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Introduction
 The fundamental ideas of the general theory of relativity are: 
a) that the metric tensor gμγ is a function of the gravitational potential .That is gμγ = gμγ (Ф)  , where   Ф = -GM/r  .

b) the equations of motion are geodesics in space time

They are the  Euler Lagrange equations obtained from the variation   ,   δ ∫ ds= 0 .
c) the field equations –in empty space-are given by the vanishing  Ricci tensor , Rμγ =0

In the beginning  , before the space age,three standard tests of GR were given;
i)the precession of Mercury’s perihelia

ii) the red shift of light

iii) the deflection of a light ray in a gravitational  field

The metric tensor gμγ  is an unknown in GR and it satisfies the 

Ricci tensor which in a sense is analogous to  Laplace equation

 del2 Ф = 0 at a point where there is no matter.  Some 

argumentation can be made as to what is the explicit form of gμγ, 
see Ref. 2 page 313. 

Let a falling system K’ start from rest at infinity where g’00 =1 , 
g’11 = -1 and of course also g00 =1 , g11 = -1. There is a field 
Ф = -GM/r  with a point mass M at  the origin of the K frame.
K’ falls gaining a velocity   v2 =  2 GM/r = -2 Ф.

The time dilation and length contraction give

dt = γdt’      , dr = γ-1 dr  where γ = ( 1-(v/c)2 ) -1/2 .

ds2 = c2 dt’2 -  dr’2 =   c2 (1-(v/c)2 ) dt2 -  dr2/ ( 1-(v/c)2 )
      ≡ g00  c2 dt2    + g11 dr2  .

Hence g00 = ( 1- β2 )  =  ( 1- 2GM/(rc2 ) ) =(1 +2 Ф/c2 )   and 
 g11 = - 1/g00  .
The limit of g00 ,as c→∞ , or v → 0 or r →∞ is  1, while g11 → -1.
In spherical coordinates the transversal coordinates do not suffer any contraction. The metric is then

ds2 =  ( 1 +2 Ф/c2 )  (c dt)2 -   dr2/  (1 +2 Ф/c2 )   

                                           -r2( dθ2+ sin2 (θ) dφ2                (1)
This line element was derived in 1916 by K. Schwarzschild.

1. Derivation of the geodesics
Starting with the line element 

ds 2 = g μγ dxμ dxγ                                                          (2)

 and dividing by ds2 gives

g μγ (dxμ/ds) (dxγ/ds) = g μγ uμ uγ   =1    where 

 uμ = dxμ/ds   are dimensionless velocities. We could also use the 
proper time    dτ =  ds /c  for the line element. In that case

 g μγ uμ uγ  = c2   where now  uμ = dxμ/dτ .

Notice also that   ds =  g μγ uμ uγ   ds .                          (3)
We use the fisrt choice of ds , eq (2) .
Let L= g μγ uμ uγ   , and the variation δ∫ ds is equivalent to 

δ∫   L ds .

 The Euler Lagrange equations are then

 d ( ∂L/∂ uα )/ds   -   ∂L/∂ x α = 0   .                         (4)
Start with  

 -   ∂L/∂ x α = - ∂ ( g μγ uμ uγ  ) /∂ x α = -(∂ g μγ /∂x α) uμ uγ  ,     (  5  )

where the summation is over μ and γ.

Now take the derivative with respect to the velocity uα.
∂ ( g μγ uμ uγ  ) /∂ u α = g αγ  uγ  +  g μα uμ  = 2 g αγ  uγ      (  6 )

since    μ and γ are dummy indices.
The derivative of (6) with respecto to s is

d (2 g αγ  uγ  ) /ds =   

                            2 { (∂ g αγ  /∂ xμ ) uμ uγ  +  g αγ  d uγ /ds }   (7)
The first term on the left in eq (7) reintroduces a second dummy index μ . It is  put in asymmetrical form 

rewriting    (∂ g αγ  /∂ xμ ) uμ uγ  = 

         (1/2) [  (∂ g αγ  /∂ xμ ) uμ uγ  +  (∂ g γα  /∂ xγ ) uμ uγ  ]   (8)
Introducing ( 8) in ( 7) and substituting (7) and (5) in (4) gives a nearly final form of the geodesic

2g αγ  d uγ /ds  +  

            {(∂ g αγ  /∂ xμ )  + (∂ g γα  /∂ xγ ) -(∂ g μγ /∂x α) } uμ uγ  = 0   .       (9)

Due to the lowering and raising properties of g μγ   the first term is 

              2g αγ  d uγ /ds  = 2 d uα /ds . But we want a raised index .

Multiply eq .(9) by (gαβ /2)  and sum over β . The doubly covariant  gαβ satisfy the relation  gαβ gαμ = δβμ (Kronecker’s delta).

