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Abstract:  
 
Approximation theory developed as an independent discipline dealing mainly with 
representation/approximation of functions and their properties.  The development of 
enormous amount of computing ability in recent decades, has given a new-thrust, 
heralding a rejuvenation of the theory and reinforcement of its techniques.  The birth of 
Wavelet theory has helped interpret many of the concepts and formulations, in view of the 
changing scenario in the field of applications.  The purpose of this article is to review the 
traditional methods of Approximation theory and introduce and highlight recent advances, 
under the framework of Wavelet theory, and show how it can be treated in a unified way. 
An attempt is made to focus on related topics e.g.; Interpolation, Least square 
approximation, Multi-resolution, B-splines and Coiflets etc. 
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4.1 Introduction: 
 
Every measurement whether manual or mechanical (whether the result obtained from an 
impression of the human eye or ear or from a highly sophisticated instrument), it is 
merely an approximation. We know and our computing machines know, only a finite 
number of decimal places, in a numerical representation of a distance, weight, force, 
temperature, and a host of other physical quantities and their derivatives. The eye has a 
limited resolving power and the ear has a limited frequency response and these 
limitations prevent us in achieving mathematical accuracy in measurements of all types 
whether human or instrumental. These limitations are not only due to “manufacturing 
defects”(biological or mechanical) as Heisenberg’s Uncertainty Principle tells that they 
are inherent in the essence of things and some compromise(trade-off) between precision 
and mathematical convenience; perception and reality; reason and observation; is 
unavoidable. The certainty of error in every measurement, in every physical phenomenon 
or a theoretical model of that, emphasizes the importance of knowing how accurate a 
particular approximation can or should be. In some applications, the best approximation 
is not always the most desirable one. It may be computationally expensive or might not 
share certain essential features of the problem at hand. So the problem is how well one 
can construct an approximation which is good (at least good enough”) but not necessarily 
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the best. Other things being equal, a better approximation is preferred to a worse one. For 
a fixed expenditure of computational resources, measurements and analyses expressed in 
terms of “compactly supported” wavelets give a better approximation to speech signals, 
turbulence and other transient and localized phenomena than conventional methods. 
Recent studies on wavelets have established, beyond anybody’s doubt that wavelet series 
approximate abrupt transitions much more accurately than Fourier series, which 
otherwise, reproduce perfectly steady and stable signals. If one method produces a much 
better approximation than another, then  fewer data points will be required to provide the 
desired solution accurately leading to “data compression” which has reduced dramatically 
the cost  of storing and sending information from anywhere to anywhere on the planet.  
Moreover, wavelet approximation does not cost more to calculate than an ordinary 
Fourier approximation. Today, life and Universe depend more on approximations than 
ever before and so do Science and Technology and it goes without saying that each one 
of us is dependent on technology for sustaining our life-style and possibly life itself.        
 
 
4.2 Genesis of the theories:  
 
It is common knowledge that functions are basic mathematical tools for describing and 
analyzing physical phenomena. However, it is very rarely that functions are known 
explicitly. One of the basic ideas and philosophies of Approximation and Wavelet 
theories is to represent an arbitrary function in terms of other functions which are nicer, 
simpler, more familiar and more easily computable. There are at least two approaches to 
Wavelet theory, the first is the interpolation of Wavelet transform as a time-frequency 
analysis and the second approach uses the Wavelet transform as a mathematical 
microscope. The second approach is closely linked to Approximation theory. Let us agree 
to call, functions used for representing arbitrary functions as analyzing functions. For 
instance, when we try to expand a function in a power series, we are trying to represent 
the function in terms of polynomials, namely the partial sums of the power series. Such a 
way of representing gives a simple way of obtaining information about the function. The 
value of a polynomial can easily be evaluated on a computer taking advantage of the fact 
that it involves only three arithmetic operations. There are standard packages on 
polynomial evaluation, by means of which we can sometimes obtain, a more accurate 
answer, instead of writing a difficult program and getting only approximate value. The 
problem of representing a given function normally splits into various sub-problems. They 
can broadly be categorized into: 
 

§ Best choice of representing functions 
§ Approximating the value of representing functions 
§ Approximating the coefficients of the representation 
§ Approximating the representation itself e.g. truncating(chopping) 

the power series to a suitable size 
§ Fixing criteria for a good approximation 
§ Choosing  approximable functions 
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It may be noted that, there are several methods of representing functions and each is 
suitable for certain tasks. There is no single representation which is suitable for all 
applications. Wavelets; because of their versatility and adaptability are the most suitable 
representing functions. 
 
