured than bipolar ICs. The second reason is that increased levels of 
integration require mixing analog and digital functions on the same IC: this has 
forced designers to find ways to use CMOS technology to implement analog 
functions. Circuit designers, using clever new techniques, have been very successful 
in finding new ways to design analog CMOS circuits that can approach the accuracy 
of bipolar analog designs. 

5.8.2 Standard-Cell–Based ASICs 

A cell-based ASIC (cell-based IC, or CBIC  pronounced “sea-bick”) uses 
predesigned logic cells (AND gates, OR gates, multiplexers, and flip-flops, for 
example) known as standard cells . We could apply the term CBIC to any IC that 
uses cells, but it is generally accepted that a cell-based ASIC or CBIC means a 
standard-cell–based ASIC. 

The standard-cell areas (also called flexible blocks) in a CBIC are built of rows of 
standard cells—like a wall built of bricks. The standard-cell areas may be used in 
combination with larger predesigned cells, perhaps microcontrollers or even 
microprocessors, known as megacells . Megacells are also called megafunctions, 
full-custom blocks, system-level macros (SLMs), fixed blocks, cores, or Functional 
Standard Blocks (FSBs).  
The ASIC designer defines only the placement of the standard cells and the 
interconnect in a CBIC. However, the standard cells can be placed anywhere on the 
silicon; this means that all the mask layers of a CBIC are customized and are unique 
to a particular customer. The advantage of CBICs is that designers save time, 
money, and reduce risk by using a predesigned, pretested, and precharacterized 
standard-cell library . In addition each standard cell can be optimized individually. 
During the design of the cell library each and every transistor in every standard cell 
can be chosen to maximize speed or minimize area, for example. The 
disadvantages are the time or expense of designing or buying the standard-cell 
library and the time needed to fabricate all layers of the ASIC for each new design. 
Figure 4.20 shows a CBIC. 
 The important features of this type of ASIC are as follows: 

• All mask layers are customized—transistors and interconnect.  
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• Custom blocks can be embedded.  

• Manufacturing lead time is about eight weeks.  

  

              

FIGURE 4.20 A cell-based ASIC (CBIC) die with a single standard-cell area (a 
flexible block) together with four fixed blocks. 

 
Each standard cell in the library is constructed using full-custom design methods, but 
you can use these predesigned and precharacterized circuits without having to do 
any full-custom design yourself. This design style gives you the same performance 
and flexibility advantages of a full-custom ASIC but reduces design time and 
reduces risk.  
Standard cells are designed to fit together like bricks in a wall. Figure 4.21 shows an 
example of a simple standard cell (it is simple in the sense it is not maximized for 
density—but ideal for showing you its internal construction). Power and ground 
buses (VDD and GND or VSS) run horizontally on metal lines inside the cells. 
Standard-cell design allows the automation of the process of assembling an ASIC. 
Groups of standard cells fit horizontally together to form rows. The rows stack 
vertically to form flexible rectangular blocks (which you can reshape during design). 
You may then connect a flexible block built from several rows of standard cells to 
other standard-cell blocks or other full-custom logic blocks. For example, you might 
want to include a custom interface to a standard, predesigned microcontroller 
together with some memory. The microcontroller block may be a fixed-size 
megacell, you might generate the memory using a memory compiler, and the 
custom logic and memory controller will be built from flexible standard-cell blocks, 
shaped to fit in the empty spaces on the chip. 
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FIGURE 4.21 Looking down on the layout of a standard cell. This cell would be 
approximately 25 microns wide on an ASIC with l (lambda) = 0.25 microns (a micron 
is 10 –6 m). Standard cells are stacked like bricks in a wall; the abutment box (AB) 
defines the “edges” of the brick. The difference between the bounding box (BB) and 
the AB is the area of overlap between the bricks. Power supplies (labeled VDD and 
GND) run horizontally inside a standard cell on a metal layer that lies above the 
transistor layers. Each different shaded and labeled pattern represents a different 
layer. This standard cell has center connectors (the three squares, labeled A1, B1, 
and Z) that allow the cell to connect to others. The layout was drawn using ROSE, a 
symbolic layout editor developed by Rockwell and Compass, and then imported into 
Tanner Research’s L-Edit. 
Both cell-based and gate-array ASICs use predefined cells, but there is a 
difference—we can change the transistor sizes in a standard cell to optimize speed 
and performance, but the device sizes in a gate array are fixed. This results in a 
trade-off in performance and area in a gate array at the silicon level. The trade-off 
between area and performance is made at the library level for a standard-cell ASIC. 
Modern CMOS ASICs use two, three, or more levels (or layers) of metal for 
interconnect. This allows wires to cross over different layers in the same way that we 
use copper traces on different layers on a printed-circuit board. In a two-level metal 
CMOS technology, connections to the standard-cell inputs and outputs are usually 
made using the second level of metal ( metal2 , the upper level of metal) at the tops 
and bottoms of the cells. In a three-level metal technology, connections may be 
internal to the logic cell (as they are in Figure 4.21). This allows for more 
sophisticated routing programs to take advantage of the extra metal layer to route 
interconnect over the top of the logic cells. A connection that needs to cross over a 
row of standard cells uses a feedthrough. The term feedthrough can refer either to 
the piece of metal that is used to pass a signal through a cell or to a space in a cell 
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waiting to be used as a feedthrough—very confusing. Figure 1.4 shows two 
feedthroughs: one in cell A.14 and one in cell A.23. 
In both two-level and three-level metal technology, the power buses (VDD and GND) 
inside the standard cells normally use the lowest (closest to the transistors) layer of 
metal ( metal1 ). The width of each row of standard cells is adjusted so that they 
may be aligned using spacer cells . The power buses, or rails, are then connected to 
additional vertical power rails using row-end cells at the aligned ends of each 
standard-cell block. If the rows of standard cells are long, then vertical power rails 
can also be run in metal2 through the cell rows using special power cells that just 
connect to VDD and GND. Usually the designer manually controls the number and 
width of the vertical power rails connected to the standard-cell blocks during physical 
design. A diagram of the power distribution scheme for a CBIC is shown in 
Figure 4.22 

  

FIGURE 4.22 Routing the CBIC (cell-based IC) shown in Figure 1.2. The use of 
regularly shaped standard cells, such as the one in Figure 1.3, from a library allows 
ASICs like this to be designed automatically. This ASIC uses two separate layers of 
metal interconnect (metal1 and metal2) running at right angles to each other (like 
traces on a printed-circuit board). Interconnections between logic cells uses spaces 
(called channels) between the rows of cells. ASICs may have three (or more) layers 
of metal allowing the cell rows to touch with the interconnect running over the top of 
the cells. 



 

 57 

All the mask layers of a CBIC are customized. This allows megacells (SRAM, a 
SCSI controller, or an MPEG decoder, for example) to be placed on the same IC 
with standard cells. Megacells are usually supplied by an ASIC or library company 
complete with behavioral models and some way to test them (a test strategy). ASIC 
library companies also supply compilers to generate flexible DRAM, SRAM, and 
ROM blocks. Since all mask layers on a standard-cell design are customized, 
memory design is more efficient and denser than for gate arrays. 
For logic that operates on multiple signals across a data bus—a datapath ( DP )—
the use of standard cells may not be the most efficient ASIC design style. Some 
ASIC library companies provide a datapath compiler that automatically generates 
datapath logic. A datapath library typically contains cells such as adders, 
subtracters, multipliers, and simple arithmetic and logical units ( ALUs ). The 
connectors of datapath library cells are pitch-matched to each other so that they fit 
together. Connecting datapath cells to form a datapath usually, but not always, 
results in faster and denser layout than using standard cells or a gate array. 
Standard-cell and gate-array libraries may contain hundreds of different logic cells, 
including combinational functions (NAND, NOR, AND, OR gates) with multiple 
inputs, as well as latches and flip-flops with different combinations of reset, preset 
and clocking options. The ASIC library company provides designers with a data 
book in paper or electronic form with all of the functional descriptions and timing 
information for each library element. 

5.8.3 Gate-Array–Based ASICs 

In a gate array (sometimes abbreviated to GA) or gate-array–based ASIC the 
transistors are predefined on the silicon wafer. The predefined pattern of transistors 
on a gate array is the base array, and the smallest element that is replicated to make 
the base array (like tiles on a floor) is the base cell (sometimes called a primitive cell 
). Only the top few layers of metal, which define the interconnect between 
transistors, are defined by the designer using custom masks. To distinguish this type 
of gate array from other types of gate array, it is often called a masked gate array 
(MGA). The designer chooses from a gate-array library of predesigned and 
precharacterized logic cells. The logic cells in a gate-array library are often called 
macros. The reason for this is that the base-cell layout is the same for each logic 
cell, and only the interconnect (inside cells and between cells) is customized, so that 
there is a similarity between gate-array macros and a software macro. Inside IBM, 
gate-array macros are known as books (so that books are part of a library), but 
unfortunately this descriptive term is not very widely used outside IBM.  

We can complete the diffusion steps that form the transistors and then stockpile 
wafers (sometimes we call a gate array a prediffused array for this reason). Since 
only the metal interconnections are unique to an MGA, we can use the stockpiled 
wafers for different customers as needed. Using wafers prefabricated up to the 
metallization steps reduces the time needed to make an MGA, the turnaround time , 
to a few days or at most a couple of weeks. The costs for all the initial fabrication 
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steps for an MGA are shared for each customer and this reduces the cost of an 
MGA compared to a full-custom or standard-cell ASIC design.  
There are the following different types of MGA or gate-array–based ASICs: 

• Channeled gate arrays.  

• Channelless gate arrays.  

• Structured gate arrays.  

The hyphenation of these terms when they are used as adjectives explains their 
construction. For example, in the term “channeled gate-array architecture,” the gate 
array is channeled, as will be explained. There are two common ways of arranging 
(or arraying) the transistors on a MGA: in a channeled gate array we leave space 
between the rows of transistors for wiring; the routing on a channelless gate array 
uses rows of unused transistors. The channeled gate array was the first to be 
developed, but the channelless gate-array architecture is now more widely used. A 
structured (or embedded) gate array can be either channeled or channelless but it 
includes (or embeds) a custom block. 

� Channeled Gate Array 

Figure 4.23 shows a channeled gate array . The important features of this type of 
MGA are: 

• Only the interconnect is customized.  

• The interconnect uses predefined spaces between rows of base cells.  

• Manufacturing lead time is between two days and two weeks.  

.  FIGURE 4.23  A channeled gate-array die. The spaces 

between rows of the base cells are set aside for interconnect 

A channeled gate array is similar to a CBIC—both use rows of cells separated by 
channels used for interconnect. One difference is that the space for interconnect 
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between rows of cells are fixed in height in a channeled gate array, whereas the 
space between rows of cells may be adjusted in a CBIC.  

� Channelless Gate Array 

Figure 4.24 shows a channelless gate array (also known as a channel-free gate 
array , sea-of-gates array , or SOG array). The important features of this type of 
MGA are as follows:Only some (the top few) mask layers are customized—the 
interconnect.  

• Manufacturing lead time is between two days and two weeks.  

FIGURE 4.24 A channelless gate-array 
or sea-of-gates (SOG) array die. The 
core area of the die is completely filled 
with an array of base cells (the base 
array). 

  
The key difference between a channelless gate array and channeled gate array is 
that there are no predefined areas set aside for routing between cells on a 
channelless gate array. Instead we route over the top of the gate-array devices. We 
can do this because we customize the contact layer that defines the connections 
between metal1, the first layer of metal, and the transistors. When we use an area of 
transistors for routing in a channelless array, we do not make any contacts to the 
devices lying underneath; we simply leave the transistors unused. 
The logic density—the amount of logic that can be implemented in a given silicon 
area—is higher for channelless gate arrays than for channeled gate arrays. This is 
usually attributed to the difference in structure between the two types of array. In 
fact, the difference occurs because the contact mask is customized in a channelless 
gate array, but is not usually customized in a channeled gate array. This leads to 
denser cells in the channelless architectures. Customizing the contact layer in a 
channelless gate array allows us to increase the density of gate-array cells because 
we can route over the top of unused contact sites.  
 