The acceleration term is 
(gαβ /2) 2 d uα /ds =  d uβ /ds = d 2 xβ /ds2  .                            (10)
The second term with the parenthesis  is 

(gαβ /2){(∂ g αγ  /∂ xμ )  + (∂ g γα  /∂ xγ ) -(∂ g μγ /∂x α) } uμ uγ  

     ≡    Γ βμγ uμ uγ              ,                                             (11)    

where there are  summations over   α, μ  and γ.                                                                

Γ βμγ is called a Chistoffel symbol.
The geodesics or equations of motions are, 

d 2xβ /ds2  +  Γ βμγ uμ uγ = 0                 .                       (12)    
2. The metric tensor components 
We will derive an expression for g00 . 
Consider the equation of motion for a particle moving along the X-axis. In our notation x1 = x. The gravitational potential is  Ф = -GM/x .

The classical equation of motion is 

d 2x/dt2  = - GM/x2                                            .        (13)

From (12) we have 

d 2x1 /ds2  = -  Γ 1μγ uμ uγ                                   . (14)

Various approximations and facts are used ( for a particle with v<<c),

ds ≈ c dt   , ds2 = c2 dt2 ,  u0 = c dt/ds ≈ 1,  g 11≈ -1 , g11 = 1/ g 11 . Also  g00 is only a function of x not of time.
The summation  -  Γ 1μγ uμ uγ     reduces to one term,

   -  Γ 100 u0 u0 = -(g1α /2) ( ∂ g α0  /∂ x0   +  ∂ g 0α  /∂ x0     - ∂ g 00 /∂x α  )  ,

                       =  (g11 /2) ( ∂ g 00 /∂x 1 )                  ,

                          ≈   - (1 /2) ( ∂ g 00 /∂x 1 )                                               .   (15) 
Substitution of (15) in (14)  and equating to (13) gives 
d 2x /dt2  =   -(c2/2)  ( d g 00 /dx  )   =  - GM/x2                      .           (16)   

Therefore  

g 00  = constant  - 2GM/(c2 x)    . Requiring that  g 00  → 1 as x goes to infinty  implies that the integration constant is one.

Thus 

g 00  = 1  - 2GM/(c2 x)                                                                 (17)
and     g11 =  -1/ g 00  .   The quantity 2GM/c2 is called the Schwarzschild radius  RS .
   3. The Riemann Chistoffel Curvature tensor 
Riemann Christoffel Curvature Tensor

In section (1) the equation of a geodesic

d 2xβ /ds2  +  Γ βμγ uμ uγ = 0 .                

was derived, on the assumption that it connects the shortest path between points P and Q. 

Suppose now that an arbitrary  parameter (t ) is used and the path between P and Q is not the shortest. 

Also suppose we have a vector field say 

Vμ = d xμ /dt   then equation (12 ) is no longer zero , 

but defines what is called the intrinsic derivative of Vμ

δVμ/δt ≡  d Vμ /dt   + Γ μαβ  (dxα /dt) (dxβ/dt)  

or 

δ Vμ /δt ≡  d Vμ /dt   + Γ μαβ  Vα  (dxβ/dt) .   (18)

An additional generalization is made letting

δt→∂xγ in eq. (18). The  derivatives are now  partial 

and  noting that , ∂xβ/∂ xγ = δβγ  , a new defintion is obtained , the covariant derivative of a contravariant vector

Vμ║γ =  ∂Vμ/∂ xγ + Γ μαγ  Vα           .            (19) 

For a covariant vector 

Vμ║γ =  ∂Vμ/∂ xγ - Γ αμγ  Vα               .         (20)
To derive the Riemann Christoffel (RC)tensor take  two covariant derivatives of (19)  interchange the order of derivation and substract them.The resulting equation is the conmutation law for covariant differentiation. It defines the RC tensor.
Vμ║γ║λ - Vμ║λ║γ = R μ λ γ α  Vα          .           (21)
It is a four rank tensor. Fortunately what is needed are second rank tensors like for example the Ricci tensor Rμγ .
Applying (19) and exercising utmost care with the indexes,

we have 
Vμ║γ║λ =  (∂Vμ/∂ xγ + Γ μαγ  Vα ),λ - Γ μβλ (Vβ/∂ xγ + Γ βαγ  Vα )   (22)

where the subscript ,λ  stands for  ∂/∂ xλ    and  α , β are dummy indices. Expanding the first term
Vμ║γ║λ =  ∂2Vμ/∂ xλ ∂ xγ + Γ μαγ, λ Vα + Γ μαγ  Vα ,λ
                      - Γ μβλ (Vβ/∂ xγ + Γ βαγ  Vα )                    .                     (23)

