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ABSTRACT

Self-Organizing Discovery, Recognition, and Prediction of Hemodynamic Patterns in the Intensive

Care Unit.

(August 1994)

Ronald Glen Spencer, B.S.E.E., GMI Engineering & Management Institute

Chair of Advisory Committee: Dr. Charles S. Lessard

In order to properly care for critically ill patients in the intensive care unit (ICU),

clinicians must be aware of hemodynamic patterns.  In a typical ICU a variety of physiologic

measurements are made continuously and intermittently in an attempt to provide clinicians with

the most accurate and precise data needed for recognizing such patterns.  However, the data are

disjointed, yielding little information beyond that provided by instantaneous high/low limit

checking.  While instantaneous limit checking is useful for determining immediate dangers, it does

not provide much information about temporal patterns.  As a result, the clinician is left to

manually sift through an excess of data in the interest of generating information.  In this study, an

arrangement of self-organizing artificial neural networks (ANNs) is proposed to automate the

discovery, recognition, and prediction of such hemodynamic patterns in real-time and ultimately

lessen the burden on clinicians.  ANNs are well suited for pattern recognition and prediction in a

data-rich environments because they are very trainable and have a tendency to discover their own

internal representations of knowledge, thus reducing the need for a priori knowledge in symbolic

form.  Results from actual clinical data are presented.



77

ACKNOWLEDGMENTS

I would like to thank Dr. Charles Lessard for setting up this project and making the initial

connections with Dr. Davila at Scott & White Memorial Hospital in Temple, Texas.  His

willingness to be a part of global solutions to problems in the health care system in addition to his

collaborative skills as a researcher are very much respected.

I would also like to thank Fidel Davila, M.D., Chief of Pulmonary Critical Care at Scott

& White Memorial Hospital, for his guidance throughout this study.  Dr. Davila served as the

'backbone' of the project.  He is very much respected for his skills as a medical doctor, scientist,

and researcher.  The most admired characteristic is his willingness to dream a little for the sake of

advancing traditional procedures and techniques which, for some clinicians, are 'set in stone'. Any

practicing clinician that can care for critically ill patients and still find time to read about fractals

and chaos theory is my kind of person.  Dr. Davila realizes the need for long term thinking nested

within short term productivity.

I would also like to thank Dr. Brad Etter and Dr. Tep Sastri for their suggestions and

corrections of the manuscript.  Dr. Sastri's careful reading for content was very much appreciated.

Dr. Sastri is interested in applying artificial neural networks to problems in industrial engineering,

an area that I, myself, spent a lot of time in.  In fact, problems in industrial engineering are what

led me to neural networks in the first place.  So we have much in common.

And finally, I would like to thank Jennifer for her loving support through rough times, late

nights, and missed events.  She was very helpful and understanding throughout.



77

TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF ABBREVIATIONS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

INTRODUCTION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Background of Medical Expert Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CONTEXT IN DYNAMIC SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TEMPORAL PATTERN RECOGNITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Short Term Memories (STM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Categorization of STM Patterns and Adaptive Resonance Theory (ART)  . . . . . . . 13

TEMPORAL PATTERN PREDICTION AND CLASSICAL CONDITIONING  . . . . . . 16

Hebbian Learning and Classical Conditioning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Adaptive Spectral Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

METHODS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Short Term Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Temporal Pattern Recognition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Temporal Pattern Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

RESULTS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Application . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



77

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

APPENDIX C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

APPENDIX D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

APPENDIX E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

APPENDIX F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



77

LIST OF FIGURES

Figure Page

  1  Flow diagram for temporal pattern recognition and prediction . . . . . . . . . . . . . . . . . 5

  2  Illustration of the need for contextual information . . . . . . . . . . . . . . . . . . . . . . . . . 8

  3  The roles of STM and categorization in temporal pattern recognition . . . . . . . . . . . 10

  4  A simple tapped delay line for remembering previous values of a single

      variable I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

  5  A self-exciting, leaky integrator for remembering the recent history of a

      single variable I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

  6  Two neurons connected by a Hebbian synapse in the spirit of classical

      conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

  7  Adaptive spectral timing pathways from one neuron to another . . . . . . . . . . . . . . . 19

  8  Short term memory of leaky integrators for remembering recent occurrences

      of the seven physiologic conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

  9  A typical state of the STM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10  Symbolic representation of the ART2 network for categorizing STM patterns . . . . . 26

11  The complete model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

12   A set of adaptive spectral timing pathways between the ith and jth neurons . . . . . . 28

13  Prediction and recognition of congestive heart failure with fluid overload . . . . . . . . . 34

14  Prediction and recognition of congestive heart failure due to pump failure  . . . . . . . . 35

15  Timing graph of physiologic conditions recognized from actual clinical data  . . . . . . . 36

16  Synaptic weight vector of hemodynamic pattern #6  . . . . . . . . . . . . . . . . . . . . . . . . 37



77

LIST OF ABBREVIATIONS

Abbreviation Description

A/D Analog to Digital

AI Artificial Intelligence

ANN Artificial Neural Network

ART Adaptive Resonance Theory

ART2 Continuous-Valued Adaptive Resonance Theory

AST Adaptive Spectral Timing

BPM Beats Per Minute

C/D Concentrated to Distributed

CO Cardiac Output

CVP Central Venous Pressure

CS Conditioned Stimulus

DAP Diastolic Arterial Pressure

D/C Distributed to Concentrated

FIFO First-In, First-Out

HYPRT Hypertension

HYPOT Hypotension

HR Heart Rate

ICU Intensive Care Unit

IPP Increased Pericardial Pressure

IVD Intravascular Volume Depletion

IVO Intravascular Volume Overload

ISI Interstimulus Interval

LI Leaky Integrator



77

Abbreviation Description

LTM Long Term Memory

MAP Mean Arterial Pressure

PAD Pulmonary Arterial Diastolic Pressure

PP Pulse Pressure

SAP Systolic Arterial Pressure

STM Short Term Memory

SV Stroke Volume

SVR Systemic Vascular Resistance

TDNN Time Delay Neural Network

US Unconditioned Stimulus

UR Unconditioned Response

VC Vasoconstriction

VD Vasodilation



77

INTRODUCTION

Clinicians in the ICU must be aware of hemodynamic patterns in order to properly care

for patients.  Recognition of these patterns requires the recognition of temporal sequences of

physiologic events such as vasoconstriction, vasodilation, hypotension, hypertension, intravascular

volume overload/depletion, and increased pericardial pressure.  These events are recognized by

observing instantaneous values and rates of change of raw physiologic variables such as heart

rate, cardiac output, and blood pressure.  Many of these variables are measured continuously by

automatic devices but the values are only monitored to ensure that they stay within normal limits.

While instantaneous limit checking is useful for determining immediate dangers, it does not

provide much information about temporal patterns.

Although many of the underlying processes involved in recognizing hemodynamic patterns

are perfunctory, they have not yet been automated.  Currently, the information must be manually

extracted by clinicians.  This burdensome and time-consuming conversion of data to information

makes the clinician's job more difficult, distracts from critical tasks, and lessens the chance of it

being done correctly.  Consequently, there is a great need for automatic recognition of

hemodynamic patterns.

Background of Medical Expert Systems

In recent decades, the greatest advancements in bedside critical care monitoring have been

in the accuracy, precision, and frequency of physiologic data collection.  The resulting data are

more reliable and abundant than ever before.  However, the data are still disjointed, yielding little

information beyond that provided by instantaneous high/low limit checking.

_________________
This document follows the style of Medical & Biological Engineering & Computing.

Several experimental expert systems have been created for the purpose of integrating the

data and automating the recognition of certain diagnoses, but they have not made their way into
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the clinic.  A large number of them exist within the symbolic framework of traditional artificial

intelligence paradigms and emulate the reasoning processes of clinical experts.  These systems are

largely rule-based and require much information or knowledge a priori.  A very attractive

attribute of these traditional artificial intelligence (AI) systems is their ability to explain deductive

processes in a language that is understandable.  This ability is due to the fact that knowledge

exists in discrete, modular fragments that can be chained through to arrive at conclusions.

However, several problems with traditional expert systems exist due to the profuse

dependence on rules.  First of all, the task of programming a rule-based system is not very

feasible, considering the patchy nature of rules themselves.  By the law of diminishing returns, the

more patchwork one must do in order to create a working system, the less productive the effort

will be.  No matter how extensive the rule base, there will always be exceptions.  Second, the

extraction of rules from experts is not always consistent.  Since experts develop their own internal

representations of reality, a rule extracted from one expert may be different than the same rule

extracted from another.  Rules that are valid within one framework may be inappropriate in

another.  Third, experts are sometimes not even aware of the underlying rules by which they

perform.  As stated by Bart Kosko, experts often kick away the 'ladder of learning' after having

climbed it.  In a sense, rules are the 'training wheels' of learning which are eventually discarded.

And finally, losses in translation may occur from the expert to the programmer and from the

programmer to the computer even if the experts are able to articulate consistent rules in the first

place.  As a result, the rules may become distorted.

  An alternative type of expert system, the connectionist expert system, is receiving much

interest (GALLANT 1988).  Connectionist expert systems are composed of large numbers of

distributed connections between many low-level processing components arranged in hierarchies.

By nature, these systems are highly adaptive, fault tolerant, and massively parallel.  They are

usually very trainable and have a tendency to discover their own internal representations of
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knowledge, reducing the need for a priori knowledge in symbolic form.  These features make

connectionist expert systems very attractive in data-rich environments.

Recently, there have been some signs of integration between the two paradigms

(EBERHART & DOBBINS, 1991; FU 1991; LIOW & VIDAL, 1991; POLI, et al., 1991;

RIALLE et al., 1991; PAPADOURAKIS et al., 1992).  As stated by FU (1991), "Though some

think of knowledge-based systems and neural networks as separate AI tools, viewing them simply

as different levels of description about the same mechanism would be more insightful.

Combination of these two technologies has recently emerged as an important direction toward

building new-generation intelligent systems."

RIALLE et al., 1991  have investigated medical diagnostic systems that incorporate both

high-level symbolism and low-level connectionism.  They report four levels of interrelation:  loose

coupling, tight coupling, full integration, and transformation.  An example of loose coupling

comes from KASABOV (1990) where production rules which represent symbolic knowledge

interact with ANNs that perform classification and pattern recognition tasks.  An example of tight

coupling comes from GALLANT (1986) where a system called MACIE is applied to the

diagnosis and treatment of acute sarcophagal disease.  This system relies on a multi-layer network

for knowledge representation, but employs forward and backward chaining for process

explanation like an expert system.  TIAN HE & TAI JUWEI (1989) proposed a multi-layer ANN

to be used for automatic knowledge acquisition and deep knowledge modeling in a knowledge-

based system used in traditional Chinese medicine for children's cough disease.  RIALLE et al.,

1991 worked on a loosely coupled system to interpret quantitative electromyographic data.

FU (1991) described a hybrid medical expert system for the diagnosis of jaundice

disorders which consisted of conventional AI rule-based programming that cooperated with an

ANN that revised the rule base.  Fu was able to map the rule-based system into a neural

architecture with his own mapping techniques (FU & FU, 1990) where variables and hypotheses

were assigned to nodes and rules were mapped into the interconnections between them.  Back-
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propagation, a supervised connectionistic training algorithm, (RUMELHART, et al., 1986) was

used to train 'non-conjunction layers' and an AI-based 'hill-climbing' algorithm was used with

'conjunction layers'.  The system performed well with a 95.5 per cent accuracy.

In 1990, COHN, ROSENBAUM, FACTOR, & MILLER reported on a very practical

expert system called DYNASCENE.   Although the individual components of the system were not

artificial neurons, per se, the system exhibited a connectionistic macrostructure.  It was shown

that DYNASCENE could recognize temporal sequences of vasoconstriction, vasodilation,

hypotension, intravascular volume overload, and intravascular volume depletion and associate

them with the corresponding disorders.  The disorders that were recognized by DYNASCENE,

along with the corresponding temporal sequences used to diagnose them, are listed:

1.  Congestive Heart Failure With Fluid Overload:

intravascular volume overload → vasoconstriction → hypotension

2.  Congestive Heart Failure Due to Pump Failure:

myocard. ischemia → vasoconstriction → hypotension → intravascular vol overload

3.  Hypovolemia:

intravascular volume depletion → vasoconstriction → hypotension

4.  Sepsis:

vasodilation → hypotension → vasoconstriction

5.  Cardiac Tamponade:

increased pericardial pressure → vasoconstriction → hypotension

DYNASCENE was explicitly programmed to recognize these five sequences before being

applied.  As a result, it was limited to recognizing these five sequences only.

Objective

The overall objective of this study is to create a self-organizing hemodynamic pattern

recognition system of several artificial neural networks capable of discovering, recognizing, and
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predicting hemodynamic patterns in the ICU without being explicitly programmed to do so.  After

these hemodynamic patterns are discovered they can be symbolically labeled (calibrated) by the

clinician according to their meaning (diagnosis) and assigned alarms to alert clinicians when they

occur.

The objective is to discover unknown hemodynamic patterns in addition to well known

patterns.  The system will be explicitly programmed to recognize the instantaneous physiologic

events that make up these hemodynamic patterns, but not the hemodynamic patterns themselves.

Success will be evaluated according to its ability to recognize the same five hemodynamic

sequences recognized by DYNASCENE:  1) congestive heart failure with fluid overload, 2)

congestive heart failure due to pump failure, 3) hypovolemia, 4) sepsis, and 5) cardiac tamponade,

given the ability to recognize the underlying instantaneous physiologic events.

At the very least, the system must be able to perform the following:  1) store current and

previous physiologic events in short term memory (STM), 2) recognize temporal patterns of the

physiologic events, and 3) predict future temporal patterns.  Figure 1 shows the flow of data

through each of these stages in addition to two other stages assumed to be operational:

measurement and instantaneous physiologic pattern (event) recognition.