� Structured Gate Array 
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An embedded gate array or structured gate array (also known as masterslice or 
masterimage ) combines some of the features of CBICs and MGAs. One of the 
disadvantages of the MGA is the fixed gate-array base cell. This makes the 
implementation of memory, for example, difficult and inefficient. In an embedded 
gate array we set aside some of the IC area and dedicate it to a specific function. 
This embedded area either can contain a different base cell that is more suitable for 
building memory cells, or it can contain a complete circuit block, such as a 
microcontroller.  

Figure 4.25 shows an embedded gate array. The important features of this type of 
MGA are the following: 

• Only the interconnect is customized.  

• Custom blocks (the same for each design) can be embedded.  

• Manufacturing lead time is between two days and two weeks.  

 

 

 

FIGURE 4.25 A 
structured or embedded 
gate-array die showing 
an embedded block in 
the upper left corner (a 
static random-access 
memory, for example). 
The rest of the die is 
filled with an array of 
base cells. 

  
An embedded gate array gives the improved area efficiency and increased 
performance of a CBIC but with the lower cost and faster turnaround of an MGA. 
One disadvantage of an embedded gate array is that the embedded function is fixed. 
For example, if an embedded gate array contains an area set aside for a 32 k-bit 
memory, but we only need a 16 k-bit memory, then we may have to waste half of the 
embedded memory function. However, this may still be more efficient and cheaper 
than implementing a 32 k-bit memory using macros on a SOG array. 
ASIC vendors may offer several embedded gate array structures containing different 
memory types and sizes as well as a variety of embedded functions. ASIC 
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companies wishing to offer a wide range of embedded functions must ensure that 
enough customers use each different embedded gate array to give the cost 
advantages over a custom gate array or CBIC (the Sun Microsystems 
SPARCstation 1 described in Section 1.3 made use of LSI Logic embedded gate 
arrays—and the 10K and 100K series of embedded gate arrays were two of LSI 
Logic’s most successful products). 

5.9 Programmable Logic Devices 

Programmable logic devices ( PLDs ) are standard ICs that are available in standard 
configurations from a catalog of parts and are sold in very high volume to many 
different customers. However, PLDs may be configured or programmed to create a 
part customized to a specific application, and so they also belong to the family of 
ASICs. PLDs use different technologies to allow programming of the device. 
Figure 4.26 shows a PLD and the following important features that all PLDs have in 
common: 

• No customized mask layers or logic cells  

• Fast design turnaround  

• A single large block of programmable interconnect  

• A matrix of logic macrocells that usually consist of programmable array logic 

followed by a flip-flop or latch  

FIGURE 4.26 A programmable logic 
device (PLD) die. The macrocells 
typically consist of programmable 
array logic followed by a flip-flop or 
latch. The macrocells are connected 
using a large programmable 
interconnect block. 

  
The simplest type of programmable IC is a read-only memory ( ROM ). The most 
common types of ROM use a metal fuse that can be blown permanently (a 
programmable ROM or PROM ). An electrically programmable ROM , or EPROM , 
uses programmable MOS transistors whose characteristics are altered by applying a 
high voltage. You can erase an EPROM either by using another high voltage (an 
electrically erasable PROM , or EEPROM ) or by exposing the device to ultraviolet 
light ( UV-erasable PROM , or UVPROM ). 
There is another type of ROM that can be placed on any ASIC—a mask-
programmable ROM (mask-programmed ROM or masked ROM). A masked ROM is 
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a regular array of transistors permanently programmed using custom mask patterns. 
An embedded masked ROM is thus a large, specialized, logic cell. 
The same programmable technologies used to make ROMs can be applied to more 
flexible logic structures. By using the programmable devices in a large array of AND 
gates and an array of OR gates, we create a family of flexible and programmable 
logic devices called logic arrays . The company Monolithic Memories (bought by 
AMD) was the first to produce Programmable Array Logic (PAL ® , a registered 
trademark of AMD) devices that you can use, for example, as transition decoders for 
state machines. A PAL can also include registers (flip-flops) to store the current state 
information so that you can use a PAL to make a complete state machine. 
Just as we have a mask-programmable ROM, we could place a logic array as a cell 
on a custom ASIC. This type of logic array is called a programmable logic array 
(PLA). There is a difference between a PAL and a PLA: a PLA has a programmable 
AND logic array, or AND plane , followed by a programmable OR logic array, or OR 
plane ; a PAL has a programmable AND plane and, in contrast to a PLA, a fixed OR 
plane. 

� Depending on how the PLD is programmed, we can have an erasable PLD 
(EPLD), or mask-programmed PLD (sometimes called a masked PLD but 
usually just PLD). The first PALs, PLAs, and PLDs were based on bipolar 
technology and used programmable fuses or links. CMOS PLDs usually 
employ floating-gate transistors . 

PAL Device 22V10: 
PAL 22v10 (Programmable array logic) is programmable logic device. Generally 
PLD are implemented with AND-OR Plane, where both or one Plane can be 
programmed to realize the function. In PLA (programmable logic array ) both the 
AND – OR plane can be programmed. For PAL device and plane is 
programmable and Or plane is fixed. The device 22v10 is a pal device which can 
be programmed to realize the function. This design approach has no of vertical 
lines for inputs, which can be connected to and plane by programming it. Each 
and or gate has variable number of product term that feed the  or gate. the output 
of the or gate feeds to an io cell, which allows the registering of AND OR signals 
and also the feed back can be taken to AND OR plane. 
22v10 PAL device has 12 inputs pin, 10 I/O pins all together 24 pin. The device 
has AND OR Plane with IO cell as shown in figure. 
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IO structure consists of Register,4 to 1 multiplexer ,Tristate Buffer, and 2 to 1 
multiplexer. The tristate buffer is used to enable the output. Alternatively this 
output pin may be used as an input to the array also.4 to 1 mux routes the true or 
complimented version of the product term or register the output .2 to 1 
multiplexer may also select the register output. the register is provided with the 
global synchronous preset and asynchronous reset. Typical speed for 22v10 in 
high speed Cmos are 
Clock to Output - 8ns, input to combinational output - 15ns, toglleing frequency 
with feedback-40megahertz. 
The programming in PAL is done In 3 Technology : 
Fusable Link, UV-erasable EPROM, EEPROM. 
Fusable links are metal links such as platinum slicide or titanium tungsten .the 
links are blown when a certain current is allowed to pass from them .A 
programming voltage higher than the normal operating voltage is used to 
generate this large current which heat the wire and the link is broken. 
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UV erasable technology uses the floating gate structure  for programming the 
device. we have discussed the EPROM technology in this text already.  

5.9.1 Field-Programmable Gate Arrays 

A step above the PLD in complexity is the field-programmable gate array ( FPGA ). 
There is very little difference between an FPGA and a PLD—an FPGA is usually just 
larger and more complex than a PLD. In fact, some companies that manufacture 
programmable ASICs call their products FPGAs and some call them complex PLDs . 
FPGAs are the newest member of the ASIC family and are rapidly growing in 
importance, replacing TTL in microelectronic systems. Even though an FPGA is a 
type of gate array, we do not consider the term gate-array–based ASICs to include 
FPGAs. This may change as FPGAs and MGAs start to look more alike. 

Figure 4.27 illustrates the essential characteristics of an FPGA: 

• None of the mask layers are customized.  

• A method for programming the basic logic cells and the interconnect.  

• The core is a regular array of programmable basic logic cells that can 

implement combinational as well as sequential logic (flip-flops).  

• A matrix of programmable interconnect surrounds the basic logic cells.  

• Programmable I/O cells surround the core.  

• Design turnaround is a few hours.  

 

 

 

 

FIGURE 4.27 A field-programmable gate 
array (FPGA) die. All FPGAs contain a 
regular structure of programmable basic 
logic cells surrounded by programmable 
interconnect. The exact type, size, and 
number of the programmable basic logic 
cells varies tremendously. 
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5.10. Xilinx LCA 
Xilinx LCA (a trademark, denoting logic cell array) basic logic cells, configurable 
logic blocks or CLBs , are bigger and more complex than the Actel or QuickLogic 
cells. The Xilinx LCA basic logic cell is an example of a coarse-grain architecture. 
The Xilinx CLBs contain both combinational logic and flip-flops.  

 

� XC3000 CLB 

The XC3000 CLB, shown in Figure 4.28 , has five logic inputs (A–E), a common 
clock input (K), an asynchronous direct-reset input (RD), and an enable (EC). Using 
programmable MUXes connected to the SRAM programming cells, you can 
independently connect each of the two CLB outputs (X and Y) to the output of the 
flip-flops (QX and QY) or to the output of the combinational logic (F and G).  
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FIGURE 4.28 The Xilinx XC3000 CLB (configurable logic block). (Source: Xilinx.) 

 
 
A 32-bit look-up table ( LUT ), stored in 32 bits of SRAM, provides the ability to 
implement combinational logic. Suppose you need to implement the function F = A · 
B · C · D · E (a five-input AND). You set the contents of LUT cell number 31 (with 
address '11111') in the 32-bit SRAM to a '1'; all the other SRAM cells are set to '0'. 
When you apply the input variables as an address to the 32-bit SRAM, only when 
ABCDE = '11111' will the output F be a '1'. This means that the CLB propagation 
delay is fixed, equal to the LUT access time, and independent of the logic function 
you implement. 
There are seven inputs for the combinational logic in the XC3000 CLB: the five CLB 
inputs (A–E), and the flip-flop outputs (QX and QY). There are two outputs from the 
LUT (F and G). Since a 32-bit LUT requires only five variables to form a unique 
address (32 = 2 5 ), there are several ways to use the LUT: 

• You can use five of the seven possible inputs (A–E, QX, QY) with the entire 
32-bit LUT. The CLB outputs (F and G) are then identical.  

• You can split the 32-bit LUT in half to implement two functions of four 
variables each. You can choose four input variables from the seven inputs 
(A–E, QX, QY). You have to choose two of the inputs from the five CLB inputs 
(A–E); then one function output connects to F and the other output connects 
to G.  

• You can split the 32-bit LUT in half, using one of the seven input variables as 
a select input to a 2:1 MUX that switches between F and G. This allows you 
to implement some functions of six and seven variables.  
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                                                                      CHAPTER  6 

6.0 CMOS TEST Methods: 

Introduction: 

Design of logic integrated circuits in CMOS technology is becoming more and more 
complex since VLSI is the interest of many electronic IC users and manufacturers. 
A common problem to be solved by both users and manufacturers is the testing of 
these ICs. 

 
 

Figure 5.0 Testing of device 

Testing can be expressed by checking if the outputs of a functional system 
(functional block, Integrated Circuit, Printed Circuit Board or a complete system) 
correspond to the inputs applied to it. If the test of this functional system is positive, 
then the system is good for use. If the outputs are different than expected, then the 
system has a problem: so either the system is rejected (Go/No Go test), or a 
diagnosis is applied to it, in order to point out and probably eliminate the problem's 
causes. 

Testing is applied to detect faults after several operations: design, manufacturing, 
packaging and especially during the active life of a system, and thus since failures 
caused by wear-out can occur at any moment of its usage.6.1 Need and importance 
of the test:As we know that a wafer contains many die (chip) and it is very likely that 
not the entire chip works properly in that wafer. We define yield as the no of chips 
which are good divided by the total number of chip in that wafer. Chip manufacturing 
is a complex process hence if a small imperfection in materials, process technology, 
and other variation may result in bad die. it is then necessary to check each die 
individually to verify whether it is good or bad. The test of the chip can be done in 
different level. Starting from wafer level, packaged level, board level, system level 
and in the field. 
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Detecting the fault in early stage is economic rather than detecting the fault at later 
stage. for example the cost of detecting the fault at various level is approximately 
given as 

Wafer level            $ .01 - $.1 

Packaged level       $0.1 - $1 

Board level                  $ 1 - $10 

System level              $ 10 - $100 

Field level               $ 100 - $1000 

The above data shows that if we are able to detect the fault at wafer level we are 
saving much more cost. 