 
4.3 A little history:  
 
Classical Approximation theory dealt with the problem of whether a given function could 
be accurately approximated using some norm, by an element from a prescribed set of 
functions, which generally possessed some noteworthy properties. Quantitative 
approximation theory, in particular, attempted to determine as precisely as possible, the 
size of the error in the approximation, given specific information about the function to be 
approximated and the set of functions from which the approximation is taken. Thus the 
Weierstrass’s famous theorem of 1883 asserted that each continuous function on a closed 
interval in the real line could be approximated to within any specified tolerance by a 
polynomial.   Historically, the first examples of representations (approximations) of 
functions appeared in the form of tables e.g. Trigonometric and Logarithmic tables in 17th 
century. The power function nx was first described by Descartes. After the invention of 
the exponential notation, there were many examples of power series in the 17th and 18th 
centuries, notably Newton’s binomial expansion: (1 )nx+  and extended form of it for 
non- integral powers. After the advent of Calculus we find Taylor’s and Fourier’s series to 
be the most important and useful representations (approximations) of functions. 
 
 
4.4 Some rudiments of Approximation theory:  
 
The main theme of this article is linear approximation of functions i.e. approximating by 
linear combination of functions (Superpositions). The problem of linear approximation 
can be formulated in the following way: 
Let ?  be a sub- set of functions of a fixed function space A. If a function ƒ € A, can one 
find a linear combination P = i iaφ∑  which is close to ƒ? Two problems arise: We must 
select the set ?  and second, decide how the deviation of P from ƒ should be measured. 
To fix the ideas, let A be a compact Housdorff space and let C = C [A] be the set of all 
continuous functions on A. Then C is a normed linear space over R 
where ( )f Sup f x= , x € A The convergence of  nf f→  in the norm of C, 

i.e. nf f o− →  as n → ∞  is equivalent to the uniform convergence of  nf (x) to ƒ(x), ∀  
x∈A.It fallows from this interpretation that C is complete. Complete normed spaces are 
called Banach spaces which are very important in the theory of approximation.For 
example, [ , ], 1pL a b p ≥ .However, for all practical purposes, approximation in the spaces 
over R or C remains both interesting and useful special case. 
The following definitions apply to any Banach space with elements ƒ and a distinguished 
subset ? .We call ƒ approximable by P = ,i i iaφ φ ∈∑ ? , ia R∈  if ,o P∀∈> ∃  such that 
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,f P− <∈ and in this case ( ) infnE f f P−B  is called the nth order (degree) 

approximation of ƒ by ia Rand∈ ?  (Estimation of error). If the infimum is attained for 
some P then P is called the “the best approximation” to ƒ. For the space C[a,b], a natural 
choice of ?  is given by the power functions 1,x, 2 , nx x− − − − .Another  important 
compact set K is the additive group of reals R modulo 2π .We shall follow the traditional 
practice of identifying f C∈ [K], with the continuous 2π -periodic functions on R.A tool 
of approximation for - functions [ ]f C K∈  is the following set of  trigonometric 
polynomials,  

 ( ) / 2 cos sinn o k kT x a a kx b kx= + +∑ , k = 1, 2, ----n which form the 

partial sums of the famous Fourier series. 
 
 
4.5 Interpolation and Approximation:  
 
The intimate connection between interpolation and approximation has been recognized 
and exploited by mathematicians in recent years to develop new theories and techniques. 
In retrospect, consider a set of real valued functions, 1, 2 nφ φ φ− − −  on A and kc  k=1,2,--n 

be given real numbers(data points).The polynomial P(x) = 
1

n

i i
i

a φ
=

∑ (x) is said to interpolate 

the k k k c '  if P(x ) cvalues s = .Usually the 'kc s  are the values at the points ka  of some 
given function f(x), then P is said to interpolate f. Assume that, we can find polynomials 

( )kl x  such that ( )j k jkl x δ= .Then P(x) = ( )i ic l x∑  interpolates kc .Interpolation with 

algebraic polynomials is probably the most common form, because they are the easiest to 
evaluate on a computer.  
. In fact, Taylor’s and Chebysheve’s theorems bear ample testimony to this fact. Taylor’s 
theorem ( a beautiful and remarkably useful result ) exhibits the value of a function at a 
point in terms of its values of all its derivatives at some nearby point, in the form of an 
infinite series. It also provides solution to the problem of constructing the best 
approximation by polynomials. This allows one, to represent classical functions quite 

readily, for instance,
!

n
x x

e
n

= ∑ .  