Measurement
Instantaneous

Pattern
Short-Term

Memory

Temporal
Pattern

Temporal

PredictionRecognition Recognition
Pattern

Fig. 1. Flow diagram for temporal pattern recognition and prediction.

Rationale

Automation of perfunctory tasks is one way of streamlining health care.  Not only is

automation an inevitable part of the future, but it is also cost effective when done correctly.  As a

result, any task that can be automated, should be automated, if it can reduce the workload of the
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employees or reduce the time of stay of patients at a reasonable cost without jeopardizing the

quality of the health care.  In many instances, automation of perfunctory tasks should improve the

quality of care.  As one example, when a patient is admitted into the ICU, the clinicians are not

usually aware of the chances of survival.  As time passes, the clinicians become increasingly

aware of the odds.  If an automatic hemodynamic pattern recognition system could recognize

patterns that indicate low odds of survival early in the treatment process, a considerable amount of

time and money could be saved in addition to letting the patient live his last few days at home.

Although such a system is not intended to replace intuition, it could enhance the ability of

clinicians to make such critical decisions.

Self-organizing neural networks are well suited to the task of recognizing such temporal

patterns.  A large advantage of these networks is their lack of need for a priori information.  In a

clinical environment where raw data are much more abundant than expert diagnoses, this

independence is an immediate advantage.  In addition, unsupervised networks organize data

according to the intrinsic salient features of the distribution that the data comes from.  Due to the

fact that these networks learn without supervision, they develop their own internal representations

of the data and discover patterns a posteriori.  As a result, they are able to find many patterns in

the data, whether they are well known or not.  It is expected that a system composed of such

networks could advance medical knowledge and understanding by discovering new patterns.

Preview

In the pages that follow, the stages of discovering, recognizing, and predicting hemo-

dynamic patterns are described.  To begin with, a review of context in dynamic systems is given.

The following chapter is on temporal pattern recognition which reviews several ANN models of

short term memory and pattern recognition.  Next, prediction is dealt with from a classical

conditioning point of view as Hebbian learning is introduced along with the adaptive spectral



77

timing model.  Following these chapters are the methods that were used to construct the

hemodynamic pattern recognition and prediction system.  Subsequent chapters present results of

simulations, discuss methods and limitations, and offer recommendations and conclusions.
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CONTEXT IN DYNAMIC SYSTEMS

When describing or tracking a dynamic process, a simple snapshot of the system is not

always adequate.  By itself, an instantaneous snapshot does not contain enough information to

adequately define the state of the system.  When listening to a song, for example, characteristics

emerge from the collection of notes that are not evident in the individual notes.  This result is due

to the fact that dynamic systems often evolve along complex trajectories which, at any point in

time, can be expressed in terms of location and direction.  Since instantaneous measurements

convey location information only, more than one state of the system can have the same set of

instantaneous measurements.  As a result, there is a need for obtaining directional information in

order to evaluate the true state of the system.  This contextual information must be extracted from

time series of the instantaneous measurements.

Extracting contextual information from a deterministic time series, for example, requires

that previous patterns be remembered.  The purpose of this memory is to provide information

about the direction of system which, in turn, can be used to expect future patterns.  This process

can be illustrated by the low-dimensional chaotic sequence, AXBCXD, generated by traversing the

figure-eight as shown in figure 2.  Knowing that the current location is X,  neither the current

A
B C

D

X

Fig. 2.  Illustration of the need for contextual information.  Moving in the direction shown
on the figure-eight generates the sequence of instantaneous patterns, AXBCXD.  Since X
precedes B in one case and D in another, knowing the current location only does not allow
for confident prediction of the next state.  However, knowing the previous location too
allows for the successful prediction of the next location.
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state of the process nor the next location can be determined.  In one instance, the following

location is B and in the other it is D.  Instantaneous information alone is simply not adequate.

However, if the previous location is remembered too, then the next location can be determined.

Knowing that the previous and current locations are A and X, respectively, location B can be

predicted with success.  The memory of the previous location provides context.

Biological systems exhibit much higher dimensional chaotic behavior than this simple

deterministic system.  Consequently, the events of a particular sequence may not always occur in a

contiguous fashion.  However, there is still a need for recognizing order of occurrence regardless

of how closely the events occur.  Recognizing hemodynamic patterns, for example, requires that

different permutations of the same combination of events be discriminated.  The intelligent

cardiovascular monitoring system, DYNASCENE, was programmed to discriminate between

congestive heart failure due to fluid overload versus congestive heart failure due to pump failure

by recognizing different permutations of the same combination of three physiological events:

intravascular volume overload, vasoconstriction, and hypotension.  In both cases, all three events

occurred, but in a unique order.  In order to recognize these unique orders, some type of temporal

pattern recognition system is needed.
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TEMPORAL PATTERN RECOGNITION

The ultimate objective of temporal pattern recognition is to maximally activate one or

more units in response to a particular temporal pattern which exists over space and time.  In a

sense, it is the reduction of a set of temporal events into a single event.  Translated in terms of this

study, temporal pattern recognition is the activation of a single unit in response to a hemodynamic

pattern of a set of physiologic events.

Temporal pattern recognition requires:  1) a short term memory (STM) to represent the

temporal information and 2) a means for categorizing or recognizing the state of the STM.  As

shown in figure 3, setting up the first task involves finding an optimum method for representing

time spatially.  The second task involves categorizing, or concentrating, the information in space.

Information
Distributed
In Time

Information
Distributed
In Space

STM Recognition

Information
Concentrated

In Space

(Concentration of 
Spatially Distributed
Information)

(Transformation of 
Temporally Distributed
Information into

Information)

Spatially Distributed

STM and Temporal Pattern Recognition

Fig. 3.  The roles of STM and categorization in temporal pattern recognition.  Information that
is distributed in time is redistributed in space by STM.  The resulting spatial information is
recognized which constitutes a concentration, or reduction, of the information in space.
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Many artificial neural networks have been proposed to recognize temporal sequences

(HIRSCH 1989; WILLIAMS & ZIPSER, 1989; WERBOS 1990; COHEN 1992; SHIMOHARA

et al., 1993); however, many of them employ supervised learning techniques which require a

'teaching output' for each input sequence.  Although supervised learning is useful in a number of

applications where the sequences to be learned are known a priori,  it is not useful for discovering

sequences where the sequences to be learned are not known before hand.  However, supervised

learning rules can be used for unsupervised learning by using the input as the 'teaching output'

(REISS & TAYLOR, 1991).  This type of learning discovers transformations of input sequences

that predict future patterns.  Although such systems can be used to discover and recall sequences

in an unsupervised manner, they do not evaluate or categorize the sequences according to their

inherent features.  As a result, the learned sequences can neither be reduced to nor expressed by

individual units that can be semantically labeled.  The position taken here is that in order to

successfully discover and recognize sequences, they must be associated with single categories

according to the degree of likeness between themselves and previously learned sequences.  The

advantage of this scheme lies in being able to monitor such categories for activity and sound

alarms when they occur.  This process requires:  1) representing the temporal sequences in STM

in a continuous framework of measurement and 2) categorizing the sequences according to the

information in STM.

Short Term Memories (STM)

In the neural network literature, STM is distinguished from long term memory (LTM) by

the mechanisms used to store information.  LTM is usually associated with slowly varying

synaptic potentials, whereas STM is usually associated with quickly varying membrane potentials

(CARPENTER, 1989).  Several types of STM have been proposed and applied to information

processing problems.  Two of the most widely studied STMs are time-delay neural networks

(TDNN) (McCLELLAND  & ELMAN, 1986; TANK & HOPFIELD, 1987; ELMAN &
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ZIPSER, 1988;  KOHONEN, 1989; WAIBEL et al., 1989; LIPPMANN, 1989; de VRIES &

PRINCIPE, 1992) and the self-exciting, leaky integrator (LI) (de VRIES & PRINCIPE, 1992;

GJERDINGEN, 1992).

The simplest time-delay neural networks are essentially shift registers or first-in, first-out

(FIFO) buffers.  A simple TDNN stores a predetermined number of the most recent instantaneous

values (snapshots of the dynamic system) as shown in figure 4.  These values are

D D D D D

I(t)

I(t) I(t-1) I(t-2) I(t-3) I(t-4) I(t-5)

Fig. 4.  A simple tapped delay line for remembering previous values of a single variable I.

shifted once per iteration, deleting the oldest value and storing the most recent value.  Other neural

networks can tap into this delay line and extract contextual information and for this reason, they

are sometimes called 'tapped delay lines'.  The advantage is their ability to retain primacy

information in addition to recency information.

On the other hand, self-exciting, leaky integrators do not shift information from one node

to another.  Instead, a single LI receives input from its own external source as shown in figure 5

and continues to excite itself with a leaky reverberating connection.  The LI remembers the

recency of its external input.  The advantage of the LI lies in the fact that information is not

moved around, and therefore a single unit can be labeled according to its meaning in terms of the
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external stimulus.  And for the most part, the membrane potential generally follows a continuous

time course of change unlike that of a tapped delay line unit.

 

+

I(t)

Fig. 5.  A self-exciting leaky integrator for remembering the recent history of a single variable I.

When monitoring a multidimensional process where the number of variables to be

monitored is greater than one, many LIs can be allocated; one for each dimension.  The result is a

STM vector which conveys recency information about the multidimensional process.  This

approach has been applied to music recognition and categorization (GJERDINGEN 1992).

Categorization of STM Patterns with Adaptive Resonance Theory (ART)

As mentioned earlier, temporal pattern recognition is the process of activating a single

unit in response to a temporal sequence.  This process involves reducing a spatiotemporal pattern

to the activation of one or more units that are associated with different temporal patterns.  For

example, if a sequence is represented in STM, there must be some observing unit that is tuned to

that particular sequence more than any other observing unit.  Upon seeing that sequence, the unit

must be maximally activated.  This activation is referred to as recognition.  In a sense, recognition

is an analog to digital (A/D) conversion because it is transforming an event that occurs to a degree
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into an event that occurs in binary.  But it's more than this; it's also a spatial bottleneck.  A more

appropriate description of recognition might be 'distributed to concentrated' (D/C) conversion.

In any event, the temporal patterns in STM must be categorized according to the degree of

likeness between themselves and other temporal patterns.  Furthermore, this categorization must

be unsupervised in order to discover frequently occurring patterns.  One type of unsupervised

categorization scheme known as the adaptive resonance theory (ART) (CARPENTER &

GROSSBERG, 1987b) can do just this (GJERDINGEN 1992).  Adaptive resonance theory

networks categorize vectors according to similarity with other vectors.  For the most part they are

neural clustering techniques that partition the vector space by iteratively refining a set of exemplar

representations, or categories.

Adaptive resonance theory networks are capable of learning new patterns without

compromising the integrity of the old ones.  This ability is a large advantage that ART networks

have over other self-organizing networks.  Learning in ART networks is not distributed over

neighborhoods like other self-organizing models (KOHONEN 1982).  Instead, learning occurs one

category at a time.  As a result, only appropriate categories are modified to accommodate current

inputs while other categories remain intact.  This ability can be very useful in categorizing

hemodynamic patterns where, for instance, there is a need for distinguishing between two different

permutations of the same combination of events.

ART networks are generally not thought of as temporal pattern recognition networks, per

se, because the words 'temporal pattern recognition' usually imply the process of storing temporal

information in STM as well as actually recognizing it.  Adaptive resonance theory networks, like

many other static networks, recognize patterns in a flashcard fashion, i.e. they operate on one

input vector at a time, each operation being independent of the previous ones.  The reason that an

ART network can be used to recognize temporal patterns is because the temporal information

already exists in the STM vector that it categorizes.  Consequently, the ART network is not
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required to maintain an internal representation of time; it is only required to categorize

representations that have already been formed.
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TEMPORAL PATTERN PREDICTION AND

CLASSICAL CONDITIONING

The second objective of the system is temporal pattern prediction.  In this chapter,

prediction models are reviewed from the perspective of classical conditioning.  The most

characteristic feature of this type of learning is the association of two events separated in time by

an interstimulus interval (ISI).  Because this type of learning associates two events separated in

time, it might seem more appropriate to call it 'temporal associative learning'.  However, the

conditioned learning paradigms reviewed here fit well within the classical conditioning framework

of experiments performed in the early 20th century and furthermore, the name 'temporal

associative learning' has been reserved for the hetero-associative task of producing one sequence

in response to another in (HERTZ, KROGH, & PALMER, 1991).  Consequently, the name

'classical conditioning' is retained.

Hebbian Learning and Classical Conditioning

In 1949 Donald Hebb proposed a simple, self-organizing learning rule that is still

ubiquitous today:

"When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes place in firing it, some growth process or metabolic change takes
place in one or both cells such that A's efficiency, as one of the cells firing B, is
increased."  (Hebb, 1949)

With this statement, the self-similar characteristics of classical conditioning were cast into

a neural framework which laid the foundation for neural network research for years to come.  One

of the most appealing propositions of the statement was the idea that synapses behave much like

muscle, i.e. they grow stronger with use.  Or more correctly, the synapses grow stronger if they

are active simultaneously with downstream neuron B.  Due to the fact that neuron B has a

threshold for firing, the synapse may be inadequate for exciting neuron B.  In this case, although
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the synapse is active, the Hebbian condition is not satisfied and the synapse does not grow

stronger.  But if a large number of synapses which innervate neuron B are stimulated

simultaneously, neuron B may start firing.  In this case, the Hebbian condition is satisfied and

these synapses are rewarded with trophic factor.  Consequently, these synapses grow while less

active synapses atrophy.