6.2 Manufacturing test principles: 

It is more convenient to talk about "test generation for combinational logic testing" in 
this section, and about "test generation for sequential logic testing" in the next 
section. Thus the solution to the problem of testing a purely combinational logic 
block is a good set of patterns detecting "all" the possible           faults. The first idea 
to test an N input circuit would be to apply an N-bit counter to the inputs 
(controllability), then generate all the 2N combinations, and observe the outputs for 
checking (observability). This is called "exhaustive testing", and it is very efficient... 
but only for few- input circuits. When the input number increase, this technique 
becomes very time consuming. the table below shows the time needed to test the 
device exhaustively at 10 MHz. 

  

 

 

6.3 Sensitized Path Testing 

Most of the time, in exhaustive testing, many patterns do not occur during the 
application of the circuit. So instead of spending a huge amount of time searching for 
faults everywhere, the possible faults are first enumerated and a set of appropriate 

32 inputs          7 minutes 
40 inputs          30 hours 
64 input            58.5E8 century 

Combinational   
     Logic 

N input N output 
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vectors are then generated. This is called "single-path sensitization" and it is based 
on "fault oriented testing". 

 

The basic idea is to select a path from the site of a fault, through a sequence of 
gates leading to an output of the combinational logic under test. The process is 
composed of three steps: 

• Manifestation: gate inputs, at the site of the fault, are specified as to generate 
the opposite value of the faulty value (0 for SA1, 1 for SA0). 

• Propagation: inputs of the other gates are determined so as to propagate the 
fault signal along the specified path to the primary output of the circuit. This is 
done by setting these inputs to "1" for AND/NAND gates and "0" for OR/NOR 
gates. 

• Consistency: or justification. This final step helps finding the primary input 
pattern that will realize all the necessary input values. This is done by tracing 
backward from the gate inputs to the primary inputs of the logic in order to 
receive the test patterns. 

Test mainly falls in two categories:  

Manufacturing test  

And functionality test. 

6.4 Manufacturing test and functional test: 

To result in good ics the chip has to under go mainly two type of test. They are 
functionality test and manufacturing test. Functionality test refers to the function that 
the chip is supposed to perform and manufacturing test refers to the correct 
fabrication process till the chip is packaged. Any defects can occur in the stage of 
manufacturing which leads the chip to malfunction or not working. 

The manufacturing test is done to verify that each individual gate in the die are 
correctly fabricated and are in good state. This test is done when the chip is finally 
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packaged. Every gate is checked thoroughly and check that it is functioning 
properly or not. The need for this test is due to the manufacturing defects and 
process variations. The defects that are likely to found in this test are 

• Short circuit between layers (metal to metal), 

• Open circuit  

• Thin oxide short with well or substrate. 

The above defects leads to 

• Nodes shorted to power or ground 

• Nodes shorted to each other 

• Inputs and outputs unconnected (open) 

Test has to be done to verify that each gate and registers are functional and there is 
no manufacturing defects.test are normally carried out in Wafer level and bad 
chip(Die) are eliminated ,then it is again tested in package level.Manufacturing test 
is done in two level .first in production level and second at packaging level (after 
manufacturing).       

ICs are tested at two stages during manufacture using production tests . First, the 
silicon die are tested after fabrication is complete at wafer test or wafer sort. Each 
wafer is tested, one die at a time, using an array of probes on a probe card that 
descend onto the bonding pads of a single die. The production tester applies 
signals generated by a test program and measures the IC test response. A test 
program often generates hundreds of thousands of different test vectors applied at 
a frequency of several megahertz over several hundred milliseconds. Chips that fail 
are automatically marked with an ink spot. Production testers are large machines 
that take up their own room and are very expensive (typically well over $1 million). 
Either the customer, or the IC manufacturer, or both, develops the test program. 

A diamond saw separates the die, and the good die are bonded to a lead carrier 
and packaged. A second, final test is carried out on the packaged ASIC (usually 
with the same test vectors used at wafer sort) before the ASIC is shipped to the 
customer. The customer may apply a goods-inward test to incoming ICs if the 
customer has the resources and the product volume is large enough. Normally, 



 

 72 

though, parts are directly assembled onto a bare printed-circuit board ( PCB or 
board ) and then the board is tested. If the board test shows that an IC is bad at 
this point, it is difficult to replace a surface-mounted component soldered on the 
board, for example. If there are several board failures due to a particular IC, the 
board manufacturer typically ships the defective chips back to the IC vendor. IC 
vendors have sophisticated failure analysis departments that take packaged ICs 
apart and can often determine the failure mechanism. If the IC production tests are 
adequate, failures are often due to the soldering process, electrostatic damage 
during handling, or other problems that can occur between the part being shipped 
and board test. If the problem is traced to defective IC fabrication, this indicates that 
the test program may be inadequate.  
5.4.1 Functionality test: 
Functionality test refers to whether the chip performs the correct function or not. For 
example the adder adds correctly or not, the counter counts correctly or not, the 
microprocessor if functioning properly or not. the functionality can be tested using 
various method .we can check the truth table , verbal description, description in 
high level language like c ,c++,hardware description language like vhdl,verilog 
hdl.these description can be verified using various simulation tools and cad tools. 

6.5 Faults: 

Fabrication of an IC Chip is a complicated process requiring hundreds of processing 
steps. These processing may introduce a defect that in turn may introduce a fault. 
Any problem during fabrication may prevent a transistor from working and may break 
or join interconnections. Two common types of defects occur in metallization: either 
underetching the metal (a problem between long, closely spaced lines), which 
results in a bridge or short circuit ( shorts ) between adjacent lines, or overetching 
the metal and causing breaks or open circuits ( opens ). 

          

 

 Defects may also arise after chip fabrication is complete—while testing the wafer, 
cutting the die from the wafer, or mounting the die in a package. Wafer probing, 
wafer saw, die attach, wire bonding, and the intermediate handling steps each have 
their own defect and failure mechanisms. Many different materials are involved in 
the packaging process that have different mechanical, electrical, and thermal 
properties, and these differences can cause defects due to corrosion, stress, 
adhesion failure, cracking, and peeling. Yield loss also occurs from human error—
using the wrong mask, incorrectly setting the implant dose—as well as from physical 
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sources: contaminated chemicals, dirty etch sinks, or a troublesome process step. It 
is possible to repeat or rework some of the reversible steps (a lithography step, for 
example—but not etching) if there are problems. However, reliance on rework 
indicates a poorly controlled process. 

6.5.1 Reliability: 

It is possible for defects to be nonfatal but to cause failures early in the life of a 
product. We call this infant mortality. Most products follow the same kinds of trend 
for failures as a function of life. Failure rates decrease rapidly to a low value that 
remains steady until the end of life when failure rates increase again; this is called a 
bathtub curve. The end of a product lifetime is determined by various wear out 
mechanisms (usually these are controlled by an exponential energy process). 
Some of the most important wear out mechanisms in ASICs are hot-electron wear 
out, electronmigration, and the failure of antifuses in FPGAs. 

We can measure the overall reliability of any product using the mean time 
between failures ( MTBF ) for a repairable product or mean time to failure ( MTTF 
) for a fatal failure. We also use failures in time ( FITs ) where 1 FIT equals a single 
failure in 10 9 hours. We can sum the FITs for all the components in a product to 
determine an overall measure for the product reliability.  
Case study of Sun SPARCstation 1 
Suppose we have a system with the following components: 

• Microprocessor (standard part) 5 FITs  

• 100 TTL parts, 50 parts at 10 FITs, 50 parts at 15 FITs  

• 100 RAM chips, 6 FITs  

The overall failure rate for this system is 5 + 50v10 + 50v 15 + 100v6 = 1855 FITs. 
Suppose we could reduce the component count using ASICs to the following: 

• Microprocessor (custom) 7 FITs  

• 9 ASICs, 10 FITs  

• 5 SIMMs, 15 FITs  

The failure rate is now 10 + 9v10 + 5v15 = 175 FITs, or about an order of 10 
magnitude lower.  

6.5.2 Fault Models 

Table 1 shows some of the causes of faults. The first column shows the fault level 
—whether the fault occurs in the logic gates on the chip or in the package. The 
second column describes the physical fault. There are too many of these and we 
need a way to reduce and simplify their effects—by using a fault model. 
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There are several types of fault model. First, we simplify things by mapping from a 
physical fault to a logical fault. Next, we distinguish between those logical faults 
that degrade the device performance and those faults that are fatal and stop the 
device from working at all. There are three kinds of logical faults in Table 1 : a 
degradation fault, an open-circuit fault, and a short-circuit fault.  
 

 
 
A degradation fault may be a parametric fault or delay fault (timing fault). A 
parametric fault might lead to an incorrect switching threshold in a TTL/CMOS level 
converter at an input, for example. We can test for parametric faults using a 
production tester. A delay fault might lead to a critical path being slower than 
specification. Delay faults are much harder to test in production. An open-circuit 
fault results from physical faults such as a bad contact, a piece of metal that is 
missing or over etched, or a break in a polysilicon line. These physical faults all 
result in failure to transmit a logic level from one part of a circuit to another—an open 
circuit. A short-circuit fault results from such physical faults as: underetching of 
metal; spiking, pinholes or shorts across the gate oxide; and diffusion shorts. These 
faults result in a circuit being accidentally connected—a short circuit. Most short-
circuit faults occur in interconnect; often we call these bridging faults (BF). A BF 
usually results from metal coverage problems that lead to shorts.  
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Physical Faults 

Figure 5,2  shows the following examples of physical faults in a logic cell: 

  

 
 
 
 
 

FIGURE 5.2 Defects and physical faults. Many types of defects occur during 
fabrication. Defects can be of any size and on any layer. Only a few small sample 
defects are shown here using a typical standard cell as an example. Defect density 
for a modern CMOS process is of the order of 1 cm –2 or less across a whole wafer. 
The logic cell shown here is approximately 64 v 32 v 2 , or 250 v m 2 for a v= 0.25 
v m process. We would thus have to examine approximately 1 cm –2 /250 v m 2 or 
400,000 such logic cells to find a single defect.  
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• F1 is a short between m1 lines and connects node n1 to VSS.  

• F2 is an open on the poly layer and disconnects the gate of transistor t1 from 

the rest of the circuit.  

• F3 is an open on the poly layer and disconnects the gate of transistor t3 from 

the rest of the circuit.  

• F4 is a short on the poly layer and connects the gate of transistor t4 to the 

gate of transistor t5.  

• F5 is an open on m1 and disconnects node n4 from the output Z1.  

• F6 is a short on m1 and connects nodes p5 and p6.  

• F7 is a nonfatal defect that causes necking on m1.  

Once we have reduced the large number of physical faults to fewer logical faults, we 
need a model to predict their effect. The most common model is the stuck-at fault 
model. 

6.6  Stuck-at Fault Model: 

To deal  with the existence of good and bad part it is necessary to have a fault 

model which describes that how a fault can occur and what is the impact of that fault 

in particular design.The single stuck-at fault ( SSF ) model assumes that there is 

just one fault in the logic we are testing. We use a single stuck-at fault model 

because a multiple stuck-at fault model that could handle several faults in the 

logic at the same time is too complicated to implement. 

