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Abstract:  
 
Wavelet analysis is a time or space-scale representation and analysis of signals which has found 
a wide range of applications in applied mathematics, physics and engineering in the last few 
years. In order to get a feeling for it and to understand its success, some basic facts are provided. 
A glimpse of the chronological evolution and a survey of the various applications are given. 
Finally, an attempt is made to compare and contrast wavelet transform with Fourier transform, 
which is usually seen as a universal tool.   

 

1.1 A BRIEF HISTORY:  
              
The history of wavelets can be traced to many ideas developed in pure and applied mathematics, 
Physics and Engineering. Way back in 1910, the mathematician Alford Haar was the first to produce 
a complete orthonormal set for the Hilbert Space 2 ( )L R  the elements of which are the in a sense 
building blocks of wavelet theory. However the interest in the field activated only during early 
1980’s, beginning with the work of J. Morlet (1982). The results obtained by him though 
encouraging were not well received by the mathematical community. It was A. Grossman (1984) 
who laid a firm foundation to the theory. His work besides gaining mathematical respectability 
triggered active research in the field. The main breakthrough came only in the late 1980’s with an 
axiomatic treatment of Multiresolution analysis by Mallat and Meyer (1986) and the method of 
construction of orthonormal wavelets having compact support by Ingrid Daubeachies (1987). It is 
because of the contributions made by these scholars and many others wavelets theory stands today as 
a discipline in its own right sharing borders with scientific computing, signal and image processing, 
Data compression ( to name a few). It has been one of the major research domains in science and 
Engineering in the last decade and is still undergoing rapid growth. 
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1.2 BASIC FACTS:   
                    

    
                                    Demonstration of (a) a wave and (b) a wavelet 
Basic wavelet theory includes concepts from real and complex analysis linear algebra, Fourier 
analysis  and Numerical analysis. In this respect it mimics traditional as well as modern mathematics, 
which is becoming increasingly interdisciplinary. The approximation (the representation) of an 
arbitrary known or unknown function f by means of special functions can be viewed as a central 
theme of wavelet theory. So one of the FAQ’s (frequently asked questions) in wavelet theory is when 
and in what sense it is true that k k

k Z

f c φ
∈

= ∑ ------- (1)  This equation, figuratively speaking is a 

decomposition as well as reconstruction formula and forms a basis of many applications of wavelet 
theory. What we mean by this is “given a function f we can enc ode it by means of }{ kc and equation 

(1) allows us to reconstruct it from kc 's and kφ 's the so called basis functions. Some basis functions, 
in particular wavelet bases are found to do this job more efficiently than others. There are two ways 
of representing a function (in wavelet theory function and signal are used interchangeably) analog 
and digital. Analog refers to continuous and digital refers to discrete. Any function in analog format 
can be converted to digital form by sampling at evenly spaced points. Physically we can think of an 
audio signal e.g. a piece of speech or music and a. visual-signal (still or moving) e.g. B&W (color) 
photograph, a finger print or moving image on a T.V. screen. 
             
In order to fix ideas, we consider a function Cf →ℜ: assuming that f is differentiable infinitely 
many times in an nhd of ℜ∈a . Such a function can be approximated (can infact be represented 
accurately) under suitable conditions using Taylor’s series. In the general set up depending on the 

situation at hand one chooses a family of basis functions, { } Iα α
φ

∈
 I may be discrete or continuous. 

An approximation of        
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f  by means of αφ 's then has the form   ∑
=

=
N

k
kk tctf

1

)()( αφ   with coefficients kc  to be determined 

and a representation of f has the form ∑
∈

=
I

tctf
α

ααφ )()(  --------------------- (2) 

or it appears as an integral   ∫=
I

tcdtf )()()( αφαα  ---------------------------- (3) 

In addition to Taylor’s expansion Tchebyschev’s approximation also deserves mention in this 
context. It may be noted that the coefficients are easy to determine if the basis functions are 
orthonormal. Before we proceed any further another issue needs to be addressed namely 
“discretization of the function , from the stand point of application” ,It goes without saying that for 
the numerical work discretization becomes essential and can be accomplished by computing the 
values of the function at discrete places t = kr ( 0, >∈ rZk   fixed ). The most important tool in the 
construction of wavelet theory is Fourier –analysis. Any reasonable function ( π2 -periodic) is 

actually represented by its Fourier –series.  ∑
∞

∞−

ikt
k ec  The system Zkete ikt

k ∈= ,)(  is already 

discrete. Incidentally, in wavelet theory Cf →ℜ:  is referred to as time –frequency signal.  Using 
this terminology there are only integer frequencies k. If we discretise with respect to the time t also 
the discrete Fourier transform (DFT) is obtained. The DFT has received an enormous boost 
especially after the invention of a fast algorithm, known by the name Fast Fourier Transform (FFT). 
 