The ideas of classical conditioning fit well within the Hebbian framework.  To

demonstrate, let neuron i recognize event ICS, the conditioned stimulus (CS), and let neuron j

recognize event IUS, the unconditioned stimulus (US).  Furthermore, let neuron j produce the

unconditioned response (UR) when adequately stimulated.  This arrangement is illustrated in

figure 6.  When ICS occurs, neuron i fires and when IUS occurs, neuron j fires.  In the beginning of

the learning, zij is too weak for neuron i to activate neuron j by itself.  This result is due to the fact

that f(xi)zij is too small to push neuron j over its threshold.  But if the experiment is repeated

several times, zij grows to a point where f(xi)zij is great enough to activate neuron j without IUS.  At

this point, a temporal association between ICS and IUS has been encoded and ICS alone, is adequate

to produce UR.

i j

zij

CS US

f(x  )jf(x  )i

I I

(UR)

Fig. 6.  Two neurons connected by a Hebbian synapse in the spirit of classical conditioning.

In terms of Pavlov's salivating dog, ICS represents the whistle, IUS represents the food, and

the response of neuron j, f(xj), represents salivation (PAVLOV, 1929).  However, in Pavlov's
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experiment the whistle and food were not presented simultaneously.  Instead, the food followed the

whistle by some non-zero ISI.  Consequently, the Hebbian model in figure 6 misses the temporal

relationship between ICS and IUS because the signal from neuron i arrives instantaneously at

neuron j at the onset of ICS.  Put another way, the activation rate of synapse zij is infinite.  A

synapse with a slower activation rate is needed.  If chosen to match the ISI between ICS and IUS, a

new activation rate, α, slows the propagation of the signal from neuron i to neuron j so that

synapse zij is activated at the same instant that IUS occurs and the Hebbian condition is satisfied.

It should be noted that this model does not subsume Pavlov's experiment entirely because

even the slowest activation of synapses is too quick to correlate with long ISIs (GROSSBERG &

SCHMAJUK, 1989).  However, as with many other self-similar structures, some of the same

characteristics that emerge at one level of organization, emerge at another.  And since the

objective in this study is to apply the information processing capabilities of such networks, this

model is interesting.

Adaptive Spectral Timing

An important extension of the classical conditioning model is the adaptive spectral timing

model (GROSSBERG & SCHMAJUK, 1989).  In the classical conditioning example, the

activation rate, α, was chosen a priori to agree with the ISI.  However, when the ISI is unknown, 

α cannot be chosen a priori.  Instead of having one synapse and one activation rate, a set of

pathways with a spectrum of activation rates can be envisioned between neuron i and neuron j as

shown in figure 7.  This forms the basis of the adaptive spectral timing (AST) model.  Denoting

the pathways between the ith and jth neurons by zijk where 1 ≤ k ≤ K, each zijk
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Fig. 7.  Adaptive spectral timing pathways from one neuron to another.

has an activation rate proportional to 1/k.  Consequently, small indices correlate with short ISIs

and large indices correlate with long ISIs.

The continuous version of the adaptive spectral timing equations are shown in equations

(1-6) for a single adaptive pathway, k, from the neuron where the conditioned stimulus, ICS, is

sensed to the neuron where the unconditioned stimulus, IUS, is sensed.  In addition to the axon

coming from the neuron where IUS is sensed, the adaptive pathway is actually made up of more

than one interneuron.  The membrane potential, xk, of first interneuron in the pathway is governed

by the shunting activation equation:

dx

dt
Ax Bx I t

k
k k k CS= − + −α [ ( ) ( )]1 (1)

At the onset of ICS, the membrane potential charges from its passive saturation potential of zero to

its active excitatory saturation potential at a rate, αk, which is inversely proportional to k.  As xk

charges up, it begins to inactivate process yk, activating the neurotransmitter at the synaptic cleft

as expressed by the transmitter gate equation:
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dy

dt
C y Df x y

k
k k k= − −( ) ( )1

(2)

The degree to which the membrane potential activates neurotransmitter yk is governed by the

monotonically increasing sigmoidal function given by:

f x
x n

n x nk
k

k
( )=

+β (3)

As xk is charging up, yk is dumping neurotransmitter from a limited source into the synaptic cleft.

There exists a point in time, depending on the activation rate αk where the postsynaptic knob is

activated maximally.  Beyond this point, less neurotransmitter is available for release and the

prereleased neurotransmitter is being diffused away by processes responsible for reclaiming it.

The LTM trace of the synapse zk learns at a rate that is determined partly by the product of f(xk)

and yk as shown by:

dz

dt
Ef x y z I t

k
k k k US= − +( ) [ ( )] (4)

If IUS occurs when the product of f(xk)yk is maximal, then the efficacy of synapse zk is maximally

increased.  As a result, zk becomes stronger when the ISI between ICS and IUS  and the activation

period agree.  Finally, the response of the neuron that senses IUS, is given by:

R f x y zk k k k
k

= −∑ +[ ( ) ]θ (5)

where    [w]+ = max(w,0) = w   if  w>0,   0 otherwise (6)
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METHODS

From the models presented thus far, a self-organizing hemodynamic pattern recognition

and prediction system was created and simulated.  It consisted of three layers:  1) short term

memory layer, 2) temporal pattern recognition (categorization) layer, and 3) temporal pattern

prediction layer.  Each layer is described below.

Short Term Memory

After recognizing the seven physiologic conditions, they were stored in a STM, consisting

of seven neurons as shown in figure 8.  Each neuron corresponded to one of the seven physiologic

conditions, denoted by Ip as follows:  1) intravascular volume overload (I0), 2) intravascular

volume depletion (I1), 3) increased pericardial pressure (I2), 4) vasoconstriction (I3), 5)

vasodilation (I4), 6) hypotension (I5), and 7) hypertension (I6).

+ + + + + + +

I 0 I 1 I 2 I 3 I 4 I 5 I 6

IVO IVD IPP VC VD HYPOT HYPRT

Fig. 8.  Short term memory of leaky integrators for remembering recent occurrences of the seven
physiologic conditions.
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Inspired by the same dynamic STM used in (GJERDINGEN, 1992) the equation used to

govern the STM potentials was derived from a typical shunting activation equation:

ds

dt
As B s I C s I

p
p p exc p inh= − + − − + ∑∑( ) ( )

(7)

where sp was the variable membrane potential of the pth STM node.  Shunting activation

equations are discussed in appendix C.  Rewriting (7) in terms of a difference equation yielded:

s t s t As t B s t I C s t Ip p p p exc p inh( ) ( ) ( ) ( ( )) ( ( ))+ − = − + − − + ∑∑1 (8)

s t A s t B s t I C s t Ip p p exc p inh( ) ( ) ( ) ( ( )) ( ( ))+ = − + − − + ∑∑1 1 (9)

Letting ΣIexc = Ip(t) and ΣIinh = 0 in (9) yielded:

s t A s t B s t I tp p p p( ) ( ) ( ) ( ( )) ( )+ = − + −1 1 (10)

Due to the fact that difference equations operate in discrete time and no passive decay occurs

between iterations, a sustained input of Ip(t)=1 to equation (10) produces oscillations that do not

occur in continuous time.  One way to remedy this situation was to make Ip(t) smaller than unity

and perform many 'subiterations' to drive the node to saturation.  Another way is to replace the

second term of (10) with [B-(1-A)sp(t)]Ip(t) to model passive decay between iterations.  The last

alternative was chosen because it did not require additional subiterations.  This replacement

prevents artificial oscillations from occurring when the membrane potential is driven to saturation:

s t A s t B A s t I tp p p p( ) ( ) ( ) [ ( ) ( )] ( )+ = − + − −1 1 1 (11)

where 0 < A < 1.  When process p occurred, Ip(t)=1 and sp(t) was driven to saturation in one

iteration.  The membrane potential sp(t) remained saturated until process p ceased to exist, at
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which time it began to decay exponentially.  As an example, the most recent process(es) usually

had an activation level of unity, the second most recent had an activation level of (1-A), the third

had an activation of (1-A)2, and so on.

Using the activations of all STM nodes, a P-dimensional, unnormalized STM vector su(t)

was created:

[ ]s ( )u t s t s t s t s tP= −0 1 2 1( ) ( ) ( ) ( )( )      .  .  .  .  .  .  .  .   (12)

The seven-dimensional vector of STM traces reflected the temporal order in which the

corresponding physiologic events occurred.  A typical STM configuration is shown in figure 9.

SHORT TERM MEMORY

                      INSTANTANEO US PHYSIOLOGIC CONDITIO N

Neural 
Activation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Intravascular
Volume

O verload

Intravascular
Volume

Depletion

Increased
Pericardial

Pressure

Vasoconstriction Vasodilation Hypotension Hypertension

Fig. 9.  A typical state of the STM.  As shown by the neural activation levels, intravascular
volume overload was encountered first, followed by vasoconstriction, and then hypotension.

A (P+1)-dimensional, normalized STM vector s(t) was created by augmenting su(t) with a

normalization value sP(t) and dividing by a slow varying parameter R(t):

[ ]
s( )t

s t s t s t s t s t

R t

P P
=

−0 1 2 1( ) ( ) ( ) ( ) ( )

( )

( )      .  .  .  . .  .  . .     

(13)

where R(t) was 1.1 times the maximum su(t)encountered up to time t as shown by:

R(t) = 1.1*max(su(t), t ∈{1,2,3,.....t}) (14)



77

 and sP(t) was calculated by:

s t R t s tP p

p

P

( ) ( ) ( )= −
=

−

∑2 2

0

1

(15)

In the limit, as t→∞, R(t) became a slow parameter or constant.  This type of alternative

normalization served to retain the absolute values of each STM trace without compromising

normality.

This short term memory was chosen for three reasons:  1) its ability to perform current

time processing, 2) its ability to encode temporal information in a continuous framework, and 3)

its bias toward recency of events.  Current-time processing is the exclusive processing of current

measurements only at any given instant in time (deVRIES & PRINCIPE, 1992).  The STM

composed of leaky integrators operates on current inputs only during a single iteration.  This

constraint forces the short term memory to have some dynamic representation of time and obviates

the need for predetermining an arbitrary number of previous values to remember.

The next advantage of this STM is the ability to encode temporal information in a

continuous framework of representations.  Since the LIs always receive input from a single

external source, they can be semantically labeled according to their meaning in terms of that

source.  The tapped delay line, although useful in many instances, cannot claim this advantage

because data are not assigned to time independent locations.  For instance, tapped delay lines

index their contents once per iteration regardless of the state of the input.  As a result, the

activation levels of a large number of locations change instantaneously.  This discontinuous, high

frequency change is built into the model.  Due to the global shift in information, the semantic

attribute (meaning) of each location in the memory changes frequently or does not exist.  For

supervised learning purposes, where the only objective is to produce a unique representation for

each state of the process, the tapped delay line has its advantages.  But for unsupervised, self-

organizing learning, where information about degree of similarity is an integral part of the
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organization process, they fall short.  This result is simply due to the fact that one state of the

STM describing the state of the process at one point in time may be very different than another

state of the STM describing a very similar state.  To put the situation in perspective, consider the

following analogy.  If grains of sand are added to a pile, one at a time, with the number of grains

in the pile being recorded and assigned to a random symbol each time a new one is added, then the

categorization of the resulting symbols would only succeed in discriminating between two different

piles.  No information about degree of similarity would be conveyed.  As a result, the pair of

symbols associated with two piles of 999 and 1000 grains would be as different as the pair of

symbols associated with two piles of one and 1000 grains.  The same holds true for monitoring

dynamic systems.  When all is said and done, the state of the STM at time t should not be much

different than the state of the STM at time t+1.  If not, then it cannot be categorized in a

continuous framework of measurement according to its inherent features.

Temporal Pattern Recognition

A continuous-valued adaptive resonance theory (ART2) network (CARPENTER &

GROSSBERG, 1987a) was used for temporal pattern recognition.  It categorized the normalized

STM vector discussed previously.  Since the nodes were mutually exclusive, the state of the STM

at any instant in time was represented by a single hemodynamic pattern category.  Figure 10 is a

rough, symbolic representation of the network.
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Fig. 10.  Symbolic representation of the ART2 network for categorizing STM patterns.  The
bottom layer represents the STM and the top layer represents the temporal pattern categories.
The darkened node in the top layer is shown to be laterally inhibiting the other nodes due to a
strong activation from the STM layer.

The equations used in the simulations were not the actual ART2 equations, but they did

have a similar effect.  The STM vector s was categorized by calculating the degree to which it

excited each node in the ART2 network using the dot product and choosing the one with the

maximum activation xi(t).  The index of the winning node i*(t) was chosen according to:

i*(t) = i     if   xi(t)=max(xi(t), ∀i) (16)

When node i*(t) was determined to be the winner, it laterally inhibited all other nodes in

the ART2 layer and rotated its own instar vector toward s.  As a result, the ART2 nodes self-

organized to recognize the STM patterns conveyed by s over time.  A more complete set of the

equations used in the simulations are included in appendix D.

Temporal Pattern Prediction

For prediction purposes, a set of neurons with adaptive spectral timing connections was

created on a one-to-one basis with the each ART2 node as shown in figure 11.  In addition to being
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connected to a single ART2 node, each node in the adaptive spectral timing layer was connected to

every other node in the same layer by 2K synapses (K synapses in each direction).

. . . . . . . . . . . . . . . . . . . . . . . . . 

IVO IVD IPP VC VD HYPOT HYPERT

-

--

+

. . . . . . . . . . . . . . . . . . . . . . . . . 

Fig. 11.  The complete model.  Three distinct layers are present:  1) short term memory, 2)
temporal pattern recognition, and 3) temporal pattern prediction.