There are other fault models. For example, we can assume that faults are located in 
the transistors using a stuck-on fault and stuck-open fault (or stuck-off fault ). 
Fault models such as these are more realistic in that they more closely model the 
actual physical faults. However, in practice the simple SSF model has been found to 
work—and work well. We shall concentrate on the SSF model. 
In the SSF model we further assume that the effect of the physical fault (whatever it 
may be) is to create only two kinds of logical fault. The two types of logical faults or 
stuck-at faults are: 
stuck-at-1 fault (abbreviated to SA1 or s@1) this fault model assumes that the 
particular node is always connected to VDD (Power). 



 

 77 

 
 
Stuck-at- zero fault (SA0 or s@0). This model assumes that the particular node is 
always connected to the ground. 
 

 
 
 
We say that we place faults ( inject faults , seed faults , or apply faults ) on a 
node (or net), on an input of a circuit, or on an output of a circuit. The location at 
which we place the fault is the fault origin. 
A net fault forces all the logic cell inputs that the net drives to a logic '1' or '0' . An 
input fault attached to a logic cell input forces the logic cell input to a '1' or '0' , but 
does not affect other logic cell inputs on the same net. An output fault attached to 
the output of a logic cell can have different strengths. If an output fault is a supply-
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strength fault (or rail-strength fault) the logic-cell output node and every other 
node on that net is forced to a '1' or '0' —as if all these nodes were connected to one 
of the supply rails. An alternative assigns the same strength to the output fault as the 
drive strength of the logic cell. This allows contention between outputs on a net 
driving the same node. There is no standard method of handling output-fault 
strength , and no standard for using types of stuck-at faults. Usually we do not inject 
net faults; instead we inject only input faults and output faults. Some people use the 
term node fault —but in different ways to mean either a net fault, input fault, or 
output fault. 
We usually inject stuck-at faults to the inputs and outputs, the pins, of logic cells 
(AND gates, OR gates, flip-flops, and so on). We do not inject faults to the internal 
nodes of a flip-flop, for example. We call this a pin-fault model and say the fault 
level is at the structural level , gate level, or cell level. We could apply faults to the 
internal logic of a logic cell (such as a flip-flop) and (the fault level would then be at 
the transistor level or switch level. We do not use transistor-level or switch-level fault 
models because there is often no need. From experience, but not from any 
theoretical reason, it turns out that using a fault model that applies faults at the logic-
cell level is sufficient to catch the bad chips in a production test. 
When a fault changes the circuit behavior, the change is called the fault effect . 
Fault effects travel through the circuit to other logic cells causing other fault effects. 
This phenomenon is fault propagation . If the fault level is at the structural level, the 
phenomenon is structural fault propagation . If we have one or more large 
functional blocks in a design, we want to apply faults to the functional blocks only at 
the inputs and outputs of the blocks. We do not want to place (or cannot place) faults 
inside the blocks, but we do want faults to propagate through the blocks. This is 
behavioral fault propagation . 
Designers adjust the fault level to the appropriate level at which they think there may 
be faults. Suppose we are performing a fault simulation on a board and we have 
already tested the chips. Then we might set the fault level to the chip level, placing 
faults only at the chip pins. For ASICs we use the logic-cell level. You have to be 
careful, though, if you mix behavioral level and structural level models in a mixed-
level fault simulation. You need to be sure that the behavioral models propagates 
faults correctly. In particular, if the behavioral model responds to faults on its inputs 
by propagating too many unknown 'X' values to its outputs, this will decrease the 
fault coverage, because the model is hiding the logic beyond it. 

 

6.6.1 IDDQ Test 

As we know that cmos logic virtually draws no current( a very small static current 
flows when the cmnos is in idle state), when the logic transition is not happening  
.this is the method to find if there is any short circuit (Bridging) between Vdd and 
ground.if there is any such short circuit than obviously the amount of current drawn 
will be much more larger than the normal current.An IDDQ (IDD stands for the 
supply current, and Q stands for quiescent) test is one of the first production tests 
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applied to a chip on the tester, after the chip logic has been initialized. Designers 
measure the resistance between VDD and GND pins. Providing there is not a short 
between VDD and GND, they connect the power supplies and measure the power-
supply current. High supply current can result from bridging faults. We can declare 
that a supply current of more than a few miliamperes indicates a bad chip. This is 
exactly what is done in production test: Find the bad chips quickly, get them off the 
tester, and save expensive tester time.  
 
6.7 Fault Simulation: 

We use fault simulation after we have completed logic simulation to see what 
happens in a design when we deliberately introduce faults. In a production test we 
only have access to the package pins—the primary inputs ( PIs ) and primary 
outputs ( POs ). To test chip we must devise a series of sets of input patterns that 
will detect any faults. A stimulus is the application of one such set of inputs (a test 
vector ) to the PIs of a chip. A typical ASIC may have several hundred PIs and 
therefore each test vector is several hundred bits long. A test program consists of a 
set of test vectors. Typical chip test programs require tens of thousands and 
sometimes hundreds of thousands of test vectors. 

The test-cycle time is the period of time the tester requires to apply the stimulus, 
sense the POs, and check that the actual output is equal to the expected output. 
Suppose the test cycle time is 100 ns (corresponding to a test frequency of 10 MHz), 
in which case we might sense (or strobe ) the POs at 90 ns after the beginning of 
each test cycle. Using fault simulation we mimic the behavior of the production test. 
The fault simulator deliberately introduces all possible faults into our ASIC, one at a 
time, to see if the test program will find them. For the moment we dodge the problem 
of how to create the thousands of test vectors required in a typical test program and 
focus on fault simulation. 
As each fault is inserted, the fault simulator runs our test program. If the fault 
simulation shows that the POs of the faulty circuit are different than the PIs of the 
good circuit at any strobe time, then we have a detected fault ; otherwise we have 
an undetected fault . The list of fault origins is collected in a file and as the faults 
are inserted and simulated, the results are recorded and the faults are marked 
according to the result. At the end of fault simulation we can find the Fault coverage  
    Fault coverage = detected faults / detectable faults. 
The number of detectable faults excludes any undetectable fault categories 
(untestable or redundant faults). Thus,  
 
Detectable faults = faults – undetectable faults,  
Undetectable faults = untested faults + redundant faults.  

Serial Fault Simulation 

Serial fault simulation is the simplest fault-simulation algorithm. We simulate two 
copies of the circuit, the first copy is a good circuit. We then pick a fault and insert it 
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into the faulty circuit. In test terminology, the circuits are called machines , so the 
two copies are a good machine and a faulty machine . We shall continue to use 
the term circuit here to show the similarity between logic and fault simulation (the 
simulators are often the same program used in different modes). We then repeat the 
process, simulating one faulty circuit at a time. Serial simulation is slow and is 
impractical for large ASICs. 

Parallel Fault Simulation 

Parallel fault simulation takes advantage of multiple bits of the words in computer 
memory. In the simplest case we need only one bit to represent either a '1' or '0' for 
each node in the circuit. In a computer that uses a 32-bit word memory we can 
simulate a set of 32 copies of the circuit at the same time. One copy is the good 
circuit, and we insert different faults into the other copies. When we need to perform 
a logic operation, to model an AND gate for example, we can perform the operation 
across all bits in the word simultaneously. In this case, using one bit per node on a 
32-bit machine, we would expect parallel fault simulation to be about 32 times faster 
than serial simulation. The number of bits per node that we need in order to simulate 
each circuit depends on the number of states in the logic system we are using. Thus, 
if we use a four-state system with '1' , '0' , 'X' (unknown), and 'Z' (high-impedance) 
states, we need two bits per node. 

Parallel fault simulation is not quite as fast as our simple prediction because we 
have to simulate all the circuits in parallel until the last fault in the current set is 
detected. If we use serial simulation we can stop as soon as a fault is detected and 
then start another fault simulation. Parallel fault simulation is faster than serial fault 
simulation but not as fast as concurrent fault simulation. It is also difficult to include 
behavioral models using parallel fault simulation. 

Concurrent Fault Simulation 

Concurrent fault simulation is the most widely used fault-simulation algorithm and 
takes advantage of the fact that a fault does not affect the whole circuit. Thus we do 
not need to simulate the whole circuit for each new fault. In concurrent simulation we 
first completely simulate the good circuit. We then inject a fault and resimulate a 
copy of only that part of the circuit that behaves differently (this is the diverged 
circuit ). For example, if the fault is in an inverter that is at a primary output, only the 
inverter needs to be simulated—we can remove everything preceding the inverter. 

Keeping track of exactly which parts of the circuit need to be diverged for each new 
fault is complicated, but the savings in memory and processing that result allow 
hundreds of faults to be simulated concurrently. Concurrent simulation is split into 
several chunks, you can usually control how many faults (usually around 100) are 
simulated in each chunk or pass. Each pass thus consists of a series of test cycles. 
Every circuit has a unique fault-activity signature that governs the divergence that 
occurs with different test vectors. Thus every circuit has a different optimum setting 
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for faults per pass. Too few faults per pass will not use resources efficiently. Too 
many faults per pass will overflow the memory. 

Nondeterministic Fault Simulation 

Serial, parallel, and concurrent fault-simulation algorithms are forms of 
deterministic fault simulation. In each of these algorithms, we use a set of test 
vectors to simulate a circuit and discover which faults we can detect. If the fault 
coverage is inadequate, we modify the test vectors and repeat the fault simulation. 
This is a very time-consuming process.  

As an alternative, we give up trying to simulate every possible fault and instead, 
using probabilistic fault simulation, we simulate a subset or sample of the faults 
and extrapolate fault coverage from the sample. 
In statistical fault simulation, we perform a fault-free simulation and use the 
results to predict fault coverage. This is done by computing measures of 
observability and controllability at every node. 
We know that a node is not stuck if we can make the node toggle—that is, change 
from a '0' to '1' or vice versa. A toggle test checks which nodes toggle as a result of 
applying test vectors and gives a statistical estimate of vector quality, a measure of 
faults detected per test vector. There is a strong correlation between high-quality test 
vectors, the vectors that will detect most faults, and the test vectors that have the 
highest toggle coverage. Testing for nodes toggling simply requires a single logic 
simulation that is much faster than complete fault simulation. 
We can obtain a considerable improvement in fault simulation speed by putting the 
high-quality test vectors at the beginning of the simulation. The sooner we can 
detect faults and eliminate them from having to be considered in each simulation, 
the faster the simulation will progress. We take the same approach when running a 
production test and initially order the test vectors by their contribution to fault 
coverage. This assumes that all faults are equally likely. Test engineers can then 
modify the test program if they discover vectors late in the test program that are 
efficient in detecting faulty chips estimate defect levels.  

6.8 Automatic Test-Pattern Generation (ATPG): 

When The Chip is manufactured it has to be tested whether it correctly performs 

the operation or not. Already we have seen that to check the functionality of the 

chip with many inputs is virtually impossible for all the combination of the input 

(Exhaustive method).generally to test the chip a combination of input vectors are 

created which is then applied at the input and observe its behavior at the output, if 

the expected output occurs than the chip can be called as good else it is bad. but 

the question arises how many such input vectors have to be created and how many 
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such test has to be conducted as the size and the density of the chip is growing 

more and more therefore there became the necessary for the designers to 

generate the input test vectors automatically  which is termed as Automatic Test 

Pattern generation (ATPG).Historically, most ATPG approaches have been based 

on simulation .A five-valued logic    form is commonly used to implement test 

generation algorithms (more advanced algorithms use up to 10 level logic). This 

consists of the states 1,0,D, , and X. 0 and 1 represent logical zero and logical 

one respectively. X represents the unknown or DON’T-CARE state. D represents a 

logic 1 in a good machine and a logic 0 in a faulty machine while  represents a 

logic 0 in good machine and a logic 1 in a faulty machine.the figure below shows 

the D calculus and truth table for logic gates which has 5 valued system. 
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FIGURE 5.5 The D-calculus. (a) We need a way to represent the behavior of the good 
circuit and the bad circuit at the same time. (b) The composite logic value D (for detect) 
represents a logic '1' in the good circuit and a logic '0' in the bad circuit. We can also 
write this as D = 1/0. (c) The logic behavior of simple logic cells using the D-calculus. 
Composite logic values can propagate through simple logic gates if the other inputs 
are set to their enabling values. 