Now suppose, we are given a function f, know its value ( )of x  along with its first n 

derivatives '
0 0( ), ( )nf x f x− − −  at some base point ox .In order to obtain a polynomial 

( )nP x  which approximates f, it is reasonable to ask whether it can interpolate 

( ), ,1,k
of x k o n= − − .Indeed, in accordance with Taylor’s theorem 

( )
( ) ( ) ( )

!
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k

n o n
k o

f x
P x x x R x
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= − +∑  where
1

1( )
( ) ( ) ,

( 1)!

n
n

n o o
f c

R x x x x c x
n

+
+= − ≤ ≤

+
; Thus 

Taylor’s theorem not only gives a nice formula of interpolation, it gives a method of 
approximating functions by means of polynomials (truncated Taylor’s series). 
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Here, ( ) max ( ) ( )n nE f f x P x= − , the degree of approximation(estimation of error).Now, 

if ( )nE f oasn→ → ∞ ,we can say that the approximation is worthwhile. Again, it is not 
enough to have ( )nE f oasn→ → ∞ ,we must know how fast it tends to o. That will tell 
us where to stop for the desired accuracy. Thus, we see how Taylor’s series helps us in 
approximating a function by a polynomial, once we have settled the question of the rate 
of convergence. In general, the “smoother” the function the faster ( )nE f oasn→ → ∞ . 
Theorems that guarantee this are called “direct” theorems [A] of approximation theory. 
Conversely, “inverse” theorems assert that, a function f has certain smoothness properties 
if  ( )nE f o→  rapidly enough. In this way, we are able to characterize the functions by 
the order of magnitude of their degree of approximation. Cases when there is an explicit 
formula for the degree of approximation, or for that matter, for the polynomial of best 
approximation, are exceptional and are of special interest.  
Now, to establish the close ties Legendre polynomials have with approximation of 
functions, one should consider the notion of Least square approximation .If f(x) be 
defined on [-1,1], it is but natural to ask whether f(x) could be approximated as closely as 
possible by a polynomial p(x) of degree < or = n, in the sense of least squares. The 

answer is affirmative if one can interpret 
1

2

1

( ( ) ( ))f x p x dx
−

−∫  as representing the sum of 

the squares of the deviations of p(x) from f(x). Then the strategy is to minimize the value 
of the integral by a suitable choice of p(x). It turns out that, the minimizing polynomial is 
precisely the partial sum of the first n+1 terms of the Legendre series.[G] A significant 
parallel to interpolation by polynomials consists of interpolation by splines developed by 
Schoenberg and others. Theory of splines dramatically generalizes the power series 
representation of a function. One of the main drawbacks of a power series is that, 
representation is usually accurate only in the neighborhood of a given point. Another 
disturbing feature of polynomial approximation is that, if the function to be 
approximated(approximant) is “ badly behaved” anywhere in the interval of 
approximation, then the approximation is “poor” everywhere. This global dependence on 
local properties can be avoided using splines. Splines are piece-wise polynomial 
functions of a given degree  and are patched together at critical points called 
nodes(knots).One of the basic methods for constructing wavelets involves use of 
“cardinal B-splines”.Thease are arguably, the simplest functions with small supports that 
are most efficient for both hardware and software implementation. As noted earlier, a 
function ?  € 2 ( )L R  is said to generate a MRA, if it generates a nested sequence of 
subspaces jV  that satisfies certain conditions laid down by Mallat and Meyer. ?  as we 
know is called the “scaling function” and typical examples of scaling functions are 

precisely the mth order cardinal B-splines 1 1( ) ( ) ( )m m mB whereB x B x t B t dt
∞

−
−∞

= −∫ -- (1) 

and ( ) [ 1/2,1/2]( )oB x xχ= − , 1( ) (1 ) [ 1,1]B x x χ= − − (x), the well-known “hat”or 
“tent”function. It is possible to find a sequence of functions with increasing smoothness, 
iterating (1).In addition to their computational simplicity; the small supports of B-splines 
make them most desirable for local interpolation schemes of approximating functions. 
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4.6 Approximation from a Geometrical stand-point:  
 