As shown by figure 12, the general synapse was denoted by zijk, for 1 ≤ i ≤ M, 1 ≤ j ≤ M, and    1 

≤ k ≤ K where M was the number of ART2 categories and K was the number of discrete time units

into the future that one node predicted future hemodynamic patterns.

Discrete versions of the adaptive spectral timing equations were used in the simulations.

In discrete time, the pathways functioned as follows.  When the ith hemodynamic pattern

occurred and neuron i fired at  time t, synapse zij1 was activated maximally at time t+1, zij2 was

activated maximally at time t+2, and so forth.  Depending on when the jth hemodynamic pattern

occurred, individual synapses were strengthened.
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Fig. 12.  A set of adaptive spectral timing pathways between the ith and jth neurons.

The adaptive spectral timing model was able to adaptively find the ISI between two

hemodynamic patterns as long as it was not longer than the predictive reach of the model, K.  For

example, if the jth hemodynamic pattern usually occurred k time units after the ith hemodynamic

pattern and k<K, then the efficacy of synapse zijk increased over time while the other synapses

atrophied.  However, if the jth hemodynamic pattern occurred K+1 time units after the ith

hemodynamic pattern, no synapses were strengthened and no temporal relationship was encoded.

The adaptrode synapse model (MOBUS 1990) served as the actual LTM trace of the

spectral timing equations.  It served two purposes:  1) to protect the synapse against transient

(local) temporal associations and 2) to drive the synaptic potential to saturation when it

experienced prolonged reinforcement.  The adaptrode synapse modeled long term potentiation

processes such as those which increase the availability of chemical substrates required for the

production of neurotransmitter during prolonged periods of stimulation.  Essentially, these long

term processes acted as mass or capacitance which introduced phase delays in the response of  the

synapse to external forces.  Consequently, the synapse tended to remain in a steady state in a

varying environment until or unless forced to change by a new persistent force (or lack thereof).

Without the adaptrode synapse, a temporal relationship that would have formed over a long period
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of time would have been quickly forgotten when the relationship ceased to occur.  In other words,

the adaptrode synapse decoupled the AST network from local inconsistencies.

The adaptrode synapse equation used in the place of the LTM trace of the adaptive

spectral timing equations is given by:

zijk
(l)(t+1) = zijk

(l)(t) + gijk
(l)(t)εk

(l)[zijk
(l-1)(t)-zijk

(l)(t)]

- γk
(l)[zijk

(l)(t)-zijk
(l+1)(t)] (17)

where zijk
(l) represented the lth potential of the kth synapse from the ith neuron to the jth neuron

for 1 ≤ i ≤ M, 1 ≤ j ≤ M, 1 ≤ k ≤ K, and  1 ≤ l ≤ L.  The first potential zijk
(1) represented the

strength of synapse as a whole and served as the LTM trace zijk
 of the adaptive spectral timing

equations.  Therefore zijk = zijk
(1).  The remaining potentials were used to calculate the first

potential.  For the first and last potentials, 'pull up' and 'pull-down' reference values were defined

respectively by:

zijk
(l-1)(t) = [z(max)] if l=0, [zijk

(l-1)(t)] otherwise (18)

zijk
(l+1)(t) = [z(min)] if l=L, [zijk

(l+1)(t)] otherwise (19)

where z(min) = 0 and z(max) = 1.

The learning constants (constant with respect to time) were defined to be functions of k as

given by:

εk
(l) = exp(-C(k-1))(D-El) (20)

γk
(l) = D-El (21)

The excitatory learning constant, εk
(l), was made to obey a decaying exponential with respect to

index k, multiplied by a linear function of index l with decreasing slope.  As a result of the

exponential, learning followed a recency gradient where successful predictions based on recent
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temporal patterns were learned more rapidly than successful predictions based on earlier temporal

patterns.  The linear factor (D-El) made εk
(l) decrease with increasing l, thus modeling the

increasing excitatory time constants of long term potentials.  The same linear factor was used to

define γk
(l), thus modeling the increasing passive decay times of the same long term potentials.

The learning of each potential was gated by the binary signal, gijk
(l)(t).  For l=1, gijk

(l)(t)

was set to unity only if the synapse fired at the same time the local hemodynamic pattern

occurred.  Consequently, gijk
(1) was determined by the agreement between the ISI between the

occurrence of the ith and jth hemodynamic patterns and the activation rate of the synapse as

expressed by:

gijk
(l)(t) = [Fijk(t)Gj(t)] if l=1, [1] otherwise (22)

where Fijk(t) and Gj(t) were binary variables which represented the prediction and occurrence of

the jth hemodynamic pattern, respectively.  The first binary variable, Fijk(t), represented the

prediction of the jth hemodynamic pattern by the ith hemodynamic pattern if it occurred k time

units earlier as shown by:

Fijk(t+1) = [Fijk(t) + δk(t-tc); tc=t+k]  if i = a*, [Fijk(t)] otherwise (23)

where the function, δk(t-tc), represented the Kronecker Delta which equals unity when its argument

equals zero as shown by:

δk(t-tc) = 1  if  t=tc, 0 otherwise             (24)

The second binary variable, Gj(t), represented the occurrence of the jth hemodynamic pattern at

time t:

Fj(t) = 1 if j = i*(t), 0 otherwise (25)
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where i*(t) represented the winning hemodynamic pattern at time t.  When both variables, Fijk(t)

and Gj(t) equaled unity, the Hebbian condition was satisfied and the binary gate, gijk
(l)(t), was

opened (set to unity).  As an example, when the jth hemodynamic pattern occurred then Gj(t)=1.

If this pattern had been predicted k time units earlier by the ith hemodynamic pattern, then

Fijk(t)=1.  As a result, gijk
(1)=1 and zijk

(1) increased.  On the other hand, if the activation rate did

not agree with the local ISI, then gijk
(1)=0 and no increase in zijk

(1) occurred.

The adaptrode synapse served to drive the first potential to saturation when the Hebbian

condition was satisfied frequently.  If the adaptrode model had not been used, zijk would have

never reached its saturation value regardless of how much it was stimulated.  Instead, it would

have saturated at a value of εk
(1)/(εk

(1)+γk
(1)).

In order to predict future trends, the incoming signals to each neuron in the adaptive

spectral timing network were summed tp=1 time units in advance as given by:

( ) ( ) ( )y t E t t z tj ijk p

k

K

i

M

ijk= +
==

∑∑ [ ]
11

 
(26)

Equation (26) is assumed to be an original contribution of the author.  For each neuron, yj(t)

represented the probability that the jth hemodynamic pattern would occur at t=t+tp.  The

maximum yj(t), for 1 ≤ j ≤ M, indicated the most probable hemodynamic pattern j* at t=t+tp as

shown by:

j j y t y tj j j* ( ) max( ( ), )= = ∀   if    (27)
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RESULTS

The system was simulated using two sets of data:  1) a fabricated calibration set and 2)

real clinical data.  For the purpose of recognizing instantaneous physiologic conditions, four

physiologic variables were measured (clinical data set) or fabricated (calibration set):

1.  Heart rate (HR) (BPM)

2.  Systolic arterial pressure (SAP) (mmHg)

3.  Diastolic arterial pressure (DAP) (mmHg)

4.  Diastolic pulmonary artery pressure (PAD) (mmHg)

The instantaneous values and rates of change of these variables were used to recognize

seven physiologic events:

1.  Intravascular volume overload

2.  Intravascular volume depletion

3.  Increased pericardial pressure

4.  Vasoconstriction

5.  Vasodilation

6.  Hypotension

7.  Hypertension

Of these events, six were the same as those recognized by DYNASCENE.  The equations

used to calculate or estimate intermediate variables such as systemic vascular resistance (SVR),

pulse pressure (PP), stroke volume (SV), cardiac output (CO), central venous pressure (CVP),

pulsus paradoxus, and reverse pulsus paradoxus can be found in appendix B.

Calibration

For calibration purposes, the model was trained on the same five hemodynamic sequences

recognized by DYNASCENE:  1) congestive heart failure with intravascular volume overload, 2)
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congestive heart failure due to pump failure, 3) hypovolemia, 4) sepsis, and 5) cardiac tamponade.

Raw data was fabricated to produce the required sequence of events.  The main parameters of the

simulation were:  A=.25, B=1, C=.5, D=.11, E=.01, K=32, L=3, and M=78.

Part of the results of the calibration are illustrated in figures 13 and 14.  These graphs

show how the system reacted to two hemodynamic sequences:  congestive heart failure with fluid

overload and congestive heart failure due to pump failure.  Of the five sequences used for

calibration, these two were chosen because they represent two different permutations of the same

combination of physiologic events.

In part (a) of figure 13 the progressive states of the STM during the unfolding of

congestive heart failure with fluid overload are shown.  The first graph in (a) shows the

occurrence of intravascular volume overload after a long period of seeing no events.  The second

graph shows the occurrence of vasoconstriction.  Notice that intravascular volume overload is no

longer occurring; therefore the activation of the first neuron has decayed by a small amount.  The

third graph shows the occurrence of hypotension.  Notice that the memory traces of intravascular

volume overload and vasoconstriction have decayed by amounts that correlate with the elapsed

time since their occurrence.  As a result, the state of the STM conveys the order in which the

events occurred.  Part (b) shows the prediction of hemodynamic pattern C after seeing only the

first two events.  Hemodynamic pattern C was one of the temporal patterns which represented

congestive heart failure with fluid overload.  Part (c) shows the eventual recognition of

hemodynamic pattern C after seeing the third and final event.  Figure 14, which shows how the

system reacted to congestive heart failure due to pump failure, is structured in the same manner as

figure 13.  Notice that in parts (b) and (c) the hemodynamic pattern that was predicted and

eventually recognized was not hemodynamic pattern C, although the same combination of

physiologic events occurred.
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(c)

Fig. 13.  Prediction and recognition of congestive heart failure with fluid overload.  In (a)
the progression of the state of the STM is shown.  After seeing only the first two events, the
system predicted hemodynamic pattern C as shown in (b).  After seeing the third condition,
the system recognized hemodynamic pattern C in (c) which was one of the categories which
represented congestive heart failure with fluid overload.  The x-axis in (b) and (c)
represents all possible hemodynamic patterns.
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STATE OF STM AT THE ONSET OF VASOCONSTRICTION
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(c)

Fig. 14.  Prediction and recognition of congestive heart failure due to pump failure.  In (a)
the progression of the state STM is shown.  After seeing only the first two events, the
system predicted hemodynamic pattern O as shown in (b).  After seeing the third condition,
the system recognized hemodynamic pattern O in (c) which was one of the categories which
represented congestive heart failure due to pump failure.  The x-axis in (b) and (c)
represents all possible hemodynamic patterns.

Application
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The system was tested on real clinical data measured at five minute intervals using the

same parameters:  A=.25, B=1, C=.5, D=.11, E=.01, K=32, L=3, and M=78.  A full 24 hours of

data (288 five-minute samples) from a cardiac patient was analyzed.  As expected with five-

minute interval samples, a large amount of variability was observed from one sample to the next.

Three events occurred repeatedly:  intravascular volume overload, vasodilation, and hypertension.

One interesting sequence of events is shown in figure 15.  Notice that hypotension occurred only

once.  From this sequence several interesting subpatterns were discovered:

1.  Vasodilation & Hypotension → Hypertension → Intravascular Volume Overload

2.  Hypotension → Hypertension → Intravascular Volume Overload & Vasodilation

3.  Hypotension → Hypertension → Vasodilation → Intravascular Volume Overload

4.  Hypotension → Vasodilation → Intravascular Volume Overload & Hypertension

5.  Hypotension → Vasodilation → Hypertension → Intravascular Volume Overload

6.  Hypotension → Hypertension → Intravascular Volume Overload → Vasodilation

IVO

Vasodilation

Hypotension

Hypertension

Time 

Fig. 15.  Timing graph of physiologic conditions recognized in actual clinical data.

Although the events of these sequences occurred in the orders indicated, many did not

occur in a contiguous fashion.  Instead, they were mixed in with other conditions.  As a result,
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more than one ART2 node could represent the same hemodynamic pattern.  Variations of single

permutations of physiologic events were represented by sets of ART2 nodes.  Although not shown

in the list, the time-between-event information was retained by each hemodynamic pattern

category, such that two hemodynamic patterns with identical permutations but different ISIs

would still be distinguished.  For example, hemodynamic pattern 6 in the list shows four distinct

physiologic conditions occurring in serial order.  The occurrence of hypotension and hypertension

were separated from intravascular volume overload and vasodilation by several time units.  This

can be seen by the actual synaptic vector of hemodynamic pattern 6 as shown in figure 16.  Notice

the difference in heights between intravascular volume overload and hypertension.  The difference

between activations indicates that these two sets of events were separated by more than a single

time unit.  If the contiguous version of same sequence had occurred, the STM vector would have

been different enough from this vector to justify a new category, thus distinguishing between the

two variations of the same sequence.

SYNAPTIC WEIGHT VECTOR OF HEMODYNAMIC PATTERN #6

INSTANTANEOUS PHYSIOLOGIC CONDITION

Activation

0
0.1
0.2
0.3
0.4
0.5
0.6

Intravascular
Volume
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Intravascular
Volume

Depletion

Increased
Pericardial

Pressure

Vasoconstriction Vasodilation Hypotension Hypertension

Fig. 16.  Synaptic weight vector of hemodynamic pattern #6.  This pattern category shows the
sequence:  hypotension → hypertension → intravascular volume overload → vasodilation with a
lag of more than one time unit between the first two conditions and the last two.
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DISCUSSION

A very interesting property of the interconnected adaptive spectral timing network

emerged in the calibration process:  the ability to predict sequences based on rhythm.  At first, this

property was alarming, but upon further reflection it seems natural for such a network that is so

deeply rooted in discovering interstimulus intervals, to be 'lulled into a routine'.  If hemodynamic

sequence B was frequently made to occur k time units after hemodynamic sequence A, the AST

network learned to predict sequence B based on seeing sequence A.  If  hemodynamic sequence B

was suddenly removed from the input stream altogether, it was still predicted by the recognition of

sequence A.  Even though the first couple of events of sequence B did not occur, the network still

predicted the last events of sequence B.  This result is interesting because the system predicted

sequence B without seeing any of the events in sequence B.  If sequence B represented congestive

heart failure, for example, then the system would have predicted congestive heart failure without

seeing the events associated with congestive heart failure, even though the state of the STM had

completely decayed since the onset of sequence A.  Essentially, the network detached itself from

cues of reality in confidence that sequence B would continue to occur after sequence A.  Of course

the system never recognized sequence B, it just predicted it.  This feature could prove very useful

in discovering hemodynamic sequences that are longer than the those simulated in this study.