The D-Calculus 



 

 84 

Figure 5.5 (a) and (b) shows a shorthand notation, the D-calculus , for tracing faults. 
The D-calculus was developed by Roth [ 1966] together with an ATPG 
algorithm, the D-algorithm . The symbol D (for detect) indicates the value of a 
node is a logic '0' in the good circuit and a logic '1' in the bad circuit. We can also 
write this as D = 0/1. In general we write g/b, a composite logic value, to 
indicate a node value in the good circuit is g and b in the bad circuit (by 
convention we always write the good circuit value first and the faulty circuit value 

second). The complement of D is  = 1/0 (  is rarely written as D' since  is a 

logic value just like '1' and '0'). Notice that  does not mean not detected, but simply 
that we see a '0' in the good circuit and a '1' in the bad circuit. We can apply Boolean 
algebra to the composite logic values D and  as shown in 5.5 (c). The composite 
values 1/1 and 0/0 are equivalent to '1' and '0' respectively. We use the unknown 
logic value 'X' to represent a logic value that is one of '0', '1', D, or  ,   but we do not 
know or care which. 

If we wish to propagate a signal from one or more inputs of a logic cell to the logic 
cell output, we set the remaining inputs of that logic cell to what we call the enabling 
value . The enabling value is '1' for AND and NAND gates and '0' for OR and NOR 
gates. Figure 5.5 (c) illustrates the use of enabling values. In contrast, setting at 
least one input of a logic gate to the controlling value , the opposite of the enabling 
value for that gate, forces or justifies the output node of that logic gate to a fixed 
value. The controlling value of '0' for an AND gate justifies the output to '0' and for a 
NAND gate justifies the output to '1'. The controlling values of '1' justifies the output 
of an OR gate to '1' and justifies the output of a NOR gate to '0'. To find controlling 
and enabling values for more complex logic cells, such as AOI and OAI logic cells, 
we can use their simpler AND, OR, NAND, and NOR gate representations. 

 Basic ATPG Algorithm 

A basic algorithm to generate test vectors automatically is shown in Figure 5.6 . We 
detect a fault by first activating (or exciting the fault). To do this we must drive the 
faulty node to the opposite value of the fault. Figure 5.6 (a) shows a stuck-at-1 fault 
at the output pin, ZN, of the inverter U2 (we call this fault U2.ZN.SA1). To create a 
test for U2.ZN.SA1 we have to find the values of the PIs that will justify node U2.ZN 
to '0' . We work backward from node U2.ZN justifying each logic gate output until we 
reach a PI. In this case we only have to justify U2.ZN to '0' , and this is easily done 
by setting the PI A = '0'. Next we work forward from the fault origin and sensitize a 
path to a PO (there is only one PO in this example). This propagates the fault effect 
to the PO so that it may be observed. To propagate the fault effect to the PO Z, we 
set U3.A2 = '1' and then U5.A2 = '1'.  

We can visualize fault propagation by supposing that we set all nodes in a circuit to 
unknown, 'X'. Then, as we successively propagate the fault effect toward the POs, 
we can imagine a wave of D’s and D ’s, called the D-frontier , that propagates from 
the fault origin toward the POs. As a value of D or D reaches the inputs of a logic cell 
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whose other inputs are 'X', we add that logic cell to the D-frontier. Then we find 
values for the other inputs to propagate the D-frontier through the logic cell to 
continue the process. 
 

 

FIGURE 5.6  A basic ATPG (automatic test-pattern generation) algorithm for A'B + 

BC. (a) We activate a fault, U2.ZN stuck at 1, by setting the pin or node to '0', the 

opposite value of the fault. (b) We work backward from the fault origin to the PIs 

(primary inputs) by recursively justifying signals at the output of logic cells. (c) We 

then work forward from the fault origin to a PO (primary output), setting inputs to 

gates on a sensitized path to their enabling values. We propagate the fault until the 

D-frontier reaches a PO. (d)  We then work backward from the PO to the PIs 

recursively justifying outputs to generate the sensitized path. This simple algorithm 

always works, providing signals do not branch out and then rejoin again. 
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This basic algorithm of justifying and then propagating a fault works when we can 
justify nodes without interference from other nodes. This algorithm breaks down 
when we have reconvergent fanout . Figure 5.7) shows another example of 
justifying and propagating a fault in a circuit with reconvergent fanout. For direct 
comparison Figure 5.7(b) shows an irredundant circuit, similar to part (a), except the 
fault signal, B stuck at 1, branches and then reconverges at the inputs to gate U5. 
The reconvergent fanout in this new circuit breaks our basic algorithm. We now have 
two sensitized paths that propagate the fault effect to U5. These paths combine to 
produce a constant '1' at Z, the PO. We have a multipath sensitization problem. 
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The PODEM Algorithm 

The path-oriented decision making (PODEM ) algorithm solves the problem of 
reconvergent fanout and allows multipath sensitization]. The method is similar to the 
basic algorithm we have already described except PODEM will retry a step, 
reversing an incorrect decision. There are four basic steps that we label: objective , 
backtrace , implication , and D-frontier . These steps are as follows: 

1. Pick an objective to set a node to a value. Start with the fault origin as 
an objective and all other nodes set to 'X'.  

2. Backtrace to a PI and set it to a value that will help meet the objective.  

3. Simulate the network to calculate the effect of fixing the value of the PI 
(this step is called implication). If there is no possibility of sensitizing a path 
to a PO, then retry by reversing the value of the PI that was set in step 2 and 
simulate again.  

4. Update the D-frontier and return to step 1. Stop if the D-frontier 
reaches a PO.  

Figure 5.8 shows example that uses the following iterations of the four steps in the 
PODEM algorithm: 

FIGURE 5.7 Reconvergent fanout. (a) Signal B branches and then reconverges at logic 
gate U5, but the fault U4.A1 stuck at 1 can still be excited and a path sensitized using 
the basic algorithm of Figure 5.6 . (b) Fault B stuck at 1 branches and then reconverges 
at gate U5. When we enable the inputs to both gates U3 and U4 we create two 
sensitized paths that prevent the fault from propagating to the PO (primary output). We 
can solve this problem by changing A to '0', but this breaks the rules of the algorithm 
illustrated in Figure 5.6 . The PODEM algorithm solves this problem. 
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1. We start with activation of the fault as our objective, U3.A2 = '0'. We 
backtrace to J. We set J = '1'. Since K is still 'X', implication gives us no 
further information. We have no D-frontier to update.  

2. The objective is unchanged, but this time we backtrace to K. We set K 
= '1'. Implication gives us U2.ZN = '1' (since now J = '1' and K = '1') and 
therefore U7.ZN = '1'. We still have no D-frontier to update.  

3. We set U3.A1 = '1' as our objective in order to propagate the fault 
through U3. We backtrace to M. We set M = '1'. Implication gives us U2.ZN 
= '1' and U3.ZN = D. We update the D-frontier to reflect that U4.A2 = D and 
U6.A1 = D, so the D-frontier is U4 and U6.  

4. We pick U6.A2 = '1' as an objective in order to propagate the fault 
through U6. We backtrace to N. We set N = '1'. Implication gives us U6.ZN = 
D . We update the D-frontier to reflect that U4.A2 = D and U8.A1 = D , so the 
D-frontier is U4 and U8.  

5. We pick U8.A1 = '1' as an objective in order to propagate the fault 
through U8. We backtrace to L. We set L = '0'. Implication gives us U5.ZN = 
'0' and therefore U8.ZN = '0' (this node is Z, the PO). There is then no 
possible sensitized path to the PO Z. We must have made an incorrect 
decision, we retry and set L = '1'. Implication now gives us U8.ZN = D and 
we have propagated the D-frontier to a PO.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  



 

 90 

 
Iteration Objective Backtrace 1  Implication D-frontier 
1 U3.A2 = 0 J = 1    
2 U3.A2 = 0 K = 1 U7.ZN = 1   
3 U3.A1 = 1 M = 1 U3.ZN = D U4, U6 
4 U6.A2 = 1 N = 1 U6.ZN = D U4, U8 
5a U8.A1 = 1 L = 0 U8.ZN = 1 U4, U8 
5b Retry L = 1 U8.ZN = D A 
1 Backtrace is not the same as retry or backtrack. 
  

FIGURE 5..8  The PODEM (path-oriented decision making) algorithm. 
We can see that the PODEM algorithm proceeds in two phases. In the first phase, 
iterations 1 and 2 in Figure 5.8, the objective is fixed in order to activate the fault. In 
the second phase, iterations 3–5, the objective changes in order to propagate the 
fault. In step 3 of the PODEM algorithm there must be at least one path containing 
unknown values between the gates of the D-frontier and a PO in order to be able to 
complete a sensitized path to a PO. This is called the X-path check . 
You may wonder why there has been no explanation of the backtrace mechanism or 
how to decide a value for a PI in step 2 of the PODEM algorithm. The decision tree 
shown in Figure 5.8 shows that it does not matter. PODEM conducts an implicit 
binary search over all the PIs. If we make an incorrect decision and assign the 
wrong value to a PI at some step, we will simply need to retry that step. Texts, 
programs, and articles use the term backtrace as we have described it, but then 
most use the term backtrack to describe what we have called a retry, which can be 
confusing. I also did not explain how to choose the objective in step 1 of the PODEM 
algorithm. The initial objective is to activate the fault. Subsequently we select a logic 
gate from the D-frontier and set one of its inputs to the enabling value in an attempt 
to propagate the fault.  
We can use intelligent procedures, based on controllability and observability, to 
guide PODEM and reduce the number of incorrect decisions. PODEM is a 
development of the D-algorithm, and there are several other ATPG algorithms that 
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are developments of PODEM. One of these is FAN ( fanout-oriented test 
generation ) that removes the need to backtrace all the way to a PI, reducing the 
search time [ Fujiwara and Shimono, 1983; Schulz, Trischler, and Sarfert, 1988]. 
Algorithms based on the D-algorithm, PODEM, and FAN are the basis of many 
commercial ATPG systems. 

6.9 Design for Testability (DFT) 

. Controllability and Observability: 

Chips are manufactured in such a way that it can be tested for its correct functioning 
or not. Various design approaches has been discovered to make the chip testable. 
This design approach is known as Design for Testability (DFT) 
For the chip to be tested fully it is necessary that all its input and output pin including 
internal nodes can be controlled and observed at any time externally. The node or 
pins which can be direct control by the external input is known as controllability and 
the node or pin which can be observed externally is known as observability. 

In order for an ATPG system to provide a test for a fault on a node it must be 
possible to both control and observe the behavior of the node. There are both 
theoretical and practical issues involved in making sure that a design does not 
contain buried circuits that are impossible to observe and control. A software 
program that measures the controllability (with three l’ s) and observability of 
nodes in a circuit is useful in conjunction with ATPG software.  

There are several different measures for controllability and observability.  
Combinational controllability is defined separately from sequential 
controllability . We also separate zero-controllability and one-controllability. For 
example, the combinational zero-controllability for a two-input AND gate, Y = 
AND (X 1 , X 2 ), is recursively defined in terms of the input controllability values as 
follows:  

CC0 (Y) = min { CC0 (X 1 ), CC0 (X 2 ) } + 1 . ….1 

We choose the minimum value of the two-input controllability values to reflect the 
fact that we can justify the output of an AND gate to '0' by setting any input to the 
control value of '0'. We then add one to this value to reflect the fact that we have 
passed through an additional level of logic. Incrementing the controllability measures 
for each level of logic represents a measure of the logic distance between two 
nodes. 

