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An example , taken from reference 1, is worked out thoroughly providing details of each step.
The potential U(x,y) = x**+y**2 satisfies Poisson’s equation. 
That is,  ∆ U = 4  = K ( the charge density )

Ritz principle seeks to optimize an integral containing derivatives of the Potential U ,instead of working with the differential equation.

Within Ritz method, to Poisson’s equation corresponds the optimization of 

J = ∑  ∫ (1/2) (  (∂U/∂x)2 + (∂U/∂y)2  + K U ) dxdy   .   (a)
where the sum is over  triangle in which the area can be divided.The more triangles the more unknown values of U. Some triangle vertex points lie at the boundaries thus the number of unknown Ui is reduced.
In the finite element method the region can divided in triangles

and U(x,y) is approximated by a linear form 

U(x,y) = L1 * U1 + L2*U2 +L3*U3         .      (b)           
The Li are functions of the coordinates of a particular triangle.The U1,U2,U3 are the unknown values ( later called z1,z2,z3) of the potential at the vertices. Some of them are known from the boundary conditions.     
taking derivatives of J  with respect the potential values ,

 that is  ∂ J / ∂ Ui   , integrating and equating to zero yields a system of linear equations to be solved for the unknown Ui         
In the present example we will work only the triangles 1&2.The boundary conditions needed are 
U(x,0)= x**2     , U(1,y)=1+y**2                                                        (1)

the other two sides are not neeed for the present calculations.The potentials at points 2,3 and 4 are known ,we will label them z2 , z3 and z 4.

z2  = 0.     , z3= 1,  and    z 4= 2. The only unknown in this trivial example is z1.
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The potential in the region of triangle #1 is approximated by 

Ф1(x,y) =    L11  z1       +     L12 z2     + L13 z3                                         .     (2)

where z2 = 0     , z3 =  1       .                                        
The expression for the  L wil be calculated in an explicit way. The upper index in the L (in this case number 1) refers to triangle #1.The lower index running from 1 to 3 refers to the potential values at the corners, which will always be labeled from 1 to 3 .

From what was said above in eq(2) the only unknown  is z1. The L are linear expressions  in x and y that depend on the grid points ( xi , yi )   ( xj, yj )  and  ( xk , yk ).   
 The potential in the region of  triangle #2 is  

Ф2(x,y) =    L21  z1       +    L23 z3     + L24 z4                                      . (3)

notice that the L forms will not be the same    since they depend on another set of grid points. The potential values for  triangle #2  are    z1 ,     , z3= 1,  and    z 4= 2  . The only unknown in this example is  z1.       
Triangle e=1
The linear forms are constructed such that they are equal to one at one vertex and zero at the other two.

For example at vertex  i

 Li (xi , yi ) = 1 and  Li (xj , yj ) =0   , Li (xk, yk ) =0.
Lets evaluate the linear forms L  for triangle e=1  . The vertex coordinates are    
(xi , yi ) = (1/2,1/2 )   ,  ( xj, yj )  =(0,0)    ,   ( xk , yk ) = (1,0)             (4)
It is also convenient to label  i=1 , j=2 , k=3  .
The linear forms are constructed such that they are equal to one at one vertex and zero at the other two.

For example at vertex  i

 Li (xi , yi ) = 1 and  Li (xj , yj ) =0   , Li (xk, yk ) =0.
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we need
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The coefficients  a 1 , b1 , c1 are obtained from
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a 1 = x 2y3  - x 3 y2             b1 =  y2 – y3                 c1   = x3- x2                . (7)     (6)
From (4)  a 1 = (0)(0)-(1)(0)=0       , b1 =0     ,  c1   = +1                     (7-b)
The other two sets of coefficients are given by
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Hence   a2 =  x3 y1- x1 y 3         b2 = y3- y1             c2 = x1- x3                  (8)
             a3 =  x1 y2- x2 y 1         b3 = y1- y2             c3= x2- x1 
            a2 =1( 1/2)-1/2 (0) =1/2  ,  b2 =-1/2 , c2 = -1/2