Although this 'biorhythmic-like' property could be very functional in practice, it was not

allowed to be used as a 'crutch' in the calibration process.  Each sequence was separated by 40

time units of normal condition (no physiologic events) in order to keep the network from learning

to predict the sequences based on rhythm.  Separating the sequences by more than the predictive

reach of the network forced the network to recognize the sequences based on the inherent features

of the sequences themselves, rather than man-made periodicity.  This decoupling scheme worked

as long as the ART2 network was not too vigilant, in which case the winning hemodynamic

pattern category (ART2 node) changed frequently and the predictive reach of the network was

extended.
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Another interesting property of the predictive network was its ability to predict events that

occurred at varying frequencies.  For varying ISIs between two events, the first derivative of the

predictive potentials yj(t) with respect to time sometimes correlated more closely with the

probability of occurrence than did absolute magnitude.  Using the previous example, if sequence B

usually followed sequence A 22-28 time units later, then the predictive potentials of the nodes that

recognized variations of sequence B tended to grow during the 22-28 time unit window.  It is

expected that this feature would be extremely useful for discovering real world hemodynamic

patterns in the clinic.
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LIMITATIONS

As previously mentioned, several assumptions and estimations were made for some

variables.  Central venous pressure, for example, was estimated at 12.0 mmHg and a simplistic

linear relationship between pulse pressure and stroke volume was used.  Although not an exact

estimate, SV increased when PP increased and decreased when PP decreased.

These estimated variables were used to recognize the seven physiologic events.

Consequently, the instantaneous recognition of the physiologic conditions was also just an

estimate.  For calibration purposes, the question of how the physiologic conditions were

recognized was not an issue.  As long as the model thought it was recognizing the events in the

desired order, the goal of calibrating the temporal pattern recognition and prediction processes

was accomplished.

The analysis of the clinical data was a little different.  Because neither pulsus paradoxus

nor reverse pulsus paradoxus were being recognized by automatic data collection devices

available at the time of the simulations, both conditions were assumed to be absent.  And as it

turned out, intravascular volume overload was recognized frequently, partly because pulsus

paradoxus was assumed to be absent.  Since the criteria for recognizing increased pericardial

pressure was the same as that for recognizing intravascular volume overload with the exception of

the presence of pulsus paradoxus, it was unknown which condition really occurred.

Consequently, the occurrence of intravascular volume overload should be taken lightly.  The

analysis of the clinical data only demonstrated that the model was capable of recognizing various

permutations of physiologic events in general.  This system should be integrated with more robust

methods, such as Kalman filtering for recognizing the fundamental physiologic events before

being applied in the clinical environment.
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CONCLUSIONS AND RECOMMENDATIONS

The collection of artificial neural networks presented in this study are able to detect

hemodynamic patterns without being programmed to do so explicitly.  It is expected that such a

system, combined with robust methods for preprocessing and cross verifying raw data, can be

operated in the clinical environment in real time to assist clinicians with caring for critically ill

patients.  Because the system learns self-organized representations of input data, it requires no

expert knowledge a priori, other than the preprocessing required to recognize fundamental

physiologic events.  As a result, it is able to discover unknown hemodynamic patterns in addition

to ones that are well known.

In addition to the ability to recognize hemodynamic patterns, the model is able to predict

them before they completely unfold in time.  A hemodynamic pattern that is defined by a

permutation of several events, for example, can be predicted after the first couple of events.  Other

hemodynamic patterns that might occur regularly, or even semi-regularly, can be predicted if they

fall within the predictive reach of the network.

In the simulations, a K=78 hemodynamic pattern limit was imposed.  For calibration and

application purposes, this limit was very reasonable.  However, in the clinical setting, it is

recommended that this limit be extended, depending on how many different hemodynamic patterns

it is expected to learn.  If the system is to be trained on data from a limited number of patients,

then K=78 might be adequate.  However, if the system is intended to continuously monitor many

patients, K would most likely need to be increased.
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APPENDIX A

LIST OF VARIABLES, PARAMETERS, AND FUNCTIONS

System Variables, Parameters, Vectors, and Functions

A global decay rate of STM nodes

B global excitatory saturation level of STM nodes

C global decay rate constant of excitatory learning rate constant of adaptrode-

based synapses

D global y-intercept of inhibitory learning rate constant function of adaptrode-

based synapses

E global slope of inhibitory learning rate constant function of adaptrode-

based synapses

Fijk(t) binary occurrence variable of the prediction of the jth hemodynamic pattern 

by the ith hemodynamic pattern at time t, k time units ago

Gj(t) binary occurrence variable of the jth hemodynamic pattern at time t

gijk
(l) binary gating signal of the lth potential of the kth predictive pathway from 

the ith to the jth AST node

i index of the ith ART2 or AST node

i*(t) index of winning ART2 node (hemodynamic pattern) at time t

j index of the jth ART2 or AST node

k index of the kth predictive pathway from one AST node to another

K maximum number of AST pathways from one predictive node to another

l index of the lth potential of a predictive pathway from one AST node to 

another

L maximum number of potentials per adaptrode synapse

Ip(t) binary occurrence variable of the pth physiologic condition
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M maximum number of ART2 and AST nodes (each)

p index of the pth instantaneous physiologic condition

P maximum number of instantaneous physiologic conditions

sp(t) activation of the pth instantaneous physiologic condition node in STM

yj(t) probability activation of the jth hemodynamic pattern

zijk(t) strength of the kth predictive pathway from the ith to the jth AST node 

(this variable is equal to zijk
(1)(t))

zijk
(l) (t) lth potential of the kth predictive pathway from the ith to the jth AST 

node

z(max) global positive saturation level of the first potential of a predictive pathway 

from one AST node to another

z(min) global negative saturation level of the first potential of a predictive pathway 

from one AST node to another

εk
(l) global excitatory learning constant of the lth potential of the kth predictive 

pathway from one AST node to another

γk
(l) global inhibitory learning constant of the lth potential of the kth predictive 

pathway from one AST node to another

δk(t-tc) Kronecker delta function

ρ(t) global vigilance variable of ART2 categorization
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APPENDIX B

INSTANTANEOUS RECOGNITION OF PHYSIOLOGIC

CONDITIONS

In order to recognize the seven physiologic conditions:  1) intravascular volume overload,

2) intravascular volume depletion, 3) increased pericardial pressure, 4) vasoconstriction, 5)

vasodilation, 6) hypotension, and 7) hypertension, several variables were needed:  heart rate (HR),

mean arterial pressure (MAP), pulmonary artery diastolic pressure (PAD), cardiac output (CO),

systemic vascular resistance (SVR), pulsus paradoxus, and reverse pulsus paradoxus.

Intravascular volume overload was recognized when pulsus paradoxus was absent and PAD was

rising and greater than or equal to 25 mmHg.  Intravascular volume depletion was recognized

when reverse pulsus paradoxus was present and PAD was falling and less than or equal to 15

mmHg.  Increased pericardial pressure was recognized when pulsus paradoxus was present and

PAD was rising and greater than or equal to 25 mmHg.  Vasoconstriction was recognized when

SVR was rising, HR was greater than or equal to 90 BPM, and CO was less than 4 L/beat.

Vasodilation was recognized when CO was rising and greater than or equal to 7 L/beat, SVR was

falling, and HR was greater than or equal to 90 BPM.  Hypotension was recognized when MAP

was falling and less than 70 mmHg and HR was rising.  Hypertension was recognized when MAP

was rising and greater than 100 mmHg and HR was falling.

In order to calculate systemic vascular resistance (SVR), the following quantities were

needed:  1) MAP, 2) central venous pressure (CVP), and 3) CO.  None of these values were being

measured by automatic devices available at the time of the simulation so they were calculated

where possible and estimated when not.  MAP was calculated from pulse pressure (PP) and

diastolic arterial pressure (DAP) by:

MAP=DAP+.333(PP) (B1)

where PP was calculated by:
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PP = SAP-DAP (B2)

SVR was calculated from MAP, CVP, and CO by:

SVR=79.9*(MAP-CVP)/CO (B3)

where CVP was estimated to be equal to its average value of 12.0 mmHg and CO was calculated

from heart rate (HR) and stroke volume (SV):

CO=.001*HR*SV (B4)

where SV was estimated from PP using a simple linear relationship:

SV=1.4*PP (B5)

Although a simplistic assumption, SV behaved like PP, increasing when PP increased and

decreasing when PP decreased.
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APPENDIX C

ARTIFICIAL NEURAL MODELS

During the past decade, artificial neural networks have been recognized for  their

extraordinarily surprising abilities in cognition, perception, organization, classification, feature

extraction, pattern recognition, associative memory, data compression, dimensionality reduction,

projection, and prediction (McCULLOCH & PITTS, 1943; ROSENBLATT, 1958; WIDROW &

HOFF, 1960; HOPFIELD, 1982, 1984; KOHONEN, 1982; RUMELHART, et al., 1986;

CARPENTER & GROSSBERG, 1986, 1987; KOSKO, 1987, 1988, 1992).  Inspired by real

biological neurons and interconnections, researchers have developed a cornucopia of ANN models

that mimic biological functions and perform intelligent tasks.  These recent developments have

attracted interest from such diverse fields as physics, engineering, medicine, mathematics,

computer science, biology, economics, and psychology.

The Artificial Neuron

Illustrated in figure C1 is a typical artificial neuron that appears frequently in the

literature.  The simplest neural networks employ these units at the most fundamental level of

processing (McCULLOCH & PITTS, 1943; ROSENBLATT, 1958; WIDROW & HOFF, 1960,

KOHONEN, 1981, RUMELHART, et al., 1986).  The model shown in figure C1 has grown out

of a simple model introduced by McCULLOCH & PITTS in 1943.

Each neuron possesses an m-dimensional instar vector w (GROSSBERG, 1972) which

represents the efficacies of its incoming synapses (connections) and an outstar vector v

(GROSSBERG, 1968).  Incoming signals, represented by vector S, are amplified or attenuated

according to corresponding weights in w and summed to produce a membrane potential, or

activation, xj.  The membrane potential xj is processed by a monotonically increasing output

function f(xj) which activates v accordingly.  The neuron essentially imposes v on downstream

neurons to a degree determined by the activation through w.  As a result, there is an association
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between vectors w and v.  Sometimes v is one-dimensional, representing the scalar value of the

output of the neuron.
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Fig. C1.  An artificial neuron

Additive and Shunting Activation Equations

Probably the simplest equations describing the membrane potential of the artificial neuron

are the additive activation equations (GROSSBERG 1988).  A general form of the additive

equation is given by:

dx

dt
x Sw

j

j i ij

i

= − +
∀
∑

  (C1)

where xj is the activation of the jth neuron, wij is the ith component of the input vector of the jth

neuron, and Si is the ith component of the input vector, S.  The first term of equation (C1)

represents self-excitation which allows for slow, exponential decay of the activation level in the

absence of stimulation.  The second term represents positive and negative stimulation from other

neurons.  The second term is nothing more than the dot product between the input vector S and

instar vector w.  The more the two vectors point in the same direction, the greater the result.  If the
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two vectors point in the same direction, the result is unity (for normalized vectors).  Conversely, if

the two vectors are orthogonal, the result is zero.  In effect, w filters S.  And since w is allowed to

change over time, w is said to be an adaptive filter  (CARPENTER 1989).

The simplest additive activation equation with infinitely leaky activation dynamics is

described by:

x S wj i ij

i

=
∀
∑

(C2)

The activation xj is frequently 'squashed' by a continuous sigmoidal output function given by:

f x
x

j j
j j

( )
exp( ( ))

=
+ − −

1
1 λ θ (C3)

which represents the mean firing rate of the neuron.  Equation (C3) is a monotonically increasing

function of the activation value, xj, minus a threshold value, Θj.  The function saturates at both

ends, thus 'squashing' or bounding the input.  This output equation is just one type of squashing

function.  Other, more hard-limiting functions can result as λ→∞.