We define the combinational one-controllability for a two-input AND gate as  
CC1 (Y) = CC1(X 1 ) + CC1 (X 2 ) + 1 . (..2) 
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This equation reflects the fact that we need to set all inputs of an AND gate to the 
enabling value of '1' to justify a '1' at the output. Figure 5.9 (a) illustrates these 
definitions.  

  

 

FIGURE 5.9 Controllability measures. (a) Definition of combinational zero-
controllability, CC0, and combinational one-controllability, CC1, for a two-input AND 
gate. (b) Examples of controllability calculations for simple gates, showing 
intermediate steps. (c) Controllability in a combinational circuit. 

An inverter, Y = NOT (X), reverses the controllability values:  
CC1 (Y) = CC0 (X) + 1 and CC0 (Y) = CC1 (X) + 1 …3 

Since we can construct all other logic cells from combinations of two-input AND 
gates and inverters we can use Eqs.  1 – 5 to derive their controllability equations. 
When we do this we only increment the controllability by one for each primitive gate. 
Thus for a three-input NAND with an inverting input, Y = NAND (X 1 , X 2 , NOT (X 3 
)):  
CC0 (Y) = CC1 (X 1 ) + CC1 (X 2 ) + CC0 (X 3 ) + 1 ,   
CC1 (Y) = min { CC0 (X 1 ), CC0 (X 2 ), CC1 (X 3 ) } + 1 . (…4) 

For a two-input NOR,Y = NOR (X 1,X 2 ) = NOT (AND (NOT (X 1 ), NOT (X 2 ):  
CC1 (Y) = min { CC1 (X 1 ), CC1 (X 2 ) } + 1 ,   
CC0 (Y) = CC0 (X 1 ) + CC0 (X 2 ) + 1 . (…5) 

 
Figure 5.9 (b) shows examples of controllability calculations. A bubble on a logic 
gate at the input or output swaps the values of CC1 and CC0. Figure 5.9 (c) shows 
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how controllability values for a combinational circuit are calculated by working 
forward from each PI that is defined to have a controllability of one. 
We define observability in terms of the controllability measures. The combinational 
observability , OC (X 1 ), of input X 1 of a two-input AND gate can be expressed in 
terms of the controllability of the other input CC1 (X 2 ) and the combinational 
observability of the output, OC (Y):  
 
OC (X 1 ) = CC1 (X 2 ) + OC (Y) + 1 . (…6) 

If a node X 1 branches (has fanout) to nodes X 2 and X 3 we choose the most 
observable of the branches:  
 
OC (X 1 ) = min { O (X 2 ) + O (X 3 ) } . (…7) 

Figure 5.10 (a) and (b) show the definitions of observability. Figure 5.10 (c) 
illustrates calculation of observability at a three-input NAND; notice we sum the CC1 
values for the other inputs (since the enabling value for a NAND gate is one, the 
same as for an AND gate). Figure 5.10 (d) shows the calculation of observability 
working back from the PO which, by definition, has an observability of zero. 
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FIGURE 5.10  Observability measures. (a) The combinational observability, 
OC(X 1 ), of an input, X 1 , to a two-input AND gate defined in terms of the 
controllability of the other input and the observability of the output. (b) The 
observability of a fanout node is equal to the observability of the most 
observable branch. (c) Example of an observability calculation at a three-
input NAND gate. (d) The observability of a combinational network can be 
calculated from the controllability measures, CC0:CC1. The observability of 
a PO (primary output) is defined to be zero. 

Sequential controllability and observability can be measured using similar equations 
to the combinational measures except that in the sequential measures (SC1, SC0, 
and OS) we measure logic distance in terms of the layers of sequential logic, not the 
layers of combinational logic. 
 
 
6.10 Various design approaches for Design for testable: 
Design for testability can be classified as 

• AD-HOC based methods 

• Scan Methods 

• Self test Method. 

6.11 AD-HOC Test Methods 
AD-Hoc approach refers to collection of various ideas which helps the design to be 
testable .This section provides a set of practical Design for Testability guidelines 
classified into three types: test generation, test application and avoiding timing 
problems. 

6.11.1Adding internal nodes to Improve Controllability and Observability: 

All "design for test" methods ensure that a design has enough observability and 
controllability to provide for a complete and efficient testing. When a node has 
difficult access from primary inputs or outputs (pads of the circuit), a very efficient 
method is to add internal pads acceding to this kind of node in order, for instance, to 
control block B2 and observe block B1 with a probe. It is easy to observe block B1 
by adding a pad just on its output, without breaking the link between the two blocks. 
The control of the block B2 means to set a 0 or a 1 to its input, and also to be 
transparent to the link B1-B2. The logic functions of this purpose are a NOR- gate, 
transparent to a zero, and a NAND-gate, transparent to a one. By this way the 
control of B2 is possible across these two gates. Another implementation of this cell 
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is based on pass-gates multiplexers performing the same function, but with less 
transistors than with the NAND and NOR gates (8 instead of 12). 

The simple optimization of observation and control is not enough to guarantee a full 
testability of the blocks B1 and B2. This technique has to be completed with some 
other techniques of testing depending on the internal structures of blocks B1 and B2. 

 

 

 
Figure-5.11 Internal Nodes added to Improve Controllability and Observability.  

6.11.2 Use Multiplexers 

This technique is an extension of the precedent, while multiplexers are used in case 
of limitation of primary inputs and outputs. 
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 Figure-5.12 Adding multiplexer For DFT 

 
  

In this case the major penalties are extra devices and propagation delays due to 
multiplexers. Demultiplexers are also used to improve observability. Using 
multiplexers and demultiplexers allows internal access of blocks separately from 
each other, which is the basis of techniques based on partitioning or bypassing 
blocks to observe or control separately other blocks. 

6.11.3 Partition Large Circuits 

Partitioning large circuits into smaller sub-circuits reduces the test-generation effort. 
The test- generation effort for a general purpose circuit of n gates is assumed to be 
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proportional to somewhere between n2 and n3. If the circuit is partitioned into two 
sub-circuits, then the amount of test generation effort is reduced correspondingly. 

 
  

 
Figure-5.13: Partitioning large circuit in to subcircuits. 

For  example the SN7480 full adder exhaustive testing requires 512 tests, while a 
full test after partitioning into four sub-circuits, for SA0 and SA1 faults, requires 24 
tests. Logical partitioning of a circuit should be based on recognizable sub-functions 
and can be achieved physically by incorporating some facilities to isolate and control 
clock lines, reset lines and power supply lines. The multiplexers can be massively 
used to separate sub-circuits without changing the function of the global circuit. 

6.11.4 Divide Long Counter Chains 

Based on the same principle of partitioning, the counters are sequential elements 
that need a large number of vectors to be fully tested. The partitioning of a long 
counter corresponds to its division into sub-counters. 

The full test of a 16-bit counter requires the application of 216 + 1 = 65537 clock 
pulses. If this counter is divided into two 8-bit counters, then each counter can be 
tested separately, and the total test time is reduced 128 times (27). This is also 
useful if there are subsequent requirements to set the counter to a particular count 
for tests associated with other parts of the circuit : pre-loading facilities. 
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Figure-5.14: Dividing long Counter chains: 
 

6.11.5 Use Bused Structure 

This approach is related, by structure, to partitioning technique. It is very useful for 
microprocessor-like circuits. Using this structure allows the external tester the 
access of three buses, which go to many different modules.  

 
 

Figure-5.15: Bus structure: 

The tester can then disconnect any module from the buses by putting its output into 
a high- impedance state. Test patterns can then be applied to each module 
separately. 
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6.11.6 Separate Analog and Digital Circuits 

Testing analog circuit requires a completely different strategy than for digital circuit. 
Also the sharp edges of digital signals can cause cross-talk problem to the analog 
lines, if they are close to each other. 

 
Figure-5.16: separation of analog and digital Circuit. 

If it is necessary to route digital signals near analog lines, then the digital lines 
should be properly balanced and shielded. Also, in the cases of circuits like Analog-
Digital converters, it is better to bring out analog signals for observation before 
conversion. For Digital-Analog converters, digital signals are to be brought out also 
for observation before conversion. 

6.11.7 Bypassing Techniques 

Bypassing a sub-circuit consists in propagating the sub-circuit inputs signals directly 
to the outputs. The aim of this technique is to bypass a sub-circuit (part of a global 
circuit) in order to access another sub-circuit to be tested. The partitioning technique 
is based on bypassing technique and they both use multiplexers to perform two 
different methods. 

In the bypassing technique sub-circuits can be then tested exhaustively, by 
controlling multiplexers in the whole circuit. To speed-up the test, some sub-circuits 
are tested simultaneously if the propagation paths are associated with other disjoint 
or separated sub- circuits.  
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6.12 Scan Test Methods: 

Sequential logic poses a very difficult ATPG problem. Consider the example of a 32-
bit counter with a final carry. If the designer included a reset, we have to clock the 
counter 2 32 (approximately 4 v 10 9 ) times to check the carry logic. Using a 1 MHz 
tester clock this requires 4 v 10 3 seconds, 1 hour, or (at approximately $0.25 per 
second) $1,000 of tester time. Consider a 16-bit state machine implemented using a 
one-hot state register with 16 D flip-flops. If the designer did not include a reset we 
have a very complicated initialization problem. A sequential ATPG algorithm must 
consider over 2000 states when constructing sequential test vectors. In an ad hoc 
approach to testing we could construct special reset circuits or create manual test 
vectors to deal with these special situations, one at a time, as they arise. Instead we 
can take a structured test approach (also called design for test, though this term 
covers a wider field). 

We can automatically generate test vectors for combinational logic, but ATPG is 
much harder for sequential logic. Therefore the most common sequential structured 
test approach converts sequential logic to combinational logic. In full-scan design we 
replace every sequential element with a scan flip-flop. The result is an internal form 
of boundary scan and, if we wish, we can use the IEEE 1149.1 TAP to access (and 
the boundary-scan controller to control) an internal-scan chain. 
 
 

6.12.1 Scan Path 

The goal of the scan path technique is to reconfigure a sequential circuit, for the 
purpose of testing, into a combinational circuit. Since a sequential circuit is based on 
a combinational circuit and some storage elements, the technique of scan path 
consists in connecting together all the storage elements to form a long serial shift 
register. Thus the internal state of the circuit can be observed and controlled by 
shifting (scanning) out the contents of the storage elements. The shift register is then 
called a scan path. The popular approach of scan based technique is Level 
Sensitive Scan design (LSSD). The basic building block of LSSD is Shift Register 
latch (SRL).SRL consists of two Latches L1 and L2. 
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The internal diagram for L1 and L2 is shown in figure 

 

L1 consists of  data port D which is normal data and is enabled by Control signal c , 
the serial input data port is I which is used in test mode and is controlled by control 
signal A. remember A and C cannot be enable simultaneously. The data is passed 
from T1 to T2 when the enable signal B is asserted. 

In normal operation D is the normal input and T2 output is normal output. Shift 
Register latches are connected in series by using the T2 output and I input of 
successive Latch as shown in figure 5.17 for serial scan. The serial input data is 
given to the first set of SRL and the output from the Latch QA1 is connected to the 
Input (I) of second test of SRL, similarly the QA2 is connected to input of Third SRL 
and so on. In this manner the chain is created with this registers and finally the 
output is obtained which has passed through points QB1,QB2,QB3 etc. 
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Figure-5.17 Serial Scan test method. 

The storage elements can either be D, J-K, or R-S types of flip-flops, but simple 
latches cannot be used in scan path. However, the structure of storage elements is 
slightly different than classical ones. Generally the selection of the input source is 
achieved using a multiplexer on the data input controlled by an external mode signal. 
This multiplexer is integrated into the D-flip-flop, in our case; the D-flip-flop is then 
called MD-flip-flop (multiplexed-flip-flop). 