 

1.3 FOURIER TRANSFORM V/S WAVELET TRANSFORMS:  
 
Fourier transform on R has its goal, the analysis of the signal Cf →ℜ:  using { }αe  where 

tiete α
α =)( as basis functions. If 2 ( )f L R∈ then ∫

∞

∞−

−= dtetff tiα

π
α )(

2
1

)(ˆ   is called the Fourier 

transform of f. An individual value )(ˆ αf  may be viewed as the complex amplitude by which the 
frequency α  is present in the signal. But there is no localization w.r.t. ‘t’ meaning, one cannot tell 
from )(ˆ αf  at which time the ‘ note ‘α  was played . Thus signal analysis using FT is for from 
satisfactory. In the field of image processing, one would like to make use of two – dimensional FT. 
Imagine e.g. a picture of landscape. In different areas of the image you see different textures (a 

forest, a lake, clouds and so on). These textures can be analyzed by using Cf →ℜ2:ˆ  of this image. 

Again from looking at f̂  you might be able to tell which kinds of texture occur in the original 
picture, but definitely not where. So what is clear from the above discussion is, FT based analysis of 
signal is global in character. It is unable to provide information regarding different aspects of the 
signal locally. Our ultimate goal should therefore be to search for a transform which gives local 
analysis of time / space and frequency. Localized analysis of a signal Cf →ℜ:  can be achieved 
through the so called Windowed (Gabor) Fourier transform      (WFT). The WFT can be described as 
follows. 
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One begins by choosing a window function 0: ≥ℜ→ℜg defined by 2

2

2

2
1

)( σ

σπ

t

etg
−

=  σ  being 

a fixed parameter. (Gaussian function).The function g should have “total mass” 1 and be more or less 
concentrated around t = 0. This simply means, it should have compact support containing 0 or at least 
a maximum at t = 0 and fast decay when ∞→t , for  a given ℜ∈s  the function )()( stgtgs −=  
represents the window translated by the amount s. We define the window transform of f by 

∫
∞

∞−

−−= dtestgtfsG ti
f

α

π
α )()(

2
1

),(  for practical purposes; one of course has to resort to a 

discrete version of WFT. Though WFT provides local analysis it is not quite adequate since it uses a 
window of fixed width. Another serious limitation of WFT according to the famous Heisenberg 
Uncertainty Principle [C] a theorem in Fourier analysis that plays an important role in quantum 

mechanics is that a signal f and its FT f̂  cannot be simultaneously localized at 0== αt . It is 
against this background wavelets came into the picture. Wavelets are structured for fast algorithms 
from the outset and can be tailored suitably to meet the requirements. This explains why wavelets 
become a powerful tool in various application fields within a span of 10-15 years. The basic model of 
the wavelet transform works on Cf →ℜ:  also. One begins by choosing a suitable analyzing 

wavelet also called the mother wavelet. Dilated and translated copies (2 )k jφ −  of ϕ  are called 
daughter wavelets.  

    
 
The continuous wavelet transform (CWT) Cw f →ℜ×ℜ:  of f is defined by 

∫
∞

∞−







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 when it comes to the field of applications; we discretise the 

domain by choosing ),(2  2 Zkrkba r
r

r
r ∈== . This corresponds to sampling (dynamic sampling) 

co-ordinates (a, b) on a grid which allows in an optimal way the precise localization of the high 
frequency occurring in the processed time signal f. The systematic exploitation of DWT leads to the 
so called multiresolution analysis (MRA) and Fast Wavelet Transform (FWT) that goes into it. MRA 
is the essential ingredient for efficiently extracting information about the signal. 
           