In the additive activation equation (C1), both excitatory and inhibitory inputs are added

together to produce a net input.  This net input affects the membrane potential in an unbounded

fashion without automatic gain control.  An alternative model, the shunting model,

(GROSSBERG, 1968) separates excitatory and inhibitory inputs, bounds their effect according to

fixed saturation levels, and adds automatic gain control:

dx

dt
Ax B x I C x I

j
j j exc j inh= − + − − + ∑∑( ) ( )

(C4)

where the first term represents self-excitation, the second term represents active excitation from

external sources, and the third term represents active inhibition from external sources.  Constants

A, B, and C represent the passive decay rate, positive saturation level, and negative saturation
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level, respectively.  Constants B and C bound xj (for small inputs).  The shunting model is closely

aligned with the Nobel prize winning membrane potential equation of neurophysiology

(HODGKIN & HUXLEY, 1952).
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APPENDIX D

CONTINUOUS-VALUED ADAPTIVE RESONANCE THEORY

EQUATIONS

The equations used in the simulations were not the actual ART2 equations, but they did

have a similar effect.  The STM vector s was categorized by calculating the degree to which it

excited each neuron in the network and choosing the one with the maximum activation xi(t).  The

index of the winning node i*(t) was chosen according to:

i*(t) = i     if   xi(t)=max(xi(t), ∀i) (D1)

where the activation xi(t) was obtained by calculating the dot product between s(t) and each

normalized instar vector, wi(t), as given by:

xi(t) = s(t) ⋅⋅wi(t) = ∑ sp(t)wip(t) =  s(t) w(t) cos θsw(t) (D2)
      ∀i

where θsw(t)  represented the angle between vectors s(t) and wi(t).  Notice that since vectors s(t)

and wi(t) were both normalized, the magnitudes,  s(t) and  w(t) both equaled unity.  Since

vector s(t) was constant throughout the competition, equation (D2) depended only on the direction

of vector w(t) with respect to s(t). When θsw(t)=0, the result was maximal and when    θsw(t)=π/2

radians, the result was minimal, with varying degrees in between.  The magnitude of the original

STM vector su(t) played no part in the competition.  As a result, the competition was protected

against magnitude biases.  In terms of pattern recognition, a high degree of match between the

directions of s(t) and wi(t) constituted a recognition of pattern s(t).  Consequently, vector wi(t)

adaptively filtered s(t).

After the winning node was chosen, it underwent a vigilance test to determine if s(t) was

close enough to wi(t) for wi(t) to admit s(t).  If the node passed the test then it remained as the

winning category and its membership magnitude mi*(t)(t) was incremented as shown by:
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i*(t) = i  if  max(xi, ∀i) ≥ ρ(t),  b otherwise (D3)

mi*(t)(t+1) = mi*(t)(t) +1  if  max(xi, ∀i) ≥ ρ(t),  1 otherwise (D4)

The instar vector wi*(t)(t) of the winning node was then modified by:

        s(t) + wi*(t)(t)*(mi*(t)(t+1)-1)
wi*(t)(t+1) =  (D5)

       mi*(t)(t+1)

If the node failed the vigilance test an idle node b was recruited to represent the novel pattern:

wb(t+1) = s(t) (D6)

and its membership magnitude mb(t) was set to unity.

Automatic Vigilance Control

Because ART networks are very sensitive to the vigilance parameter,  ρ(t) was changed

into a variable and controlled automatically using the general shunting equation:

d

dt
A B I C I

j

j j exc j inh

ρ
ρ ρ ρ= − + − − + ∑∑( ) ( )

(D7)

Rewriting (C7) in terms of a difference equation yielded:.

ρ ρ ρ ρ ρj j j j exc j inht t A t B t I C t I( ) ( ) ( ) ( ( )) ( ( ))+ − = − + − − + ∑∑1 (D8)

ρ ρ ρ ρj j j exc j inht A t B t I C t I( ) ( ) ( ) ( ( )) ( ( ))+ = − + − − + ∑∑1 1 (D9)

Substituting A=0, B=1, C=0, ΣIexc = .01, and ΣIinh = .05δ, where δ is a binary input that

reflected the event of an STM pattern being forced into the closest ART2 category, yielded the

automatic vigilance control equation:
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ρ ρ ρ δ ρj j j jt t t t( ) ( ) (. )( ( )) (. ) ( )+ = + − −1 01 1 05 (D10)

If ρ(t) would have not been automatically controlled, the categorization process could

have been distorted.  For example, if the network would have been too vigilant, it would have

used all of its nodes to represent meaningless hemodynamic patterns in the beginning of training,

leaving no nodes to represent interesting patterns later.  Although provisions were made for

reclaiming idle nodes, this would have happened at a relatively slow pace, during which time the

salient STM patterns would have been distorted.  On the other hand, if the network was not

vigilant enough, it would have taken too long to learn and distorted the patterns as well.  A happy

medium was achieved with equation (D10).
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APPENDIX E

STAND-ALONE EQUATIONS OF THE ADAPTRODE-BASED

SYNAPSE

The adaptrode synapse, is a dynamic model of the synapse designed to encode the

temporal relationship between two stimuli across multiple time scales (MOBUS, 1990).  Unlike

many simplistic models of the synapse, the adaptrode model is composed of a set of potentials

which charge up at different rates.  In the same way that muscles build up a resistance to atrophy

during long periods of use, the adaptrode synapse builds up a 'bank' of potential which can

support the synapse during periods of infrequent stimulation.  In terms of biological plausibility,

the adaptrode synapse models slower biological processes such as long term accumulation of

substrates which facilitate short term chemical reactions.  The result is that the synapse is

protected against transient changes in the environment.

To be exact, the adaptrode synapse is divided into a series of processes as shown in figure

E1.  The series of processes can be envisioned as a series of coupled capacitors with increasing

time constants where the leftmost capacitor charges the quickest and the rightmost capacitor

charges the slowest.  Each capacitor obeys a shunting equation with variable saturation levels

modulated by neighboring potentials:

zijk
(l)(t+1) = zijk

(l)(t) + gijk
(l)(t)ε(l) [zijk

(l-1)(t) - zijk
(l)(t)]

 - γ(l) [zijk
(l)(t) - zijk

(l+1)(t)] (E1)

where zijk
(l) represents the lth potential of the kth synapse from the ith neuron to the jth neuron for

1 ≤ i ≤ M, 1 ≤ j ≤ M, 1 ≤ k ≤ K, and 1 ≤ l ≤ L.  The quickest capacitor is denoted by zijk
(1), the

next quickest is denoted by zijk
(2), and so forth.  Each charge affects the rate at which its

neighboring capacitors charge and discharge.  For example, the second capacitor from the left in

figure E1 is charged by the first capacitor while simultaneously being discharged by the third
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capacitor.  Essentially, the second capacitor is 'pulled up' by the first capacitor and 'pulled down'

by the third capacitor.  Consequently, the charge on the second capacitor can neither exceed the

charge on the first capacitor nor subtend the charge on the third capacitor.

ijk
(1)

z

ijk          ijk                                 ijk                              ijk
(1)         (2)                                 (l)                              (L)g       g     . . . . . . . .  g      . . . . . . . gPotential Gates

(Binary Inputs)

z ijk
(L)

= Overall synaptic potential

Figure E1.  Potentials and gating signals of the adaptrode-based synapse.

Since zijk
(l-1)(t) for l=1 and zijk

(l+1) for l=L do not exist, maximum and minimum saturation

constants, are defined as follows:

zijk
(l-1)(t) = z(max)     if l=1,  zijk

(l-1)(t) otherwise (E2)

zijk
(l+1)(t) = z(min)     if l=L,  zijk

(l+1)(t) otherwise (E3)

where z(max) and z(min) are usually set to unity and zero, respectively.

The learning of each potential is gated by the binary learning signal, or gate, gijk
(l)(t).

When gijk
(l)(t) equals unity, zijk

(l)(t) is modulated according to its neighboring potentials.  When

gijk
(l)(t) equals zero,  zijk

(l)(t) experiences passive decay without excitation.  The first gate gijk
(1) is

intended to reflect the occurrence of a successful event (1 for success and 0 for failure).  Usually,

gijk
(1) recognizes a successful recognition of a temporal relationship between two events.  The

gates of the other potentials, gijk
(l)(t), for 2 ≤ l ≤ L, are set according to arbitrary criteria.  The
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excitatory and inhibitory learning rates are denoted by ε(l) and γ(l), respectively.  Each learning

rate decreases with increasing l.

Although the adaptrode synapse is made up of many potentials, the first potential is the

only one that represents the strength of the synapse as a whole.  The other potentials zijk
(l) for     2 

≤ l ≤ L, are only used to calculate the first potential.
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APPENDIX F

SIMULATION SOURCE CODE

/* Declare global constants ------------------------------------------------ */

   #include <sys/types.h>
   #include <sys/time.h>
   #include <stdlib.h>
   #include <stdio.h>
   #include <math.h>
   #include <curses.h>
   #include <fcntl.h>

/* Declare global constants ------------------------------------------------ */

   #define R               11 /* number of raw measurements                  */
   #define P                7 /* Number of physiological processes           */
   #define A               78 /* max number of clusters per ART2 network     */
   #define K               32 /* Predictive capacity (time units into future)*/

/* Declare global logical variables ---------------------------------------- */

   short Done;                 /* logical program done flag                  */

/* Declare global variables, vectors, and arrays --------------------------- */

   short I[P];                 /* physiological process vector               */
   short p_offset=1;           /* predictive offset index                    */
   short mode[3];              /* program mode vector                        */
   short alarm[A+1];           /* ART2 trend recognition alarms              */
   short winner;               /* ART2 winning category                      */
   short iter_size=3;          /* iteration vector size                      */
   short info_size=2;          /* information vector size                    */
   short alarm_size=A+1;       /* ART2 trend recognition alarm vector size   */
   short t_size=A+1;           /* nodal time stamp vector size               */
   short s_size=P+1;           /* short term memory vector size              */
   long r_size=(R+1)*2;        /* input array size                           */
   long w_size=(P+1)*(A+1);    /* ART2 synapse array size                    */
   long m_size=A+1;            /* ART2 pattern count vector size             */
   long e_size=(A+1)*(A+1)*(K+1);   /* ASTEM event array size                */
   long z_size=(A+1)*(A+1)*(K+1)*5; /* ASTEM synapse array size              */
   long iter[3];               /* iteration numbers                          */
   long t[A+1];                /* ART2 nodal time stamp                      */
   long m[A+1];                /* ART2 category magnitude (relative freq)    */
   long e[A+1][A+1][K+1];      /* prediction map event words                 */
   long bitcon[K+1];           /* bit constants                              */
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   long histo[20];             /* predictive success histogram vector        */
   long numdone,total_items;   /* misc read/write variables                  */
   float info[2];              /* misc information                           */
   float r[R+1][2];            /* raw measurement input vector               */
   float s[P+1];               /* short term memory vector                   */
   float w[P+1][A+1];          /* ART2 category vector matrix                */
   float z[A+1][A+1][K+1][5];  /* Adaptive spectral timing/Adaptrode synapses*/
   double vigilance=1;         /* ART2 vigilance parameter                   */
   char te[30];                /* dummy character vector                     */
   FILE *INFILE;               /* Input data file                            */
   FILE *MSGFILE;              /* Message file                               */
   FILE *WEIGHTS;              /* Synaptic weights file                      */

/* Declare global functions ------------------------------------------------ */

   short modulo();             /* modulo function                            */
   short btu();                /* bipolar to unipolar conversion function    */
   double zero_check();        /* zero checking function                     */
   void recruit_node();        /* recruit ART2 node function                 */
   void modify_node();         /* modify ART2 node function                  */
   void jobbar();              /* job bar update function                    */
   void saveweights();         /* save weights function                      */

/* Declare global windows -------------------------------------------------- */

   WINDOW *MSG;                /* message window                             */
   WINDOW *JOBBAR;        /* job bar window                             */
   WINDOW *INFOWIN;        /* Information window                         */
   WINDOW *MENU;             /* Menu window                                */
   WINDOW *HISTOGRAM;  /* ART pattern histogram window               */
   WINDOW *ARTWIN;         /* ART activation window                      */
   WINDOW *STMWIN;        /* Short term memory window                   */
   WINDOW *ASTEM[2];      /* ASTEM window                               */
   WINDOW *ISIDIST;          /* Interstimulus interval distribution        */

/* Main -------------------------------------------------------------------- */

main ()
{/* Declare variables ------------------------------------------------------ */

    register short i,j,k,l,p,x,vp,hp;
    short node[3];

 /* Declare functions ------------------------------------------------------ */

    void kboard();             /* get kboard input function                  */
    void read_vector();        /* read input vector function                 */
    void ART2();               /* ART2 function                              */
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    void stm();                /* short term memory update function          */
    void histogram();          /* ART category histogram display function    */
    void astem();              /* adaptive short term expectation mem functn */

 /* Initialize variables --------------------------------------------------- */

    mode[0]=1;                 /* learning mode or not                       */
    mode[1]=1;                 /* read old weights or not                    */
    mode[2]=0;                 /* viewing mode                               */
    total_items=iter_size+r_size+w_size+m_size+alarm_size;
    total_items+=e_size+z_size+info_size+t_size+s_size;

 /* Initialize bit constant vectors: bitcon[1]=100...00, bitcon[T]=00...0001 */

    for(k=1;k<=K;k++) {bitcon[k]=(long)pow(2.0,(double)(K-k));}
    bitcon[1]=1; for(k=1;k<=K-1;k++) {bitcon[1]*=2;}

 /* Open message file */

    MSGFILE=fopen("avq.log","a");

 /* Initialize screen & windows */

    initscr();
    INFOWIN=newwin(1,80,0,0);
    MSG=newwin(3,30,7,24);         box(MSG,0,0);
    JOBBAR=newwin(3,60,14,10);     box(JOBBAR,0,0);
    MENU=newwin(15,40,5,20);       box(MENU,0,0);
    STMWIN=newwin(11,80,12,00);    box(STMWIN,0,0);
    ARTWIN=newwin(11,80,01,00);    box(ARTWIN,0,0);
    HISTOGRAM=newwin(11,80,12,00); box(HISTOGRAM,0,0);
    ASTEM[0]=newwin(11,80,01,00);  box(ASTEM[0],0,0);
    ASTEM[1]=newwin(11,80,12,00);  box(ASTEM[1],0,0);
    ISIDIST=newwin(22,80,01,00);   box(ISIDIST,0,0);

