Richard Patterson - August 13, 2006 - Beginner's SQ1 Solution

==========================================================================================
A quick brief on the common square1 notation. 1= 30
degrees (an edge piece), 2= 60 degrees (a corner piece). 3= 90
degrees (corner piece+edge piece [or] three edge pieces).


/(x,y)/(-x,-y)/

/=turn the right half
x=U face clockwise
y=D face clockwise
-x=U face counterclockwise
-y=D face counterclockwise

Ok, so in terms of a beginner's solution:

==========================================================================================

1. Turn into a cube

Explanation: This has two substeps. a) [intuitive] place 
6 corners on one side (star shape) | b) recognize 1 of 5 
possible occuring cases and apply algorithm.

Source:

http://www.geocities.com/jaapsch/puzzles/square1.htm#s1


==========================================================================================

2. Seperate U&D corners [intuitive*] (all the white corners 
on one face, all the green on the opposite)

*visualize edge/corner pairs as pieces of a 2x2 for seperation.

Source:

http://www.cubezone.be/square1step2.html

==========================================================================================

3. Seperate U&D edges (After you do this, it should be
all green on one face, and all white on the opposite
face.)

Alg for this Step(3):
(0,-1)/(-3,0)/(4,1)/(-4,-1)/(-3,0)/(6,0)/(0,1)

What it does:
Seperates DF&UB edges. You might have to repeat this
a few times depending on how many edges need to be
seperated.

Source:

http://www.cubezone.be/square1step3.html

==========================================================================================

4. Permute Corners

Alg for this step(4):
/(3,-3)/(3,0)/(-3,0)/(0,3)/(-3,0)/

What it does:
Switches UFR<->UFL corners

Source:

http://www.cubezone.be/square1step4.html

==========================================================================================
NOTE:

For steps 5 and 6, algorithms will only work if:

a) The middle layer is broken (not square)
b) The middle layer is not broken, but looks like this:
	
|  |    |    

If the case that has occured is on the up face, but the middle 
layer looks like this: 

|    |  | 

you must do one of two things:

a) flip middle layer: (1,0) / (6,6) / (-1,0)
b) break middle layer: / (6,0) / (6,0) / (6,0)

==========================================================================================

5. Observe edge parity. (if there is one) Here are
the possibilities:

a. No Parity (move on to step 6) Standard edge cycles
on each face

b. Double Parity- Parity error on each face
fix: (1,0)/(-1,5)/(1,-5)/

c. Evil Parity- Parity error on one face
fix: (3,3) / (-1,0) / (2,-4) / (4,-2) / (0,-2) / (-4,2) / (1,-5) / (3,0) / (3,3) / (3,0)

Source:
http://www.cubezone.be/square1step5.html

==========================================================================================

6. Solve edges (You only need one alg to start here)

Alg:( 1, 0)/( 0,-3)/(-1, 0)/( 3, 0)/( 1, 0)/( 0, 3)/
(-1, 0)/(-3, 0)/

What it does: Cycles UR->UB->UL edges counter
clockwise

Source:

http://www.cubezone.be/square1step5.html
==========================================================================================

7. Solve Middle Layer

There are 3 cases:

a) flip middle layer: (1,0) / (6,6) / (-1,0)
b) square middle layer: / (6,0) / (6,0) / (6,0)
c) flip/square middle layer:  (6,0) / (0,6) / (-1,-5)

==========================================================================================

    Source: geocities.com/rubiks_galaxia