The question is this: If :f R C→  is any arbitrary function, with a period a, can we find a 

decomposition of ƒ, of the form 2 int/( ) a
nf t c e π= ∑  ? The immediate answer is “no” if 

one considers only finite sum. The sum on the right is infinitely differentiable, while 
there is no reason for ƒ to be. If equality cannot hold for a finite sum exactly, we can 
always try to have it hold “as well as possible”. More precisely, we will try to answer the 
following question: 

Given any integer N, is it possible to find coefficients nx  such that 
N

n
n

N

x e f
−

−∑  attains 

minimum in 2L -norm. Geometrically this amounts to finding an element Nf  in the 
subspace NT  of 2[ , ]L o a  that has minimum “distance” from ƒ. When such an element Nf  
exists we say that it is the “the best approximation” of ƒ in NT . Geometrically, it is the 
orthogonal projection of f onto the subspace NT , with respect to the Fourier basis. 
The best approximation not only exists, but to our good fortune, it is unique. Indeed, it is 

given by 2 int/1
( ) ( ) ( )

aN
a

N n n n
N o

f t c e t wherec f t e dt
a

π−

−

= =∑ ∫ -----------(2) 

An immediate consequence of (2) is the inequality
2 2

0

1
( )

aN

n
N

c f t dt
a−

≤∑ ∫ , traditionally 

known as Bessel’s inequality. 
One can ask what happens to Nf  as N tends to 8 .We have, in fact, the most general 

result:  If 2 [0,1], 1pf L p∈ ≥ , then the best approximation of ƒ in the subspace NT  is given 

by 2 int/1
( ) ( ) ( )

aN
a

N n n n
N o

f t c e t wherec f t e dt
a

π−

−

= =∑ ∫  and tends to ƒ as N tends to 8 . 

Expressed otherwise, 
2

( ) ( )
a

N
o

f t f t dt oasN− → → ∞∫ .A more sophisticated (scholarly)  

way of expressing this is to say that, the family of functions ( )n n Ze ∈  is a topological basis 

for the space 2 [ , ]pL o a .Moreover, the series n nc e
∞

−∞
∑ is summable to ƒ in this space. 

Incidentally, nc  are called Fourier Coefficients of the periodic function ƒ. 
 
 
4.7 Generality and Centrality:  
 
Let us see, how these ideas fit into a broader pattern in an arbitrary Hilbert space, which 
generalizes several aspects of nR .Hilbert spaces are, basically endowed with a 
“Euclidian”geometry in the sense that, there is a distance function and the notion of an 
angle between two vectors. Their completeness allows one to develop the notion of an 
infinite dimensional basis, giving flexibility and generality. Most importantly, we need to 
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consider Hilbert spaces instead of Banach spaces, to study wavelets from Approximation-
theory point of view, about which, the article centres around. 
Given a Hilbert space H, a subspace V of H and f H∈ ,we can ask the following: 

i) Does there exist an * * min ,f V such that f f f v v V∈ − = − ∈ ? 

ii) If the answer to i) is “yes” can we characterize ƒ? 
If *f  exists, it is called “the best approximation” of in V. For example, take 

H= 2 [ , 2 ]pL o π , and V the subspace of trigonometric polynomials generated by  
1, sinx, cosx, -------sinmx, cosmx; 
The next theorem [B] answers our first question. 
Suppose H is a Hilbert space and V a complete subspace of H. 
Then given an arbitrary function: * *, , . . min ,f H f V s t f f f v v V∈ ∃ ∈ − = − ∀ ∈ . 

 
 
4.8 Wavelet-approximation: 
 
The fundamental idea behind wavelet is to approximate and analyze a function according 
to scale. Some researchers feel that, by using wavelets one is adopting a new mindset or 
perspective in approximating functions. Wavelets are basically functions that satisfy 
certain mathematical requirements, and are used in representing data or functions. 
Though the idea is not new, as approximation of functions using superposition of simpler 
functions, has existed since 1800’s when Joseph Fourier discovered that, he could 
superpose sines and cosines to represent other functions. However, in Wavelet theory the 
scale, that one uses plays a special role. The main goal of wavelet algorithms is to process 
data at different scales or resolutions, which is at the heart of “multiresolution”technique. 
Loosely speaking, if we look at a function with a large “window” we would see gross 
features. If, on the other hand, we look at a function with a small “window” we would 
notice details. These features peculiar to wavelets, make them interesting and useful. For 
many decades, scientists have wanted more appropriate functions than the sines and 
cosines to approximate transient signals. By their very definition, these functions are non-
local (and stretch to infinity) do a poor job in approximating sharp spikes. But, with 
Wavelet Analysis, we can use approximating functions, which are contained in smaller 
domains resulting in “compression” of the data and at the same time, reducing the cost of 
computation.  
 
