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Analysis of the Modified MOS Wilson Current
Mirror: A Pedagogical Exercise in Signal Flow
Graphs, Mason’s Gain Rule, and Driving-Point

Impedance Techniques
Ronald G. Spencer, Member, IEEE

Abstract—A pedagogical analysis of the modified MOS Wilson
current mirror using signal flow graphs (SFGs), Mason’s gain
rule, and driving-point impedance (DPI) techniques is presented
as an exercise for undergraduate electrical engineering students
learning to analyze transistor-level circuits with multiple-feed-
back loops. While students often prefer the SFG representation
for single feedback loops, they often abandon it in favor of the
more familiar nodal analysis methods for multiple loops. Yet
these methods can be long and cumbersome and contribute little
to intuition. In an attempt to preserve the intuitive grasp of
tradeoffs, this paper presents an exercise of several well-estab-
lished analytical techniques for generating and analyzing SFGs.
The modified Wilson current mirror is used to compare three
analytical approaches: 1) fundamental laws with brute-force
algrebra; 2) fundamental laws with Mason’s gain rule; and 3)
DPI technique with Mason’s gain rule. The concepts reinforced in
this paper include: 1) tradeoffs between gain and other quantities
such as output resistance or bandwidth; 2) how Mason’s gain
rule simplifies the analysis of closed-loop gain; and 3) how DPI
techniques simplify the generation of SFGs.

Index Terms—Driving-point impedance (DPI), feedback,
Mason’s gain rule, signal-flow graphs (SFGs), small-signal anal-
ysis, transistors.

I. INTRODUCTION

WHEN teaching the fundamentals of transistor-level
circuit analysis to junior and senior level students, it

is helpful to tie concepts together into unifying frameworks
in order to avoid giving the impression the subject is full of
disjointed concepts. For instance, the topic of feedback acts
as a foundation for understanding why the output resistance
of a transistor increases when a resistor is placed between
small-signal ac ground and the source of a metal-oxide
semiconductor field-effect transistor (MOSFET) or emitter
of a bipolar junction transistor (BJT), a fact that is usually
studied before feedback. Also introduced before feedback is
the closed-loop transconductance gain for these configurations,
which has much in common with the output resistance, but
the relationship may be overlooked or underemphasized. To
the student, gain and output resistance are unrelated items,
contributing to the difficulty in understanding. However, when
feedback later ties them together in one unifying framework,
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many students are enlightened as the subject matter is suddenly
reduced to something more rational.

In [1], Sedra and Smith do a good job of making the con-
nection between theamount of feedbackand the corresponding
decreases in gain and changes in input and output resistances.
In the chapter on feedback they lead the student into an implicit
understanding of some tradeoffs; e.g., that a decrease in gain due
to feedback leads to a change in some other quantity by the same
amount. Fortunately, the students can verify the direct relation-
ship between these quantities using fundamental analytical tech-
niques such as the short-circuit and test-voltage methods, thus
reinforcing this understanding. But in addition to establishing
a direct relationship between these quantities, the results sug-
gest that the knowledge that is embodied by the methods them-
selves is somewhat redundant and carrying out each one con-
stitutes unnecessary work, which may be simplified by a basic
understanding feedback. Many find the unifying framework sat-
isfying, as it maintains a degree of coherence in a topic that is
potentially very illusive.

All is well until the student encounters a circuit with mul-
tiple feedback loops like the modified Wilson current mirror [2].
Here, the output resistance given by Sedra and Smith is not quite
like that of the well-known cascode structure that is understood
from the given lessons on feedback. The immediate question
from students, and understandably so, is Why? It is the objec-
tive of this paper to answer this question and propose a pedagog-
ical exercise for understanding and gaining confidence in signal
flow graph (SFG) generation and the calculation of closed-loop
quantities such as gain and output resistance. The objective is to
reinforce the notion that generation and analysis of SFGs should
rarely be abandoned, Mason’s gain rule [3] extends the analyt-
ical framework presented by Sedra and Smith, and the SFG may
be generated systematically, using the driving-point impedance
(DPI) method [4], [5]. Several concepts may be reinforced from
such an analysis: 1) that the conservational laws of feedback
apply to circuits with multiple feedback loops; 2) that Mason’s
gain rule can simplify such analyses; and 3) that DPI techniques
may be used to systematically generate SFGs.