             a3 = 0         , b3 =  1/2         ,           c 3= -1/2 
Triangle e=2   
(xi , yi ) = (1/2,1/2 )   ,  ( xj, yj )  =(1,0)    ,   ( xk , yk ) = (1,1)             
a 1 = x 2y3  - x 3 y2             b1 =  y2 – y3                 c1   = x3- x2                
     =(1)(1)-(1)(0)                   =  0-1                             =1-1
     =1                                     =-1                                 =0                (9)
and applying eq(7)

a2  =0       , b2 = ½ ,    c2= -1/2

a3 = -1/2      ,   b3 = 1/2  ,    c3 =1/2

The optimization procedure
The integral in eq (a) is carried out over the first triangle.

We need first the partial derivatives.That with respect to x is 

∂ Ф1(x,y) /∂x  = (∂ Li /∂x )zi  + (∂ Lj /∂x )zj +  (∂ Lk /∂x )zk  
Before integrating, the partials with respect to z1 ,z2, z3 will be taken. We forget momentarily that the only variable is z1.Finally the integration over the triangle is done.

Each partial derivative (see eq (5) for L) will just pick the corresponding           (b/(2∆)  factor ( all ∆ are the same)  thus,
∂ Ф1(x,y) /∂x  = ( bi /2∆) zi + ( bj /2∆) zj + ( bk /2∆) zk              (10)
The partial with respect to y will bring out the coefficient of the y variable,

i.e. (c/(2∆)   , thus

∂ Ф1(x,y) /∂y  = ( ci /2∆) zi + ( cj /2∆) zj + ( ck /2∆) zk              (11)   

The integral in (a) for the e=1 triangle has now the form

J(z1,z2,z3) =  ∫  (1/2) (  (∂U/∂x)2 + (∂U/∂y)2  + K U ) dxdy   

  =  ∫  (1/2) { [( bi /2∆) zi + ( bj /2∆) zj + ( bk /2∆) zk]2  

        +   [( ci /2∆) zi + ( cj /2∆) zj + ( ck /2∆) zk ] 2   
              + K ( L11  z1 + L12 z2+ L13 z3  ) } dxdy                        (12)
The integration is carried over the area of the triangle after taking partial derivatives.

Each partial derivative of J ( from  (12) )with respecto to z1,z2,z3 would be equated to  equated to zero ,if z1 , z2 and z3 were inedependent variables. 

At the end ,in this example , only the partial ∂J/∂z1 will equated to zero.

Resulting in three equations with three unknowns (z1,z2,z3).   
The partial  ∂J/∂z i    is
∂J/∂z i   =∫  (1/2) { 2 [( bi /2∆) zi + ( bj /2∆) zj + ( bk /2∆) zk]  

                                 ∂ [( bi /2∆) zi + ( bj /2∆) zj + ( bk /2∆) zk]  /∂z i   

        +  2 [( ci /2∆) zi + ( cj /2∆) zj + ( ck /2∆) zk ]   

                   ∂ [( ci /2∆) zi + ( cj /2∆) zj + ( ck /2∆) zk ] /∂z i     

              + K ∂ ( L1i  zi + L1j zj+ L1k zk  )/ ∂z i    } dxdy =0

           =    ∫  {  [( bi /2∆) zi + ( bj /2∆) zj + ( bk /2∆) zk] ( bi /2∆)   

                 +  [( ci /2∆) zi + ( cj /2∆) zj + ( ck /2∆) zk ] ( ci /2∆)  

              + K  L1i      } dxdy                                                    (13)

In (13) the only function of (x,y) appears in L1i . The density K is constant in this example , in general it could also be a variable i.e K= K(x,y).