A Multiresolution analysis (MRA), more justifiably called a “ multiresolution-
approximation” by its “intellectual father” Stephane Mallat in his paper[C], is a sequence 
of embedded (nested) subspaces jV  for approximating functions of 2 ( )L R .He claims that, 
from any multiresolution approximation, we can derive a function ?,the translates and 
dilates of which: / 2

,2 (2 ),j j
j k Zx kψ ∈−  form an an o.n.b of 2 ( )L R .The approximation of a 

function 2 ( )f L R∈  at the scale (resolution level) 2 j  is defined as the orthogonal 
projection of ƒ on jV .To compute this orthogonal projection, we show that there exists a 

unique function ? , the integral translates of which form an o.n.b.of oV .The additional 
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information called detail available in the approximation at a resolution 12 j+  as compared 
to the resolution 2 j  is given by an orthogonal projection on the orthogonal complement 
of j+1 j in V  i.e. WjV . An important problem of approximation theory as stated earlier is to 

measure the decay of the approximation, when the resolution is increased given a priori 
knowledge about the function’s smoothness. We estimate the decay for functions in 
Sobolev spaces, which answers our second question. [D] 
Because practical measurements of real phenomena require time and resources, they 
provide not all values but only a finite sequence of values, called a sample, of the 
function representing the phenomenon under consideration. Therefore, the fist in the first 
step in the wavelet approximation is to approximate a function by its sample alone. One 
of the simplest methods of approximation uses Haar wavelets. The resulting function is 
called a step function which approximates the sampled function.                                  
Although approximations more accurate than simple steps exist, they demand more 
sophisticated mathematics. In contrast to Haar wavelets, which exhibits jump 
discontinuities, Daubechies wavelets are continuous. As a consequence of their 
continuity, Daubechies wavelets approximate continuous signals more accurately with 
fewer wavelets than do Haar wavelets, but at the cost of intricate algorithms based upon a 
complicated theory. Daubechies wavelets provide a smoother overall approximation of a 
function known only from its sample.  
 
We, describe briefly examples of multiresolution approximations using Haar, 
Daubechie’s wavelets. The orthogonal projection of an arbitrary function 2f L∈  is    

jk
k

jkj ffP φφ∑= , .   The basis functions   jkφ     are shifted in steps of  j−2  as k varies. 

jP f  is called an approximation to f  at resolution 2 j− . 
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The function f(x) = sinx and its approximations 0 1 2, ,P f P f P f  at resolutions 1,1/2,1/4, 
respectively based on the one dimensional  Haar wavelets. 
The following are the successive multiresolution approximations of an image using two 
dimensional Daubechie’s wavelets at different resolutions each finer than the preceding. 

  

  
 
 
In cubic-splines found independently by G.Battle and P.Lamerie who have done 
pioneering work in wavelets, the subspace oV  is the set of functions which are 2C  and 
equal to cubic polynomials defined on intervals [k,k+1], k€ Z.It is well-known that a 
unique cubic spline 0( )g x V∈  exists such that ( ) kog k δ= .The Fourier transform  of g(x) 

is given by 
4 1

2sin / 2 2
( ) 1 sin

/ 2 3 2
g

ω ω
ω

ω

−∧    = −   
   

. Any functin ƒ€ 0V  can be decomposed in 

a unique way: ( ) ( ) ( )
k

f x f k g x k
∞

==∞

= −∑ .The approximation of a function at a resolution 
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2 j  is equal to its orthogonal projection on jV .The additional precision of the 

approximation when the resolution increases from 12 2j jto +  is given by orthogonal 
projection on jW .   We next,  introduce the notion of Coifman wavelet systems(in short 
Coiflets) and state the basic approximation theorem for the wavelet series.[E] The notion 
of Coiflets is similar to Daubechies wavelets in that, they have a maximum number of 
vanishing moments, but the vanishing moments  are equally distributed between the 
scaling function and the wavelet function. For such wavelets, one has a very good 
approximation theory, one of the reasons this virtue of wavelets was harnessed in the first 
place. The fundamental result is that, if the sample values of a smooth discretized 
function are used as scaling function coefficients, at a finer scale, then the resulting 
wavelet series approximates the underlying function, with exponentially increasing 
accuracy as the “genus” of the Coiflets gets larger. We call this series “The Wavelet 
Sampling Approximation” of a given function. It differs from the usual orthogonal 
projection approximation, in that the coefficients are samples of a function rather than 