II. BRUTE-FORCEANALYSIS: SHORT-CIRCUIT AND TEST

VOLTAGE METHODS

The modified NMOS Wilson current mirror is shown in
Fig. 1. It consists of four transistors, two of which are gate-drain
connected (M2 and M3). As all current mirrors are ideally
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Fig. 1. The NMOS modified Wilson current mirror.

Fig. 2. Small-signal circuits of the modified Wilson current mirror: (a) left
side (M1 and M3) and (b) right side (M2 and M4).

designed to do, input current flowing down the left side is
amplified (or attenuated) and mirrored to the right side.

For small amplitude ac signals, the left and right sides may
be modeled as shown in Fig. 2. Transistor M3 is approximated
as a resistor with a value of , where and
are the transconductance and output conductance of M3, respec-
tively, and M1 is modeled as a voltage controlled current source
with a transconductance gain of and output resistance,
as shown in Fig. 2(a). Likewise, M4 and M2 may be modeled
as a nonideal transconductor and source degeneration transre-
sistance, respectively, as shown in Fig. 2(b). Although shown to
be two separate circuits, they are, of course coupled.

Several feedback loops may be identified, two of which are
most significant: 1) the source degeneration loop that exists due
to the transresistance that results from M2 being gate-drain con-
nected between the source of M4 and ac ground and 2) the loop
that is made by all four transistors. Another less significant loop
exists due to the finite output resistance of M4. Because there
are multiple feedback loops, Mason’s gain rule is required to an-
alyze the circuit from within a feedback framework. The output
resistances of the gate-drain connected transistors, M2 and M3
may be neglected for simplicity because the transconductance
is much greater than the output conductance, but the exact ex-
pression is carried through in this analysis for the sake of com-
pleteness.

Next, the closed-loop gain and output resistance will be found
using two brute-force techniques that do not make explicit use

Fig. 3. The current mirror with ac grounded output for finding closed-loop
current gain. The left side, which is the same as that shown in Fig. 2(a), is not
shown.

of the concepts of feedback: the short-circuit method for gain
and the test-voltage method for output resistance.

A. The Short-Circuit Method for Finding Closed-Loop Gain

The short-circuit method for finding thetransconductor gain
involves grounding the output and finding the ratio of output
to input current. By shorting the output to ac ground, the con-
tribution from the finite output resistance, which could distort
the measurement of the feedforward action, is eliminated. Fig. 3
shows the grounding of the output on the right side of the cur-
rent mirror for this purpose.

This method is more or less a brute-force way of calculating
the closed-loop gain, regardless of how one goes about it.
Using either straightforward substitution or matrix techniques,
the node voltage method can require quite a few calculations.
Using the circuit in Fig. 2(a), two independent node-voltage
equations may be written: one at (1) and the other at
(2). The transconductances of M1 and M3 are denoted by
and , respectively, and the output conductance of M1 is
denoted by

(1)

and

(2)

By substitution (1) and (2) are combined to obtain (3), which
expresses in terms of the input current, transconductance,
and output resistance of M1 and M3, and the source terminal
voltage of M4

(3)

Making the assumption , which is neither un-
realistic nor necessary, the effect of M3 is eliminated altogether

(4)

Moving on to the right side of Fig. 3, two more independent
equations may be written using the node voltage method and
Ohm’s law

(5)

where the output is shorted to ac ground to obtain the short-
circuit current gain.
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Combining (4) and (5) yields a good approximation of the
closed-loop current gain,

(6)

It is instructive to note that the denominator of the closed-loop
current gain is unity plus a combination of feedback and feedfor-
ward terms, which will be shown to be consistent with Mason’s
gain rule in the next section. In the meantime, it is sufficient to
note that the numerator is the open-loop current gain

(7)

i.e., the current gain when is ac grounded, again neglecting
in comparison to .

B. The Test-Voltage/Test-Current Methods for Finding
Closed-Loop Output Resistance

The test-voltage/test-current methods are two brute-force
methods for finding closed-loopoutput resistance. Without
feedback, these methods are quite simple. However, when
feedback is present, they constitute more effort than Mason’s
gain rule and are prone to error. As will be shown in the next
section, knowing the open-loop output resistance and feedback
structure can be used to obtain a good approximation of the
closed-loop output resistance by inspection. But first, a review
of the brute-force methods is in order.