Wavelets are grouped into families (selected few). These are in order of appearance: 

1)  Haar wavelet 
2)  Morlet wavelet 
3)  Symmlet  
4)  Meyer Wavelet 
5)  Daubeachies Wavelet. 
6) Coiflet 
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       Wavelet families: (a) Haar (b) Daubechies-4 (c) Coiflet (d) Symlet (e) Morlet 
       (f) Meyer (g) Mexican Hat 

 
 
 
1.4  HAAR WAVELET:   
 
(By way of illustration) 
Many aspects of WaveletTheory can be observed and understood by studying the oldest and indeed 
the simplest wavelet of all and so will serve as a handy tool for illustrative and educational purposes.  

The Haar scaling function is the box function 
1  x [0,1)

( )
0  elsewhere

xφ
∈

= 


 

  The Haar wavelet is the following simple step function 
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The Haar scaling function and wavelet function are pictured below : 
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This has compact support. Obviously ∫∫
∞

∞−

∞

∞−

==   1)(  ,0)( 2xdxx ψψ  it is well localized in the time 

domain but unfortunately discontinuous. The FT of ψ  is computed as follows  
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One might observe that it is reasonably localized but the discontinuity of ψ̂  causes slow decay as 

∞→α  Using ψ  as a template we now generate 





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−
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, ψψ  and state a theorem  

(For proof see [c]) kr ,ψ  form an orthonormal basis of )(2 RL . Had the Haar family been found 

satisfactory, other wavelet construction together with MRA framework would have been superfluous. 
However the frequency localization of this wavelet is so bad, the improvements had been sought for. 
After successive attempts the simplest wavelet constructed from Daubachies family though not 
peace-wise linear is related to Haar family in some weak sense. It is therefore considered next in line 
to Haar because it is continuous orthonormal with shortest support. Haar wavelet has compact 
support but discontinuous. The Shannon wavelet is smooth, all its derivatives exist and continuous 
but its support is R. Since these wavelet families are at the far ends of support and continuity spectra 
neither is ideal for use in applications. Rather some sort of compromise between compact support 
and smoothness is needed and one was discovered by Ingr id Daubauchies (1987) [A]. 
 

 

1.5 WAVELETS IN GENERAL: 
 
Wavelets have certain properties that distinguish them from more traditional representation of 
functions. 
1) Wavelets series approximates much more accurately than Fourier series 
2) Wavelet approximation does not cost more to calculate than an ordinary Fourier approximations. 
3) The terms in wavelet series are orthogonal to one another (just like the terms of Fourier series). 
This means that information carried by one term is independent of the information carried by any 
other term. Numerically it means neither computing cycles nor storage are wasted when wavelet 
series is calculated or stored in a computer. 
4) Compactly  supported wavelet basis functions can model local behavior efficiently, because they 
are not constrained by properties of the data far away from the location of interest. 
5) Multiresolution or scalable mathematical representation may provide a simpler and more efficient 
representation than conventional representations. 
6) Computational complexity of 

1) DFT is O ( 2N ) 
2) FFT is O ( NN log ) 
3) DWT is O (N) which is measure of number of elementary operations 
needed to solve a problem. 
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1.6 APPLICATIONS OF WAVELET THEORY: 
 
The invention of wavelets is directly connected with practical applications. The fact that analytic 
properties of wavelets are decidedly more intricate than those of pure harmonics αe , renders them 
less useful for the working mathematicians (but things are beginning to change). The two applied 
fields where wavelets have been used with greatest success are signal analysis and image processing. 
Under the term processing, purification, filtering (de-noising), efficient storage, retrieval and 
transmission of time-signal and image data and above all their compression. Recent advances in 
Wavelet theory, have shown that, wavelets due to their coherent properties, can be successfully used 
to find numerical solutions to differential and integral equations.  
 

1.7 CONCLUSION:   
             
Wavelets have gained enormous popularity in Mathematics and Engineering. It is sufficient to note 
that there are currently more than 10,000 subscribers to the monthly e-magzine  “WAVELET 
DIGEST".  There are already hundreds, perhaps thousands of papers relating to wavelets. It is also 
not necessarily up-to-date because papers in the field are still being published at a rapid-pace. Vast 
amounts of more current information can be found on entering the query “Wavelets" into Google , the 
favorite internet search engine. At the same time tailoring concrete wavelet systems to specific 
applications is still a challenge especially in more than one dimension to the current and future 
researchers. As a general conclusion, it is fair to say that the wavelet techniques have become part 
and parcel of the mathematic ians as well as engineers tool-kit. Thus we may safely bet that wavelets 
are here to stay, and that they have a bright future. 
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