2L -inner products of the function with the given basis elements. These are the type of 
wavelet-approximations used systematically in almost all applications of wavelets. 
Let us discuss in detail how this works-out. Consider A = ( ) /

,α β , a wavelet matrix of 

rank 2 where ( ), ( )k kh gα β= = ,are  the scaling and wavelet – vectors respectively. As 

we know, 1( 1)k
k kg h −= −  which is symmetric about k = o, the theorems connected with 

MRA guarantee the existence of { } { }jk jkandφ ψ [E].Assuming that a has a  finite length,  

 
2 2

1 1

1 2 2, . . 2 & 2
N N

k k k l ol
N N

N N s t g g g δ+∃ = =∑ ∑ .The scaling and wavelet vectors as usual satisfy  

 
2 21 1

( ) , ( )
2 2

ik ik
k kG h e H g eπ ξ π ξξ ξ= = −∑ ∑ (3). 

 
We recall further that, the mth moment of an integrable function is defined by Mom(ƒ) = 

( )mx f x dx∫ , whenever the integral makes sense. Evidently, for an o.n.b. system, Mom 

(φ ) = 1, Mom (ψ ) = o where m=o. Further, ( ) 1x kφ − =∑ .With this necessary 
background, we are in a position to define: 
An orthonormal system with compact support is called Coifman wavelet system of 
degree N, if andφ ψ  satisfy: 

( ) 1, ( ) ( ) 1, 1,2, , ( ) ( ) , 0,1,m mMom Mom x x dx m N Mom x x dx o m Nφ φ φ ψ ψ= = = = − − = = = − −∫ ∫
To understand and appreciate the significance of Coiflets, we are led to ask: Given 
samples of a continuous signal equally spaced in time, is it possible to recover the signal 
or to put it in another way, how close the original signal is approximated from the 
knowledge of samples? For Coiflets, we can obtain “exponential approximation” as we 
see in the next theorem which serves as a fitting finale to our discussion. 
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Coifman Basic Approximation Theorem: 
 
For an orthogonal Coifman system of degree N with the scaling function ?  and the 

scaling vector a, if / 2( ), , ( )( ) 2 ( ) ( )
2

N j j
jkj

k
f C R defineforj S f x f xφ−∈ ∈ = ∑¥ .Then   

( ) ( )( ) 2j jNf x S f x C −− ≤ , where C depends only on ƒ and a. 

The wavelet sampling approximation is what is used in most applications of wavelets 
because it is the easiest approximation to compute. The significance of the above result is 
that, the degree of approximation is comparable to that obtained by using Daubechies 
wavelet system and orthogonal projection. 
 
 
Conclusion:  
 
The theories of Approximation and Wavelets have attracted and engaged the attention of 
mathematicians and scientists alike, for the last 40 years or so, to develop new and 
exciting ideas and techniques. After the advent of computers, the research in these areas 
has gained momentum spectacularly. Moreover, they are playing increasingly important 
roles in applications to many branches of applied sciences and engineering. 
Approximation theory has widely influenced areas of mathematics namely Special 
functions, Partial Different ial Equations, Harmonic Analysis and Wavelet theory. Some 
modern applications include, Computer graphics, Signal processing, Pattern recognition 
and Economic forecasting. During the last decade, the theory has stretched its arms to 
embrace the theoretical and computational aspects of several exciting areas such as 
Neural-networks and Computer Aided Graphic Designs. Wavelet theory in turn touches, 
Image compression, Channel coding, under water communications, Fractals etc. In any 
country or company Research and Development by trial and error was suited to the time 
when technology was in its infancy. This approach is no longer adequate. The need to 
predict performance and consequences and to optimize design for safety, speed, accuracy, 
quality and cost have become key factors of science and technology in the 21st century. 
These factors call for new theories, ideas, conceptualizations; formulations etc. Wavelet 
theory has ushered in a new era holding “the master-key” (so to speak), to almost all 
problems of Information and Communication technologies.  
.                                                                                                                                              
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