 /* Build STMWIN window */

    for(hp=1;hp<7*11;hp++) {mvwaddch(STMWIN,8,hp,ACS_HLINE);}
    for(hp=11;hp<=7*11;hp+=11)
       {for(vp=1;vp<=11;vp++) {mvwaddch(STMWIN,vp,hp,ACS_VLINE);}
        mvwaddch(STMWIN,0,hp,ACS_TTEE);
        mvwaddch(STMWIN,8,hp,ACS_PLUS);
        mvwaddch(STMWIN,10,hp,ACS_BTEE);
       }
    mvwaddch(STMWIN,8,00,ACS_LTEE); mvwaddch(STMWIN,8,7*11,ACS_RTEE);
    sprintf(te,"    IVO   "); mvwaddstr(STMWIN,9,1,te);
    sprintf(te,"    IVD   "); mvwaddstr(STMWIN,9,12,te);
    sprintf(te,"    IPP   "); mvwaddstr(STMWIN,9,23,te);
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    sprintf(te,"Vasocnstrn"); mvwaddstr(STMWIN,9,34,te);
    sprintf(te,"Vasodilatn"); mvwaddstr(STMWIN,9,45,te);
    sprintf(te,"Hypotenson"); mvwaddstr(STMWIN,9,56,te);
    sprintf(te,"Hypertensn"); mvwaddstr(STMWIN,9,67,te);

 /* Build MENU window */

    sprintf(te,"MENU                                "); mvwaddstr(MENU,1,2,te);
    sprintf(te," <1> Trend Recognition & STM        "); mvwaddstr(MENU,3,2,te);
    sprintf(te," <2> Trend Recognition & Histogram  "); mvwaddstr(MENU,4,2,te);
    sprintf(te," <3> Trend Prediction (ASTEM)       "); mvwaddstr(MENU,5,2,te);
    sprintf(te," <4> Alarm Assignments              "); mvwaddstr(MENU,6,2,te);
    sprintf(te," <i> Information Panel              "); mvwaddstr(MENU,8,2,te);
    sprintf(te," <m> Menu                           "); mvwaddstr(MENU,9,2,te);
    sprintf(te," <n> Next                           "); mvwaddstr(MENU,10,2,te);
    sprintf(te," <s> Save                           "); mvwaddstr(MENU,11,2,te);
    sprintf(te," <e> Save & Exit                    "); mvwaddstr(MENU,12,2,te);

 /* Initialize or read arrays */

    sprintf(te,"      Initializing ...      "); mvwaddstr(MSG,1,1,te);
    touchwin(MSG); wnoutrefresh(MSG); doupdate();
    if(!mode[1])
      {for(i=1;i<=A;i++)
          {for(j=1;j<=A;j++)
              {for(k=1;k<=K;k++)
                  {e[i][j][k]=0;
                   z[i][j][k][0]=1.0; for(l=1;l<=4;l++) {z[i][j][k][l]=0;}
                  }
              }
          }
       iter[0]=1; iter[1]=1; iter[2]=1;    /* reset iteration counts         */
       info[1]=0; info[0]=zero_check(0.0); /* reset normalization magnitudes */
       for(i=1;i<=A;i++) {alarm[i]=0;}     /* Reset all alarms               */
      }
    else /* Read weights from binary file --------------------------------- */
      {sprintf(te,"     Reading Arrays ...     ");
       mvwaddstr(MSG,1,1,te); touchwin(MSG); wnoutrefresh(MSG); doupdate();
       if((WEIGHTS = fopen("/scratch/rgs0497/weights","r+b")) != NULL)
         {numdone=0; total_items=(long)zero_check((double)total_items);
          numdone+=fread((char *)iter,sizeof(long),iter_size,WEIGHTS); jobbar();
          numdone+=fread((char *)info,sizeof(float),info_size,WEIGHTS);jobbar();
          numdone+=fread((char *)r,sizeof(float),r_size,WEIGHTS); jobbar();
          numdone+=fread((char *)w,sizeof(float),w_size,WEIGHTS); jobbar();
          numdone+=fread((char *)m,sizeof(long),m_size,WEIGHTS); jobbar();
          numdone+=fread((char *)e,sizeof(long),e_size,WEIGHTS); jobbar();
          numdone+=fread((char *)z,sizeof(float),z_size,WEIGHTS); jobbar();
          numdone+=fread((char *)t,sizeof(long),t_size,WEIGHTS); jobbar();
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          numdone+=fread((char *)s,sizeof(float),s_size,WEIGHTS); jobbar();
          numdone+=fread((char *)alarm,sizeof(short),alarm_size,WEIGHTS); jobbar();
          fclose(WEIGHTS);
         }
      }

 /* MAIN LOOP -------------------------------------------------------------- */

    Done=0;
    if((INFILE = fopen("input.txt","r+t")) != NULL)
      {read_vector();        /* read first input vector                     */
       do{kboard();           /* read the keyboard                           */
          for(p=0;p<P;p++)
             {sprintf(te,"%1d",I[p]); mvwaddstr(INFOWIN,0,68+p,te);
             }
          stm();              /* update STM                                  */
          ART2();             /* instantaneous STM pattern recognition       */
          histogram();        /* histogram of instantaneous STM pattern recs */
          astem();            /* adapt. spect. timing expectation memory     */
          iter[0]++;          /* increment prediction iteration number       */
          iter[0]=(long)modulo(iter[0],1,K); /* limit iteration number       */
          if(mode[0]) {iter[1]++;} /* training iteration number              */
          iter[2]++;          /* absolute iteration number                   */
          read_vector();      /* read next input vector                      */
          doupdate();         /* update screen                               */
         }
       while(!feof(INFILE) && !Done);
       fclose(INFILE);
      }

 /* End program ------------------------------------------------------------ */

    saveweights();                    /* save weights to file                */
    attrset(A_NORMAL);    /* reset video attributes to normal    */
    fclose(MSGFILE);             /* close message file                  */
    endwin();                         /* end windows mode                    */
    exit(1);                          /* exit program                        */
}

/* Zero check function ----------------------------------------------------- */

   double zero_check(value)
   double value;
   {if((double)abs((int)(value*1000))*.001<.001) {value=1;}
    return(value);
   }

/* Bipolar to Unipolar Conversion Function --------------------------------- */
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   short btu(s)
   short s;
   {return((1+s)/2);
   }

/* Modulo Function -------------------------------------------------------- */

   short modulo(value,min,max)

   short value,min,max;
   {if(value>max) {do {value-=(max-min+1);} while (value>max);}
    if(value<min) {do {value+=(max-min+1);} while (value<min);}
    return(value);
   }

/* Read Input Vector ------------------------------------------------------- */

   void read_vector()

   {register short i,p;
    float HR[2];   /* heart rate                                (BPM)         */
    float MAP[2];  /* mean arterial pressure                    (mmHg)        */
    float SAP[2];  /* systolic arterial pressure                (mmHg)        */
    float DAP[2];  /* diastolic arterial pressure               (mmHg)        */
    float MPA[2];  /* mean pulmonary arterial pressure          (mmHg)        */
    float PAS[2];  /* systolic pulmonary arterial pressure      (mmHg)        */
    float PAD[2];  /* current diastolic pulm arterial pressure  (mmHg)        */
    float CVP[2];  /* central venous pressure                   (mmHg)        */
    float PP;      /* pulsus paradoxus                          (none)        */
    float RPP;     /* reverse pulsus paradoxus                  (none)        */
    float SV[2];   /* stroke volume                             (mL/beat)     */
    float CO[2];   /* current cardiac output                    (L/min)       */
    float SVR[2];  /* current systemic vascular resistance  (dynes*sec/cm^5)  */
    char string[7],*char_result;

    for(i=1;i<=R;i++)
       {r[i][1]=r[i][0]; /* move current to previous */
        char_result=fgets(string,6+1,INFILE);
        r[i][0]=(float)abs((int)(atof(string)/.0001))*.0001;
       }

    if(!feof(INFILE))
      {/* Calculations */

          HR[0]=r[1][0];  HR[1]=r[1][1];     /* heart rate                    */
          MAP[0]=r[2][0]; MAP[1]=r[2][1];    /* mean arterial pressure        */
          SAP[0]=r[3][0]; SAP[1]=r[3][1];    /* systolic arterial pressure    */
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          DAP[0]=r[4][0]; DAP[1]=r[4][1];    /* diastolic arterial pressure   */
          PAD[0]=r[8][0]; PAD[1]=r[8][1];    /* prev diastolic pulm art press */
          CVP[0]=r[9][0]; CVP[1]=r[9][1];    /* central venous pressure       */
          PP=r[10][0];                       /* pulsus paradoxus              */
          RPP=r[11][0];                      /* reverse pulsus paradoxus      */
          SV[0]=1.4*(SAP[0]-DAP[0]);         /* estimate current stroke vol   */
          SV[1]=1.4*(SAP[1]-DAP[1]);         /* estimate previous stroke vol  */
          CO[0]=HR[0]*SV[0]*.001;            /* estimate current card output  */
          CO[1]=HR[1]*SV[1]*.001;            /* estimate previous card output */
          SVR[0]=79.9*(MAP[0]-CVP[0])/CO[0]; /* estimate curr sys vasc resist */
          SVR[1]=79.9*(MAP[1]-CVP[1])/CO[1]; /* estimate prev sys vasc resist */

       /* Look for physiologic conditions */

          for(p=0;p<P;p++) {I[p]=0;}         /* reset all conditions          */
          if(PAD[0]>=25 && PAD[0]>PAD[1] && PP==0)
            {I[0]=1;       /* intravascular volume overload */
            }
          if(PAD[0]<=15 && PAD[0]<PAD[1] && RPP==1)
            {I[1]=1;       /* intravascular volume depletion */
            }
          if(PAD[0]>=25 && PAD[0]>PAD[1] && PP==1)
            {I[2]=1;       /* increased pericardial pressure */
            }
          if(SVR[0]>SVR[1] && HR[0]>=90 && CO[0]<4)
            {I[3]=1;       /* vasoconstriction */
            }
          if(CO[0]>=7 && CO[0]>CO[1] && SVR[0]<SVR[1] && HR[0]>=90)
            {I[4]=1;       /* vasodilation */
            }
          if(MAP[0]<70 && MAP[0]<MAP[1] && HR[0]>HR[1])
            {I[5]=1;       /* hypotension */
            }
          if(MAP[0]>100 && MAP[0]>MAP[1])
            {I[6]=1;       /* hypertension */
            }

       /* Print to screen */

          sprintf(te,"Iteration:  %5d",iter[2]); mvwaddstr(INFOWIN,0,2,te);
          touchwin(INFOWIN); wnoutrefresh(INFOWIN);

       /* Print to log file */

          fprintf(MSGFILE,"HR %5.1f CO %5.1f MAP %5.1f PAD %5.1f SVR %6.1f PP %1d
RPP %1d
%1d%1d%1d%1d%1d%1d%1d%1d\n",HR[0],CO[0],MAP[0],PAD[0],SVR[0],(short)PP,(sh
ort)RPP,I[0],I[1],I[2],I[3],I[4],I[5],I[6],I[7]);
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      }
    return;
   }

/* STM Update -------------------------------------------------------------- */

   void stm()

   {register short p,x,vp,ht=7;
    long pc;
    double norm_sqr=0;

    for(p=0;p<P;p++)
       {s[p]=.75*s[p]+(1-.75*s[p])*I[p];
        norm_sqr+=pow((double)s[p],2.0);
        for(vp=ht;vp>0;vp--)
           {for(x=0;x<10;x++)
               {if((float)vp>(float)ht-(s[p]*(float)ht)) {pc=ACS_CKBOARD;}
                else {pc=ACS_BULLET;}
                mvwaddch(STMWIN,vp,11*p+x+1,pc);
               }
           }
       }
    if((float)sqrt(norm_sqr)>info[0]) {info[0]=(float)sqrt(1.01*norm_sqr);}
    s[P]=(float)sqrt(pow((double)info[0],2.0)-norm_sqr);
    info[0]=(float)zero_check(info[0]);
    if(mode[2]==0) {touchwin(STMWIN); wnoutrefresh(STMWIN);}
    return;
   }

/* Recruit ART2 node ------------------------------------------------------- */

   void recruit_node(n)

   short n;
   {register short i,j,k,l,p;
    flash();

    for(p=0;p<=P;p++) {w[p][n]=s[p]/info[0];}   /* recruit neuron            */
    m[n]=1; if(m[n]>m[0]) {m[0]=m[n];}          /* reset category magnitude  */
    for(k=1;k<=K;k++)
       {for(i=1;i<=A;i++)                       /* reset all instar vectors  */
           {e[i][n][k]=0;
            z[i][n][k][0]=1.0; for(l=1;l<=4;l++) {z[i][n][k][l]=0;}
           }
        for(j=1;j<=A;j++)                       /* reset all outstar vectors */
           {e[n][j][k]=0;
            z[n][j][k][0]=1.0; for(l=1;l<=4;l++) {z[n][j][k][l]=0;}
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           }
       }
    t[n]=iter[1];
    return;
   }

/* Modify ART2 node -------------------------------------------------------- */

   void modify_node(n)

   short n;
   {register short p;

    for(p=0;p<=P;p++)                        /* synaptic vector learning     */
       {w[p][n]=((s[p]/info[0])+w[p][n]*(float)m[n])/((float)m[n]+1);
       }
    m[n]++; if(m[n]>m[0]) {m[0]=m[n];}       /* increment category magnitude */
    t[n]=iter[1];                            /* time stamp the learning      */

    return;
   }

/* ART2 Pattern recognition, prediction, and learning ---------------------- */

   void ART2()

   {register short a,p,x,vp;
    short min_count,idle_node,ht=8;
    float net[A],max_net=(-999),delta;

    /* calculate neural activation */

       winner=999;
       for(a=1;a<=info[1];a++)
          {net[a]=0;
           for(p=0;p<=P;p++) {net[a]+=(s[p]/info[0])*w[p][a];}
           if(net[a]>max_net) {max_net=net[a]; winner=a;}
          }