The test-voltage method requires that 1) all independent
sources be zeroed1 and 2) a test voltage be applied to the node
under consideration, to calculate the resulting test current.
Alternately, the test-current method requires that a current
be applied to the node under consideration to calculate the
resulting voltage. In either case, the ratio of test voltage to test
current determines the resistance looking into the node.

Fig. 4 shows the test-voltage method applied to the right side
of the current mirror. Node voltage and Ohm’s law generates
two equations

(8)

and the closed-loop output resistance may be obtained from (4)
and (8) where

(9)

It should be noted that the closed-loop output resistance is
the open-loop2 output resistance, times the same quantity
that the open-loop current gain wasdivided by to obtain the
closed-loop current gain. This result reinforces the fact that the
effects of multiple feedback loops are conservational. Whereas
gain was divided, output resistance was multiplied,3 by the same
quantity.

1Replaced by their internal impedance.
2Open-loop is defined asV being ac grounded.
3Multiplied rather than divided due to series sampling.

Fig. 4. The current mirror with a test voltage applied to the output for finding
closed-loop output resistance. Additionally, the current input is zeroed, making
V equal toV .

The above analyses require a considerable amount of effort
for analyzing such a simple circuit, and several steps were
omitted in order to emphasize the flow. When performing
substitutions and rewriting equations, errors can render the
results inaccurate. There is a better way—signal flow graphs
and Mason’s gain rule.

III. FEEDBACK ANALYSIS USING SIGNAL FLOW GRAPHS AND

MASON’S GAIN RULE

In the simplest case, with only one feedback loop, theamount
of feedbackof a system is given by 1 where is the
open-loop gainof the amplifier and is the feedback factor.
Faced with multiple loops, one turns to Mason’s gain rule [3],
which requires an SFG from which the closed-loop gain may be
obtained in a perfunctory manner. It is this feature that makes
Mason’s gain rule so powerful; a form of knowledge is encap-
sulated in the rule, which saves time.

Mason’s gain rule [3], [6] states that the closed-loop gain
equals a weighted-sum of forward path gains divided by, the
graph determinant

Gainclosed loop (10)

where is the th forward path gain and is the corre-
sponding path cofactor. The graph determinant is defined
as unity minus the sum of all loop gains, plus the sum of
all combinations of two nontouching loop gain products,
minus the sum of all combinations of three nontouching loop
gain products, etc. Theth cofactor equals the determinant,
excluding any loops that touch theth forward path. For simple
graphs the path cofactors are often unity.

Generation of the SFG and application of Mason’s gain rule
for a given circuit may proceed in six steps.

1) Identify and write the independent equations that describe
the circuit using: 1) Ohm’s law; 2) Kirchhoff’s current
law (KCL); and/or 3) Kirchhoff’s voltage law (KVL).

2) Construct the SFG from the independent equations.
3) Find the forward path gain—the direct path gains from

input to output weighted by the path cofactors. If there
are more than one input to the SFG, superimpose each
stand-alone contribution (an example is shown in the next
section).

4) Find , defined as unity minus the (sum of all loop gains,
minusthe sum of all product combinations of two non-
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Fig. 5. Approximate SFG of the modified Wilson current mirror in terms of low-level small-signal primitives: (a) left side (M1 and M3) and (b) right side (M2
and M4).

touching loop gains,plus the sum of all product combi-
nations of three nontouching loop gains,minus… etc.).

5) Divide the forward path gain by to obtain the
closed-loop gain.

6) Use to determine other closed-loop quantities in the
circuit using the respective open-loop quantities.4

These steps may be demonstrated as follows. The indepen-
dent equations obtained in the previous section for the left side
[see (1), (2), and (4)], may be used to construct Fig. 5(a). The in-
dependent equations obtained for the right side (5) may be used
to construct Fig. 5(b). Using the entire SFG in Fig. 5, the de-
nominator may be constructed by inspection. In this case,is
found by subtracting three loop gains from unity

(11)

Realizing that the open-loop current gain is the gain of the
path directly from the input to the output, the closed-loop gain
is given by

(12)

where and is unity. Notice that this equation
is identical to that obtained by the short-circuit method in (6).