Integrating dxdy produces in the firsts two lines  of (3) a factor ∆ which cancel one in the denominator leaving

∫  { [( bi /2∆) zi + ( bj /2∆) zj + ( bk /2∆) zk] ( bi /2∆)   

                 +  [( ci /2∆) zi + ( cj /2∆) zj + ( ck /2∆) zk ] ( ci /2∆)  }dxdy

=    (1/(4∆)){  bi 2 zi + bi bj  zj + bi bk zk
                 +   ci 2 zi + ci cj  zj + ci ck  zk }                                  
=    {  bi 2 zi + bi bj  zj + bi bk zk
                 +   ci 2 zi + ci cj  zj + ci ck  zk }                        (14)          

since ∆=1/4.
For the integral  ∫  K Li dxdy , we use (7-b)  , Li =(1/2∆)( 0 +0 (x )+ y)

 = y/(2∆)
and  K=4. The integration is first run over half the triangle.Integrate with respect to y  from 0 to y=x, then do integration with respect to x from 0 to 1/2 and multiply by two.
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 (1/(2∆))  ∫  y dy =(1/(2∆)) {  (y2/2) y=x – 0} = x 2/(4 ∆)                                 (15)

(K/( 4 ∆)  )  ∫   x 2 dx  (from 0 to 1/2) = (1/  ∆) (1/3) (1/8)         (16)

Multiply the last result by two

( 1/(4∆)) (1/3)   = 1/3    since  ∆=1/4  .    In conclusion

∫  K Li dxdy =1/3.

assembling the results of (14) & (16) we get the first row of the following matrix form
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In a similar fashion the second and third row are obtained.

The partial     ∂J /∂zi  (we use J instead of f) in the first row will be added from a similar term coming from the second triangle.

The first triangle will contribute partials with respect to z1,z2 and z3,

The second triangle (see details below) will contribute partials with respect to z1,z3 and z4. At the end there will be four equations equated to zero if they were all independent 
(∂J /∂z1 )=  (                    )  + (4 ∆/3)= 0

(∂J /∂z2 )=  (                    )  + (4 ∆/3)=0

(∂J /∂z3 )=  (                    )  + (4 ∆/3)=0                             
(∂J /∂z4 )=  (                    )  + (4 ∆/3)=0.
This modified presently to 

(∂J /∂z1 )=  (                    )  + (4 ∆/3)= 0

(∂J /∂z2 )=  (                    )  + (4 ∆/3) ≠ 0

(∂J /∂z3 )=  (                    )  + (4 ∆/3) ≠ 0                            

(∂J /∂z4 )=  (                    )  + (4 ∆/3) ≠ 0    ,   

But the first equation is enough to find the unknown z1.

The j-th row will have    b2j + c2 j in the middle and cross products at the sides. Because K is constant, the integrals

∫  K Lj dxdy = ∫  K Lk dxdy = 1/3.                                                      (17)
Susbtituting the values of the coefficients a,b and c in the matrix form gives
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                 (18)
Actually they are partial derivatives.

 The complete matrix must bring in contributions from the other triangles.
As explained before the only unknown is z1 , which appears also in the second triangle. Another matrix similar to that in (18) is constructed.

Going in the counterclockwise direction the vertices 1,3 & 4 receive the labels i,j & k. The triangles have the same sizes , therefore the coefficients (a,b and c’s) are identical. 

One writes immediately
 [image: image10.png]/2!

/423

d/dzd

1

172

472

472

172

0

472

0

172

kil

i

4



.(19)
Assembling (18) & (19)  together gives four equations,
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In general each partial derivative of an unknown quantity zi  is equated to zero ;this is the  optimizing process.

In the present example the only unknown is z1.Hence ,only equation one is set equal to zero.

Take the first equation
2z1 – z2/2  -z3  -z4/2 +2/3=0   , yielding

z1= (1/2) { 0/2 +1(1)  + (1/2)(2) -2/3) } = 2/3   .

Se that if we set erroneously the fourth equation to zero
one has a contradictory value of z1 

-z1/2 + z4/2  + 1/3 =0        ,  z1 = 8/3.   
The same would happen if eq (3) is et to zero.

In conclusion the value from one is 

z1=2/3   while the correct value is U(x=1/2,y=1/2) = 1/4+1/4=1/2

A critique:

I object to the use of linear forms  

 Ф1(x,y) =    L11  z1       +     L12 z2     + L13 z3      to solve Pisson’ equation  
since the      Laplacian operating on them is identically zero.

Poisson’s equation on the other hand 

is  ∆ U(x,y)  ≠ 0  , i.e.     ∆ U(x,y) =ρ (x,y)     .                           