The sequential circuit containing a scan path has two modes of operation : a normal 
mode and a test mode which configure the storage elements in the scan path. 
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In the normal mode, the storage elements are connected to the combinational 
circuit, in the loops of the global sequential circuit, which is considered then as a 
finite state machine. 

In the test mode, the loops are broken and the storage elements are connected 
together as a serial shift register (scan path), receiving the same clock signal. The 
input of the scan path is called scan-in and the output scan-out. Several scan paths 
can be implemented in one same complex circuit if it is necessary, though having 
several scan-in inputs and scan-out outputs. 

A large sequential circuit can be partitioned into sub-circuits, containing 
combinational sub-circuits, associated with one scan path each. Efficiency of the test 
pattern generation for a combinational sub-circuit is greatly improved by partitioning, 
since its depth is reduced. 

Before applying test patterns, the shift register itself has to be verified by shifting in 
all ones i.e. 111...11, or zeros i.e. 000...00, and comparing. 

The method of testing a circuit with the scan path is as follows: 

1. Set test mode signal, flip-flops accept data from input scan-in  
2. Verify the scan path by shifting in and out test data  
3. Set the shift register to an initial state  
4. Apply a test pattern to the primary inputs of the circuit  
5. Set normal mode, the circuit settles and can monitor the primary outputs of 

the circuit  
6. Activate the circuit clock for one cycle  
7. Return to test mode  
8. Scan out the contents of the registers, simultaneously scan in the next pattern  

 
6.13 BUILT IN SELF TEST: 
This approach uses the technique whereby the circuit itself generates the test vector 
and verifies the correct operation. The widely used technique for self test is 
Signature analysis or cyclic redundancy check.  
 
Signature analysis and Built in Self test (BILBO): 
 
Signature analysis technique uses the pseudo random sequence generator (PRSG) 
to generate the input test vectors which are then applied to the input of the 
combinational logic circuit .the output coming from the combinational logic circuit is 
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than analyzed with the signature analyzer. 

 
Figure 5.18 Built In self Test 

 
 A pseudo random sequence generator is constructed using linear feed back shift 
register (LFSR).Linear Feed back Shift register consists of number of 1 bit register 
which are connected in series  to form shift register. Pseudo random sequence 
generator implements a polynomial of some length N. to form the PRSG the output 
of the certain register are feed to the XOR gate and the output of XOR gate is given 
to the input of LFSR.Depending upon the output taken from the register and xored it 
,different polynomial is formed. For n bit Register the LFSR will cycle through 2n-1 
states before repeating the sequence. 
 

 
 

Figure 5.19 PRSG constructed from LFSR 
 
a signature analyzer  is constructed by cyclically adding the output of the circuit to 
the shift register or LFSR if successive blocks are to be tested in like manner. 
Signature analysis  can be merged with Scan technique to form a structure known 
as Built in Logic Block observation (BILBO). 
The BILBO structure  consisting of 3 register  is shown in figure (5.20  ). This block is 
capable of performing  following operation depending upon the mode. 
 
Mode           C0        C1 
A  0 0 scan Mode 
B  0 1 Reset 
C  1 0 PRSG or Signature analyzer 
D  1 1 Parallel Registers. 
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When C0 and C1  is 0,0 (MODE A) this block acts as scan Register, when both C0 
and C1 are 1 (MODE D) it acts as parallel register.in mode  C  it acts as  PRSG or 
signature analyzer. 

 

Figure 5.20 BILBO  showing various Modes of operatrion. 

 

6.14 Boundary Scan Test (BST) 

Boundary Scan Test (BST) is a technique involving scan path and self-testing 
techniques to resolve the problem of testing boards carrying VLSI integrated circuits 
and/or surface mounted devices (SMD). 

Printed circuit boards (PCB) are becoming very dense and complex, especially with 
SMD circuits, that most test equipment cannot guarantee a good fault coverage. It is 
possible to test ICs in dual-in-line packages (DIPs ) with 0.1 inch (2.5 mm) lead 
spacing on low-density boards using a bed-of-nails tester with probes that contact 
test points underneath the board. Mechanical testing becomes difficult with board 
trace widths and separations below 0.1 mm or 100 mm, package-pin separations of 
0.3 mm or less, packages with 200 or more pins, surface-mount packages on both 
sides of the board, and multilayer boards. 
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Boundary-scan test (BST) is a method for testing boards using a four-wire interface 
(five wires with an optional master reset signal). A good analogy would be the RS-
232 interface for PCs. The BST standard interface was designed to test boards, but 
it is also useful to test ASICs. The BST interface provides a standard means of 
communicating with test circuits on-board an ASIC. We do need to include extra 
circuits on an ASIC in order to use BST. This is an example of increasing the cost 
and complexity (as well as potentially reducing the performance) of an ASIC to 
reduce the cost of testing the ASIC and the system. 

 

BST consists in placing a scan path (shift register) adjacent to each component pin 
and to interconnect the cells in order to form a chain around the border of the circuit. 
The BST circuits contained on one board are then connected together to form a 
single path through the board. 

The boundary scan path is provided with serial input and output pads and 
appropriate clock pads which make it possible to :  

• Test the interconnections between the various chip  
• Deliver test data to the chips on board for self-testing 
• Test the chips themselves with internal self- test 

 

 
  

 
Figure-5.21:  Boundary scan test standard. 
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Figure-5.22:  Boundary scan test for multiple Chips in PCB. 

•  
Figure-5.23: connecting various chips for boundary scan. 

The advantages of Boundary scan techniques are as follows : 

• No need for complex testers in PCB testing  
• Test engineers work is simplified and more efficient  
• Time to spend on test pattern generation and application is reduced  
• Fault coverage is greatly increased.  
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BS Techniques are grouped by the IEEE Standard Organization in a "standard test 
access port and boundary scan architecture", namely IEEE P1149.1-1990. The Joint 
Test Action Group (JTAG), formed basically in 1986 at Philips, is an international 
committee composed of IC manufacturers who have set the technical development 
of the IEEE P1149 standard and promoted its use by all sectors of electronics 
industry.The IEEE 1149 is a family of overall testability bus standards, defined by the 
Joint Test Action Group (JTAG), formed basically in 1986 at Philips. JTAG is an 
international committee composed of European and American IC manufacturers. 
The "standard Test Access Port and Boundary Scan architecture", namely IEEE 
P1149.1 accepted by the IEEE standard committee in February1990, is the first one 
of this family. Several other ongoing standards are developed and suggested as 
drafts to the technical committee of the IEEE 1149 standard in order to promote their 
use by all sectors of electronics industry.  

In 1985 a group of European manufacturers formed the Joint European Test 
Action Group ( JETAG ) to study board testing. With the addition of North American 
companies, JETAG became the Joint Test Action Group ( JTAG ) in 1986. The 
JTAG 2.0 test standard formed the basis of the IEEE Standard 1149.1 Test Port 
and Boundary-Scan Architecture [ IEEE 1149.1b, 1994], approved in February 
1990 and also approved as a standard by the American National Standards Institute 
(ANSI) in August 1990 [ Bleeker, v. d. Eijnden, and de Jong, 1993; Maunder and 
Tulloss, 1990; Parker, 1992]. The IEEE standard is still often referred to as JTAG, 
although there are important differences between the last JTAG specification 
(version 2.0) and the IEEE 1149.1 standard.  
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FIGURE 5.24. IEEE 1149.1 boundary scan. (a) Boundary scan is intended to check for 
shorts or opens between ICs mounted on a board. (b) Shorts and opens may also occur 
inside the IC package. (c) The boundary-scan architecture is a long chain of shift registers 
allowing data to be sent over all the connections between the ICs on a board. 

Figure 5.24 (a) illustrates failures that may occur on a PCB due to shorts or opens in 
the copper traces on the board. Less frequently, failures in the ASIC package may 
also arise from shorts and opens in the wire bonds between the die and the package 
frame ( Figure 5.24 b). Failures in an ASIC package that occur during ASIC 
fabrication are caught by the ASIC production test, but stress during automated 
handling and board assembly may cause package failures. Figure 5.24 (c) shows 
how a group of ASICs are linked together in boundary-scan testing. To detect the 
failures shown in Figure 5.24 (a) or (b) manufacturers use boundary scan to test 
every connection between ASICs on a board. During boundary scan, test data is 
loaded into each ASIC and then driven onto the board traces. Each ASIC monitors 
its inputs, captures the data received, and then shifts the captured data out. Any 
defects in the board or ASIC connections will show up as a discrepancy between 
expected and actual measured continuity data. 
In order to include BST on an ASIC, we add a special logic cell to each ASIC I/O 
pad. These cells are joined together to form a chain and create a boundary-scan 
shift register that extends around each ASIC. The input to a boundary-scan shift 
register is the test-data input ( TDI ). The output of a boundary-scan shift register is 
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the test-data output ( TDO ). These boundary-scan shift registers are then linked in 
a serial fashion with the boundary-scan shift registers on other ASICs to form one 
long boundary-scan shift register. The boundary-scan shift register in each ASIC is 
one of several test-data registers ( TDR ) that may be included in each ASIC. All 
the TDRs in an ASIC are connected directly between the TDI and TDO ports. A 
special register that decodes instructions provides a way to select a particular TDR 
and control operation of the boundary-scan test process. 

 
Controlling all of the operations involved in selecting registers, loading data, 
performing a test, and shifting out results are the test clock ( TCK ) and test-mode 
select ( TMS ). The boundary-scan standard specifies a four-wire test interface 
using the four signals: TDI, TDO, TCK, and TMS. These four dedicated signals, the 
test-access port ( TAP ), are connected to the TAP controller inside each ASIC. 
The TAP controller is a state machine clocked on the rising edge of TCK, and with 
state transitions controlled by the TMS signal. The test-reset input signal ( TRST* , 
nTRST , or TRST —always an active-low signal) is an optional (fifth) dedicated 
interface pin to reset the TAP controller. 
Normally the boundary-scan shift-register cells at each ASIC I/O pad are 
transparent, allowing signals to pass between the I/O pad and the core logic. When 
an ASIC is put into boundary-scan test mode, we first tell the TAP controller which 
TDR to select. The TAP controller then tells each boundary-scan shift register in the 
appropriate TDR either to capture input data, to shift data to the neighboring cell, or 
to output data. 
There are many acronyms in the IEEE 1149.1 standard (referred to as “ dot one ”); 
Table below  provides a list of the most common terms. 
TABLE :Boundary-scan terminology. 

Acronym  Meaning  Explanation  



 

 111 

BR  Bypass register 
A TDR, directly connects TDI and TDO, 
bypassing BSR 

BSC  Boundary-scan cell 
Each I/O pad has a BSC to monitor 
signals 

BSR  
Boundary-scan 
register 

A TDR, a shift register formed from a 
chain of BSCs 

BST Boundary-scan test 
Not to be confused with BIST (built-in self-
test) 

IDCODE  
Device-identification 
register 

Optional TDR, contains manufacturer and 
part number 

IR  Instruction register 
Holds a BST instruction, provides control 
signals 

JTAG  
Joint Test Action 
Group 

The organization that developed boundary 
scan 

TAP  Test-access port 
Four- (or five-)wire test interface to an 
ASIC 

TCK  Test clock 
A TAP wire, the clock that controls BST 
operation 

TDI  Test-data input A TAP wire, the input to the IR and TDRs 

TDO  Test-data output 
A TAP wire, the output from the IR and 
TDRs 

TDR  Test-data register 
Group of BST registers: IDCODE, BR, 
BSR 

TMS  Test-mode select 
A TAP wire, together with TCK controls 
the BST state 

TRST* or 
nTRST 

Test-reset input signal 
Optional TAP wire, resets the TAP 
controller (active-low) 

5.14.1 BST Cells 

Figure 5.25 shows a data-register cell ( DR cell ) that may be used to implement 
any of the TDRs. The most common DR cell is a boundary-scan cell ( BS cell , or 
BSC ), or boundary-register cell (this last name is not abbreviated to BR cell, since 
this term is reserved for another type of cell)  

A BSC contains two sequential elements. The capture flip-flop or capture register 
is part of a shift register formed by series connection of BSCs. The update flip-flop , 
or update latch , is normally drawn as an edge-triggered D flip-flop, though it may 
be a transparent latch. The inputs to a BSC are: scan in ( serial in or SI ); data in ( 
parallel in or PI ); and a control signal, mode (also called test / normal ). The BSC 
outputs are: scan out ( serial out or SO ); data out ( parallel out or PO ). The BSC 
in Figure 14.2 is reversible and can be used for both chip inputs and outputs. Thus 
data_in may be connected to a pad and data_out to the core logic or vice versa. 
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FIGURE 5.25 A DR (data register) cell. The most common use of this cell is as a 
boundary-scan cell (BSC). 