Knowing that the effects of feedback are conservational,
the closed-loop output resistance may now be written by
inspection. Knowing that the open-loop gain was divided by,
the closed-loop output resistance is found by multiplying the
open-loop output resistance by

(13)

which agrees with the test-voltage method (10), but required no
algebra.

Arriving at (12) and (13) by Mason’s gain rule is simpler than
the brute-force methods. The savings come about from Mason’s

4However, some knowledge of the effects of feedback is required to determine
whether to multiply or divide by�.

gain rule, rather than carrying out the algebra directly. However,
the same independent equations are still required toconstruct
the SFG, and the appropriate method for determining each equa-
tion (KCL, KVL, nodal analysis, or Ohm’s law) is still a matter
of choice and experience. In other words, the SFG is not yet
generated in a perfunctory manner.

IV. SYSTEMATIC GENERATION OF AN EQUIVALENT SIGNAL

FLOW GRAPH USING THE DRIVING-POINT IMPEDANCE

TECHNIQUE

In the previous section, Fig. 5 was generated by node voltage
and other equations for the modified Wilson current mirror,
which then required some algebraic manipulation to obtain
the simplest flow graph. The architecture uniquely determined
whether KVL, KCL, or nodal analysis was most appropriate for
a given instance. In order to assimilate this part of the analysis,
it is helpful to employ the DPI technique for systematic genera-
tion the SFG, which is equivalent in terms of closed-loop gain.

There is one tradeoff to this approach which, when prop-
erly understood, is not unreasonable. To understand the impli-
cations of such systematically generated graphs, one must first
look at the SFG that wasnot obtained by the DPI technique in
Fig. 5. The process of writing nodal equations and using one’s
own knowledge of the architecture to perform the algebraic ma-
nipulation does the following: 1) simplifies the flow so as not
to express unnecessary node voltages (, for example) and
2) keeps the SFG “atomic.”5 For example, each gain block in
Fig. 5 was one of the following fundamental small-signal cir-
cuit parameters: , , , , , and . The advan-
tage of such a SFG is that the determinant,, is the celebrated
“amount of feedback” quantity which may be used to obtain ei-
ther the closed-loop gain or output resistance directly from the
corresponding open-loop quantities. In short, this buys a form
of signal flow that is fundamental, at the expense of having to
perform additional substitution and algebraic manipulation.

Alternately, the DPI technique allows one to obtain the SFG
in a more perfunctory manner. However, the determinant of
the resulting graph will not always be “atomic.” Although the
closed-loop gain obtained by Mason’s gain rule may require
some manipulation to reduce it to a form in which the open-loop

5In terms of fundamental, low-level, small-signal ac circuit parameters; gran-
ular.
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gain and the atomic determinant are evident, the algebraic ma-
nipulation is shifted to single equations, rather than searching
for the appropriate substitutions and then simplifying. Further-
more, some degree of algebraic processing is built-in to the DPI
SFG, which occasionally eliminates the need for algebraic ma-
nipulation altogether.

The DPI technique involves two equations at every dependent
node [5]. One is written for the short-circuit current (SCC), and
another for the DPI. The SCC is the sum of all currents entering
the node when shorted to ac ground. Thus, a current leaving
the node would be negative. To make the equations suitable
for generating the SFG, neighboring connections may be repre-
sented as voltage-controlled current sources (VCCSs) with pro-
portionality constants equal to the respective admittance, since
the node is hypothetically ac grounded.6 The resulting depen-
dent current sources may then be combined to generate the SCC.
This eliminates the computational “back action,” or “loading
effects” that are present in the node voltage method.7 Subse-
quently, the local DPI is determined by taking the parallel com-
bination of all impedances leading out of the node. Finding the
DPI is very straightforward due to the inclusion of onlylocalad-
mittances and gives one an immediate feel for the gain leading
into the node. Finding the SCC is also straightforward due to
being solely determined by local admittances and neighboring
node voltages. The resulting equations end up being relatively
simple and may be used to construct an SFG by multiplying the
SSC by the DPI to obtain the given node voltage8

SCC DPI (14)

Once the SFG has been obtained, approximations may be made
as appropriate and Mason’s gain rule may be applied.