    /* synaptic vector learning */

       if(mode[0])
         {if(max_net>=vigilance) {modify_node(winner);}
          else /* look for idle node */
            {if(info[1]<A) /* if we still have unrecruited nodes */
               { /* recruit previously unrecruited node */
                   info[1]++;
                   winner=info[1];
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                   recruit_node(winner);
               }
             else
               { /* look for idle recruited node */
                   min_count=999;
                   for(a=1;a<=info[1];a++)
                      {if(((double)m[a]/(double)m[0])<1.0/(double)A && (iter[1]-t[a])>500 &&
m[a]<min_count)
                         {min_count=m[a];
                          idle_node=a;
                         }
                      }
                   if(min_count<999) /* if we found an idle node */
                     {winner=idle_node;
                      recruit_node(winner);
                     }
                   else /* we found no idle node so modify best match */
                     {modify_node(winner);
                     }
               }
            }
         }

    /* Update screen */

       for(a=1;a<=A;a++)
          {if(a==winner){mvwaddch(ARTWIN,ht+1,a,a+48|A_REVERSE|A_BLINK);}
           else {mvwaddch(ARTWIN,ht+1,a,a+48);}
           if(a>info[1]) {net[a]=0;}
           for(vp=1;vp<=ht;vp++)
              {if((double)vp>(double)ht-(((double)(net[a]-.9)*(double)ht)/.1))
                 {mvwaddch(ARTWIN,vp,a,ACS_CKBOARD);
                 }
               else
                 {mvwaddch(ARTWIN,vp,a,ACS_BULLET);
                 }
              }
          }
       if(mode[2]==0 || mode[2]==1) {touchwin(ARTWIN); wnoutrefresh(ARTWIN);}

    /* Automatic vigilance control */

       if(max_net<vigilance) {delta=.05;} else {delta=0;}
       vigilance+=.01*(1-vigilance)-delta*vigilance;
       sprintf(te,"%9.4f %9.4f    ",max_net,vigilance);
       mvwaddstr(INFOWIN,0,25,te);

    /* Sound alarm if set */
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       if(alarm[winner]) {for(x=1;x<=1000;x++) {flash();}}

    return;
   }

/* Update ART2 category magnitude (relative frequency) -------------------- */

   void histogram()

   {register short vp,hp;
    short ht=8,width=A;
    double max=(double)m[0];
    for(hp=1;hp<=width;hp++)
       {if(hp==winner){mvwaddch(HISTOGRAM,ht+1,hp,hp+48|A_REVERSE|A_BLINK);}
        else {mvwaddch(HISTOGRAM,ht+1,hp,hp+48);}
        max=zero_check(max);
        for(vp=ht;vp>0;vp--)
           {if((double)vp>(double)ht-(((double)m[hp]*(double)ht)/max))
              {mvwaddch(HISTOGRAM,vp,hp,ACS_CKBOARD);
              }
            else
              {mvwaddch(HISTOGRAM,vp,hp,ACS_BULLET);
              }
           }
       }
    if(mode[2]==1) {touchwin(HISTOGRAM); wnoutrefresh(HISTOGRAM);}
    return;
   }

/* Adaptive Spectral Timing Expectation Memory (ASTEM) --------------------- */

   void astem()

   {register short vp,hp,i,j,k,l,x;
    short ht=8,width=A,hopeful;
    static short curr=1,prev;
    long count=0,pc;
    float g,c[4],d[4],sum=0;
    double y[A+1][2],max_hope=(-999);
    double ap[K+1],max_ap_local;
    static double max_net=(-999),max_ap_global=.001;

    /* Initialize Variables */

       c[1]=.10; c[2]=.08; c[3]=.06;
       d[1]=.05; d[2]=.06; d[3]=.04;
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    /* Synaptic reinforcement */

       if(mode[0])
         {if(winner!=999)
            {for(i=1;i<=A;i++)
                {for(j=1;j<=A;j++)
                    {for(k=1;k<=K;k++)
                        {g=(float)exp(-.5*(k-1));
                         if(e[i][j][k]&bitcon[iter[0]])
                           {e[i][j][k]^=bitcon[iter[0]]; /* reset bit */
                            if(mode[0])
                              {if(j==winner) {c[1]=.08;} else {c[1]=0;}
                               for(l=1;l<=3;l++)
                                  {z[i][j][k][l]+=c[l]*g*(z[i][j][k][l-1]-z[i][j][k][l])-d[l]*(z[i][j][k][l]-
z[i][j][k][l+1]);
                                  }
                              }
                           }
                         if(z[i][j][k][1]>=0 && z[i][j][k][1]<=.05)
                           {histo[0]++;
                           }
                         for(x=1;x<=19;x++)
                            {if(z[i][j][k][1]>x*.05 && z[i][j][k][1]<=(x+1)*.05)
                               {histo[x]++;
                               }
                            }
                        }
                    }
                }
            }
         }

    /* Let winning node predict future recognitions */

       if(winner!=999)
         {for(j=1;j<=info[1];j++)
             {for(k=1;k<=K;k++)
                 {if(j!=winner)
                    {e[winner][j][k]|=bitcon[modulo(iter[0]+k,1,K)];
                    }
                 }
             }
         }

    /* Integrate impulses from neighboring neurons */

       curr*=(-1); prev=curr*(-1);
       for(j=1;j<=A;j++)
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          {y[j][btu(curr)]=0;
           for(i=1;i<=A;i++)
              {for(k=1;k<=K;k++)
                  {if(e[i][j][k]&bitcon[modulo(iter[0]+1,1,K)])
                     {y[j][btu(curr)]+=z[i][j][k][1];
                     }
                  }
              }
           if(y[j][btu(curr)]>max_hope)
             {max_hope=y[j][btu(curr)];
              hopeful=j;
             }
           if(y[j][btu(curr)]>max_net) {max_net=y[j][btu(curr)];}
          }
       if(alarm[hopeful]) {for(x=1;x<=1000;x++) {flash();}}

    /* Calculate "predictive confidence" */

       for(x=0;x<=19;x++)
          {sum+=(float)(x+1)*.05*(float)histo[x];
           count+=histo[x];
           histo[x]=0;
          }
       if(count!=0)
         {sprintf(te,"%9.7f",sum/(float)count); mvwaddstr(INFOWIN,0,50,te);
         }

    /* Update screen */

       max_net=zero_check(max_net);
       for(hp=1;hp<=width;hp++)
          {if(hp==winner) {pc=hp+48|A_REVERSE|A_BLINK;} else {pc=hp+48;}
           mvwaddch(ASTEM[0],ht+1,hp,pc); mvwaddch(ASTEM[1],ht+1,hp,pc);
           for(vp=ht;vp>0;vp--)
              {if((double)vp>(double)ht-((y[hp][btu(curr)]*(double)ht)/max_net))
                 {mvwaddch(ASTEM[0],vp,hp,ACS_CKBOARD);
                 }
               else {mvwaddch(ASTEM[0],vp,hp,ACS_BULLET);}
               if((double)vp>(double)ht-((y[hp][btu(curr)]*(double)ht)/(max_net*.33)))
                 {mvwaddch(ASTEM[1],vp,hp,ACS_CKBOARD);
                 }
               else {mvwaddch(ASTEM[1],vp,hp,ACS_BULLET);}
              }
          }

    if(mode[2]==2)
      {touchwin(ASTEM[0]); wnoutrefresh(ASTEM[0]);
       touchwin(ASTEM[1]); wnoutrefresh(ASTEM[1]);
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      }

    /* Update interstimulus interval distribution screen */

       if(mode[2]==3)
         {max_ap_global=zero_check(max_ap_global);
          max_ap_local=0; ht=20;
          for(k=1;k<=K;k++)
             {ap[k]=0;
              for(i=1;i<=A;i++) {for(j=1;j<=A;j++) {ap[k]+=z[i][j][k][1];}}
              ap[k]/=(double)(A*A);
              if(ap[k]>max_ap_local) {max_ap_local=ap[k];}
              for(vp=1;vp<=ht;vp++)
                 {for(x=1;x<=2;x++)
                     {if((double)vp>(double)ht-((ap[k]*(double)ht)/max_ap_global))
                        {mvwaddch(ISIDIST,vp,2*(k-1)+x,ACS_CKBOARD);
                        }
                      else
                        {mvwaddch(ISIDIST,vp,2*(k-1)+x,ACS_BULLET);
                        }
                     }
                 }
             }
          if(max_ap_local>max_ap_global) {max_ap_global=max_ap_local;}
          touchwin(ISIDIST); wnoutrefresh(ISIDIST);
         }

    return;
   }

/* Job Bar Update Function ------------------------------------------------- */

   void jobbar()
   {short y;
    for(y=1;y<=58;y++)
       {if((double)y<=58.0*(double)numdone/(double)total_items)
          {mvwaddch(JOBBAR,1,y,ACS_CKBOARD);
          }
        else {mvwaddch(JOBBAR,1,y,32);}
       }
    touchwin(JOBBAR); wnoutrefresh(JOBBAR); doupdate();
    return;
   }

/* Poll Keyboard for User Input ------------------------------- */

   void kboard()
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   {short a,p,x,cc,vp,ht=7;
    short UserDone=0;
    fd_set readfds;
    struct timeval tv;
    static short once=0;
    if(!once) {FD_ZERO(&readfds); once=1;}
    tv.tv_sec=0;       /* stdin (keyboard) timeout value (seconds)      */
    tv.tv_usec=10;     /* stdin (keyboard) timeout value (microseconds) */
    FD_SET(0,&readfds);
    if((select(1,&readfds,NULL,NULL,&tv))==1)
      {do{switch (cc=getchar())
           {case 27:  switch(cc=getchar())
                       {case 65: if(p_offset<(K-1)) {p_offset++;} break;
                        case 66: if(p_offset>1) {p_offset--;} break;
                        case 91: switch(cc=getchar())
                                  {case 65: if(p_offset<(K-1)) {p_offset++;}
                                            break;
                                   case 66: if(p_offset>1) {p_offset--;}
                                            break;
                                  }
                       }
                      UserDone=1;
                      break;
            case 49:  mode[2]=0; UserDone=1; break;
            case 50:  mode[2]=1; UserDone=1; break;
            case 51:  mode[2]=2; UserDone=1; break;
            case 52:  mode[2]=3; UserDone=1; break;
            case 53:  for(a=1;a<=A;a++)
                        {sprintf(te," Pattern:     <s>et <r>eset ");
                         mvwaddstr(MSG,1,1,te);
                         mvwaddch(MSG,1,11,a+48|A_REVERSE);
                         if(alarm[a])
                           {mvwaddch(MSG,1,16,115|A_REVERSE);
                            mvwaddch(MSG,1,22,114);
                           }
                         else
                           {mvwaddch(MSG,1,16,115);
                            mvwaddch(MSG,1,22,114|A_REVERSE);
                           }
                         touchwin(MSG); wnoutrefresh(MSG);
                         for(p=0;p<P;p++)
                            {for(vp=ht;vp>0;vp--)
                                {for(x=0;x<10;x++)
                                    {if((float)vp>(float)ht-(w[p][a]*(float)ht))
                                       {mvwaddch(STMWIN,vp,11*p+x+1,ACS_CKBOARD);
                                       }
                                     else
                                       {mvwaddch(STMWIN,vp,11*p+x+1,ACS_BULLET);
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                                       }
                                    }
                                }
                            }
                         touchwin(STMWIN); wnoutrefresh(STMWIN); doupdate();
                         switch (cc=getchar())
                           {case 110: break;
                            case 114: alarm[a]=0; break; /* reset alarm */
                            case 115: alarm[a]=1; break; /* set alarm */
                           }
                        }
                      UserDone=1;
                      break;
            case 101: UserDone=1; Done=1; break;
            case 105: touchwin(INFOWIN); wrefresh(INFOWIN); break;
            case 109: touchwin(MENU); wrefresh(MENU); break;
            case 110: UserDone=1; break;
            case 115: UserDone=1; saveweights(); break;
            default:  Done=0;
                      UserDone=1;
           }
          FD_SET(0,&readfds);
         }
       while (!UserDone || select(1,&readfds,NULL,NULL,&tv)==1);
      }
    return;
   }

/* Save Weights To DOS File ----------------------------------- */

   void saveweights()

   {sprintf(te,"         Saving ...         "); mvwaddstr(MSG,1,1,te);
    touchwin(MSG); wnoutrefresh(MSG); doupdate();
    if((WEIGHTS = fopen("/scratch/rgs0497/weights","w+b")) != NULL)
      {numdone=0; total_items=(long)zero_check((double)total_items);
       numdone+=fwrite((char *)iter,sizeof(long),iter_size,WEIGHTS); jobbar();
       numdone+=fwrite((char *)info,sizeof(float),info_size,WEIGHTS); jobbar();
       numdone+=fwrite((char *)r,sizeof(float),r_size,WEIGHTS); jobbar();
       numdone+=fwrite((char *)w,sizeof(float),w_size,WEIGHTS); jobbar();
       numdone+=fwrite((char *)m,sizeof(long),m_size,WEIGHTS); jobbar();
       numdone+=fwrite((char *)e,sizeof(long),e_size,WEIGHTS); jobbar();
       numdone+=fwrite((char *)z,sizeof(float),z_size,WEIGHTS); jobbar();
       numdone+=fwrite((char *)t,sizeof(long),t_size,WEIGHTS); jobbar();
       numdone+=fwrite((char *)s,sizeof(float),s_size,WEIGHTS); jobbar();
       numdone+=fwrite((char *)alarm,sizeof(short),alarm_size,WEIGHTS); jobbar();
      }
    fclose(WEIGHTS);
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    return;
   }
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