The IEEE 1149.1 standard shows the sequential logic in a BSC controlled by the 
gated clocks: clockDR (whose positive edge occurs at the positive edge of TCK) and 
updateDR (whose positive edge occurs at the negative edge of TCK). The IEEE 
1149.1 schematics illustrate the standard but do not define how circuits should be 
implemented. The function of the circuit (and its model) follows the IEEE 1149.1 
standard and many other published schematics, but this is not necessarily the best, 
or even a safe, implementation. For example, as drawn here, signals clockDR and 
updateDR are gated clocks—normally to be avoided if possible. The update 
sequential element is shown as an edge-triggered D flip-flop but may be 
implemented using a latch. 
Figure 5.26 shows a bypass-register cell ( BR cell ). The BR inputs and outputs, 
scan in (serial in, SI) and scan out (serial out, SO), have the same names as the DR 
cell ports, but DR cells and BR cells are not directly connected. 

  

 
FIGURE 5.26  A BR (bypass register) cell. 
Figure 5.27 shows an instruction-register cell ( IR cell ) The IR cell inputs are: 
scan_in , data_in ; as well as clock, shift, and update signals (with names and 
functions similar to those of the corresponding signals in the BSC). The reset signals 
are nTRST and reset_bar (active-low signals often use an asterisk, reset* for 
example, but this is not a legal VHDL name). The two LSBs of data_in must 
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permanently be set to '01' (this helps in checking the integrity of the scan chain 
during testing). The remaining data_in bits are status bits under the control of the 
designer. The update sequential element (sometimes called the shadow register ) 
in each IR cell may be set or reset (depending on reset_value ). The IR cell outputs 
are: data_out (the instruction bit passed to the instruction decoder) and scan_out 
(the data passed to the next IR cell in the IR). 
 
 
 
  

 
 

FIGURE 5.27 An IR (instruction register) cell. 

 

 

6.14.2 BST Registers 

Figure 5.28 shows a boundary-scan register ( BSR ), which consists of a series 
connection, or chain, of BSCs. The BSR surrounds the ASIC core logic and is 
connected to the I/O pad cells. The BSR monitors (and optionally controls) the inputs 
and outputs of an ASIC. The direction of information flow is shown by an arrow on 
each of the BSCs . The control signal, mode , is decoded from the IR. Signal mode 
is drawn as common to all cells for the BSR , but that is not always the case. 



 

 114 

  
 

FIGURE 5.28  A BSR (boundary-scan register).  

 
 
 
Figure 5.29 shows an instruction register ( IR ), which consists of at least two IR 
cells connected in series. The IEEE 1149.1 standard specifies that the IR cell is 
reset to '00...01' (the optional IDCODE instruction). If there is no IDCODE TDR, then 
the IDCODE instruction defaults to the BYPASS instruction.  
 
 
 
 
  

 
 

FIGURE 5.29  An IR (instruction register). 
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6.14.3 Boundary scan Instructions 

1. EXTEST , external test. Drives a known value onto each output pin to 
test connections between ASICs.  

2. SAMPLE/PRELOAD (often abbreviated to SAMPLE ). Performs two 
functions: first sampling the present input value from input pad during 
capture; and then preloading the BSC update register output during update 
(in preparation for an EXTEST instruction, for example).  

3. IDCODE . An optional instruction that allows the device-identification 
register ( IDCODE) to be shifted out. The IDCODE TDR is an optional 
register that allows the tester to query the ASIC for the manufacturer’s 
name, part number, and other data that is shifted out on TDO. IDCODE 
defaults to the BYPASS instruction if there is no IDCODE TDR.  

4. BYPASS . Selects the single-cell bypass register (instead of the BSR) 
and allows data to be quickly shifted between ASICs.  

The IEEE 1149.1 standard predefines additional optional instructions and also 
defines the implementation of custom instructions that may use additional TDRs.  

6.14.4 TAP Controller 

Test Access Port Controller is a 16 state finite machine .Figure 5.30 shows the TAP 
controller finite-state machine. The 16-state diagram contains some symmetry: 
states with suffix '_DR' operate on the data registers and those with suffix '_IR' apply 
to the instruction register. All transitions between states are determined by the TMS 
(test mode select) signal and occur at the rising edge of TCK , the boundary-scan 
clock. An optional active-low reset signal, nTRST or TRST* , resets the state 
machine to the initial state, Reset . If the dedicated nTRST is not used, there must 
be a power-on reset signal (POR)—not an existing system reset signal. 
The outputs of the TAP controller are not shown in Figure 5.30, but are derived from 
each TAP controller state. The TAP controller operates rather like a four-button 
digital watch that cycles through several states (alarm, stopwatch, 12 hr / 24 hr, 
countdown timer, and so on) as you press the buttons. Only the shaded states in 
Figure 5.30 are the ASIC core logic; the other states are intermediate steps. The 
pause states let the controller jog in place while the tester reloads its memory with a 
new set of test vectors. 
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When nTRST = 0, the state machine comes to the reset state and if TMS=’0’ it 
enters to run idle mode. Now if TMS =’1’ for 1 cycles (TCK) the FSM enters in to 
select DR state, in this state if TMS is set to 0 it goes to capture_DR state ,if set to 1 
it goes to Select_IR state .in this manner the FSM traverse to these states 
depending upon the TMS,nTRST and TCK. 
  

 
 

Figure 5.30  TAP Controller 
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                                               Exercise 
 

 

Chapter 1. 

 

 

1. Classify the chips according to the gate density. 

2. Describe VLSI Design flow and abstraction level. 

3. Explain the design hierarchy. 

4. Briefly summarize semiconductor technology. 

5. Distinguish Bipolar and MOS transistor.  

6. Draw stick diagram for inverter. 

7. What do you understand by pull up and pull down device. 

8. What are the various form of pull up device? 

 

 
 

Chapter 2 
 

1. Briefly explain about silicon semiconductor technology. 

2. Name the various cmos process technology. 

3. Explain pwell and nwell cmos process technology. 

4. Explain twin tub cmos process in details. 

5. Explain the SOI technology and its advantage over well based process 

technology. 

6. Can resistor and capacitor be formed with mos technology if yes how? 

7. Explain the construction and working principle of EPROM. 

8. Explain bicmos process and its advantage. 

9. What do you understand by layout design rule ,explain few rules for cmos 

lambda based design rule. 

10. What is physical design; draw the mask layout diagram for 

(a) Nmos Inverter 

(b) Cmos inverter 

( c) mos NAND gate 

(d) Cmos NOR gate 

 

11. Explain how VLSI design can be implemented with CAD Tools. 
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CHAPTER 3 

 

1. Classify the types of Mos transistor. 

2. What is the difference between enhancement and depletion type of transistor. 

3. How nmos transistor differs from pmos transistor.  

4. Explain the construction of enhancement and depletion type of transistor 

5. Explain the working principle of enhancement and depletion type transistor. 

6. Explain the accumulation, depletion and inversion mode in mos structure. 

7. Derive the relation of current and voltage for mos transistor. 

8. Explain the region of operation of nmos enhancement type of transistor. 

9. What is threshold voltage; explain the equations related to threshold voltage. 

10. Define body effect and its impact on threshold voltage. 

11. Expalin various second order effects in detail. 

12. Explain mos ac model, and derive channel resistance and transconductance 

in linear and saturation region. 

13. Draw the cmos logic for inverter circuit. 

14. Expalin the operation of cmos inverter. 

15. Draw the equivalent circuit diagram for cmos inverter in different region. 

15. Plot the cmos inverter transfer characteristics and describe all the regions 

with suitable equations. 

16. Explain noise margin in detail. 

17. Derive the expression for rise and fall time for cmos inverter. 

18. Explain the various types of power dissipation in cmos .what is the total 

power dissipation in terms of equation.  

19. Explain the working of transmission gate, why it is superior to pass 

transistor. 

20. What is tristate inverter? 

 

 

Chapter 4 

 

1. What is HDL?how it differs from normal programming language? 

2. Define module and port? 

3. What is identifier, how can it be created? 

4. Expalin various gate primitives in verilog. 

5. Explain Gate delay with appropriate example. 

6. What do you understand by structural level modeling? 

7. Write the structural verilog code for 

(a)  Full adder, 

(b)  D flip-flop, 
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( c) 2 to 4 decoder, 

(d) 4 to 1 multiplexer, 

(e) 4 to 2 priority encoder 

(f) 4 bit ripple carry adder 

(g) 2 bit equality detector 

 

8. Expalin the various operators used in verilog. 

9. Expalin the switch level modeling with example. 

10. Write the switch level code for cmos transmission gate. 

11. What is behavioral modeling? 

12. Explain how sequential operation is performed in verilog. 

13. What are blocking and non blocking statements? 

14. Expalin various conditional statements in verilog. 

15. What is the use of initial, always block in verilog. 

16. Write the behavioral code for  

(A) 3 to 8 decoder 

(b) 4 to 1 multiplexer 

(c ) d latch and flip flop 

(d)  4 bit adder /subtractor. 

(e) A simple 8 bit ALU which can perform addition, subtraction, multiplication,  

and, or, invert, xor, buffer function 

 

 

CHAPTER 5 

 

 

1. Draw the cmos logic for 

� Inverter, 
� AND gate , 
� NAND gate, 
� NOR gate, 
� Xor gate 

 

2. Draw the cmos logic for 

� F = (A.B+C.D)’ 
� F = (A+B.C)’ 
� F = ((A.B+C).D)’ 
� F = ((A+B).(C+D))’ 

3. Design 2 to 1 Multiplexer using cmos logic. And explain its operation. 

4. Explain D latch using cmos Logic with suitable diagrams. 
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5. Explain D flip-Flop using Cmos logic and its operation. 

6. What are the various chip design options? 

7. Explain ASIC design in detail. 

8. What are the types of ASIC? 

9. What do you mean by PLD? 

10. Explain in detail 

� Full custom ASIC , 
� Standard cell based ASIC , 
� Gate Array based Asic, 

11. Explain ASIC Design Flow In detail. 

12. Explain the architecture of XILINX 3000 FPGA. 

 

 

CHAPTER 6 

 

1. What is the need and importance of testing the chip? 

2. What is manufacturing and functional test? 

3. What are the level at which chips are undergone for test. 

4. What is fault? 

5. What is stuck at fault, explain stuck at 0, stuck at 1, and stuck open and short 

faults. 

6. can combinational circuit behave as sequential if stuck at fault occur if yes 

explain with suitable example. 

7. What are the different types of fault simulation? 

8. What is reliability and yield? 

9. Explain the concept of ATPG with suitable example. 

10. What is reconvergent fan out in ATPG and how to avoid it? 

11. What is design for testability, controllability and observability? 

12. What is scan based test explain in detail. 

13. What are the various approaches that are used for DFT. 

14. What is PRSG? How it can be useful for testing the chip. 

15. Explain built in self test in detail. 

16. Expalin boundary scan test in detail. 

 
 