Four equations may be written for Fig. 2(a)—two equations
for each node. The SCC at is the sum of the small-signal
input current and the current contribution from . The cor-
responding DPI is the parallel combination of all resistances
leading out of

SCC

and

DPI (15)

The SCC at is the current contribution of , minus the
voltage-controlled current of M1. The corresponding DPI is the
parallel combination of all resistances leading out of

SCC

and

DPI (16)

An SFG may be constructed from these equations, as shown in
Fig. 6, where SCC and SCC

6A concept similar to current leading into the virtual short of an operational
amplifier via a resistor.

7In fact, the DPI method may be derived from the node voltage method by
separating the back action from the forward action.

8This equation reduces to the familiarV = V g R for a single-stage
amplifiers whereV g represents SCC andR represents DPI.

Fig. 6. DPI-generated SFG of the left side.

DPI . Four more equations may be written for Fig. 2(b). The
SCC at is the current contribution from plus ,
with ac grounded, and the DPI is the reciprocal of conduc-
tances leading out of , where is the conductance looking
into the source of M4

SCC

and

DPI (17)

The SCC at is the current contribution from minus the
voltage-controlled current of M4. The corresponding DPI is the
parallel combination of resistances leading out of

SCC

and

DPI (18)

These equations may be used to construct an SFG of the
right side of the modified Wilson current mirror, where

SCC DPI and SCC DPI (Fig. 7).
At this point, Figs. 6 and 7 could be joined and Mason’s

gain rule applied, but these SFGs may be simplified. The SFG
in Fig. 6 is a dual-input single-output graph with one feed-
back loop, which may be compressed. The resulting feedfor-
ward graph will be easier to deal with in the final application
of Mason’s gain rule. To rearrange it, may be expressed
as a superposition of the stand-alone contributions fromand

. Each term is the product of one input and the stand-alone
closed-loop gain of that input, which may also be obtained by
Mason’s gain rule

Fwd.Gain

DPI DPI

DPI DPI
(19)

and
Fwd.Gain

DPI

DPI DPI
(20)
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Fig. 7. DPI-generated SFG of the right side.

Fig. 8. Simplified DPI SFG of the modified Wilson current mirror. The last gain block was added to provide the correct polarity of the current mirror output as
defined in Fig. 1.

where the same approximation made in earlier sections was
made, i.e., . Finally

(21)

The right SFG is simplified by setting , which is
necessary to obtain the short-circuit current gain. Now a new
SFG may be constructed that combines both sides of the current
mirror and is easy to work with (Fig. 8). Mason’s gain rule then
produces the following equation in a single shot:

DPI
DPI

(22)

which is identical to (6) and (12), yet was obtained in a more
perfunctory manner. There are two forward path gains

and DPI in this graph,
and both path cofactors are unity. It is instructive to note, how-
ever, that the determinant of the DPI SFG, , is not the de-
terminant of the simplified atomic SFG.

V. CONCLUSION

This paper presented an exercise for finding the closed-loop
gain of transistor-level circuits with multiple feedback loops

such as the modified MOS Wilson current mirror. Three
methods were presented: 1) fundamental laws with brute-force
substitution and algebraic manipulation; 2) SFG constructed
from the fundamental laws followed by Mason’s gain rule;
and 3) SFG constructed from the DPI technique with Mason’s
gain rule. It was shown that the second method was easier than
the first, since closed-loop gain and output resistance may be
obtained graphically from the SFG. Yet the SFG in 2) was
not obtained by inspection and therefore required algebraic
manipulation to obtain the necessary independent equations.
The third method was shown to be more systematic than
the first and second because all parts were carried out in a
perfunctory manner as the algebraic manipulation was shifted
to single equations.

The results also reinforce the fact that the effects of feedback
are conservational; i.e., that the loss of gain due to feedback
improves some other quantity such as output resistance. In the
case of the current mirror, information is conveyed in the current
domain. In such a circuit, the output resistance should be high
compared to the input resistance of the next stage. Therefore, the
desiredchange in output resistance is an increase. Indeed, the
effects of feedback were shown to increase the output resistance
by , which may be greater than unity. This demonstrates that
the effects of feedback can be beneficial.

In summary, this exercise serves well as a supplement for
teaching analysis of transistor-level circuits with multiple feed-
back loops and complements Sedra and Smith’s chapter on feed-
back. Since Sedra and Smith present only single-loop feedback
systems, this analysis could not have been carried out entirely
within the context of feedback without introducing Mason’s
gain rule, and the DPI technique makes SFG generation more
systematic and perfunctory.
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