Changing the order of differentiation,
Vμ║λ║γ = ∂2Vμ/∂ xλ ∂ xγ + Γ μαλ, γ Vα  + Γ μαλ  Vα ,γ
                      - Γ μβγ (Vβ/∂ xλ + Γ βαλ  Vα )                                         (24)  
When substracting (24) from (23), the underscored terms cancel resulting in

  Vμ║γ║λ - Vμ║λ║γ =   Γ μαγ, λ Vα    - Γ μβλ Γ βαγ  Vα  - Γ μαλ, γ Vα   
                                                   +   Γ μβγ  Γ βαλ  Vα 
                           ≡     Rμμγα   Vα                                     .    (25)
The tensor     
   Rμγ λ α  =   Γ μαγ, λ   - Γ μαλ, γ  - Γ μβλ Γ βαγ  

                                                   +  Γ μβγ  Γ βαλ            ,       (26) 

is called the Riemann Christoffel curvature tensor.  
  Rμγ λ α    = 0 in flat space  i.e. in the absence of a gravitational field.
Conversely  Rμγ λ α    ≠  0 in the presence of a gravitational field ,then space time is curved.

Contracting the first and fourth index ( μ=α) gives the Ricci tensor,

Rγ λ     ≡ Rμγ λ μ  =  Γ μμγ, λ   - Γ μμλ, γ  - Γ μβλ Γ βμγ  +  Γ μβγ  Γ βμλ  .(27)
The law of gravitation in empty space is taken to be 

Rγ λ     = 0.                                                                               . (28)
To find g00 and g11 using (28) we find first the non zero Christoffel symbols. 
ds2 = g00 (c dt )2 +  g11 dr 2  -r2dθ2 - r2 sin2 (θ) d φ2                      .        (29)

where g22 = -r2  ,  coordinate label #2 belongs to the angle θ, coordinate #3 is θ .
It is convenient to rewrite (29) in terms of exponentials as

ds2 = exp(2γ(r)) (c dt )2 – exp(2λ(r)) dr 2  - r2 d φ2 
          - r2 sin2 (θ) d φ2                           ,             (30) 
where   g00 = exp(2γ)  , g00 =  exp(-2γ)    , g11 = -exp(2λ) ,

g11 = -exp(-2λ)   , g22= - r2 , g22 = - 1/r2    , g33 =- r2 sin2 (θ) ,

g33 = 1/ g33  ;  γ and λ are functions of  r.

The non zero symbols are;

Γ 010 = γ’                                                            (31)
Γ 100 = γ’ exp(2γ - 2λ)                                        
Γ 111= λ’                                                             
Γ 122= -r exp(-2λ)                                               
Γ 133 = - r sin2 (θ) exp(-2 λ)
Γ 212=  1/r 
Γ 233= - sin(θ) cos(θ)                                                          
Γ 323 =  cot(θ )
where the prime denotes derivation with respect to r.
We show explicitly the calculation of Γ 010 and  Γ 100 .

 Take into account that , g00 = 1/ g00 ,  g11 = 1/ g11 and that the g μγ are only functions of x1 (i.e. the r coordinate ) .
Γ 010 =(1/2) g0α (∂ gα1 /∂ x0   + ∂ g0α /∂ x1    - ∂g10 /∂xα )
        = (1/2)(1/ g00)( dg00 /dx1) 

        = (1/2) exp(-2γ) exp(2γ) (2 γ’)

        =  γ’                                                                (32)
and 

Γ 100 = (1/2) g1α (∂ gα0 /∂ x0   + ∂ g0α /∂ x0    - ∂g00 /∂xα )
        = -(1/2) (1/ g11) ( dg00 /dx1)                           
        = -(1/2) [-exp(-2λ)] exp(2γ) 2 γ’   

         =   γ’ exp(2γ - 2λ)                   .                    (33)  
The non trivial Ricci tensor components are   ,

R00 = Γ α0α,0   - Γ α00,α  -  Γ α00 Γ βαβ + Γ α0β Γ β0α   (34-a)
( sumed over α and β )
R11= Γ α1α,1   - Γ α11,α  -  Γ α11 Γ βαβ + Γ α1β Γ β1α   (34-b)
R22= Γ α2α,2   - Γ α22,α  -  Γ α22 Γ βαβ + Γ α2β Γ β2α  .(34-c)
The results are

R00 = {- γ’’ - γ’2 +  γ’λ’ - 2γ’/r }exp(2γ - 2λ) =0      ,  (35)

R11 = { γ’’ + γ’2 -  γ’λ’ - 2λ’/r } = 0                     ,      (36)   
R22 = {r γ’-r λ’ +1)exp(-2λ )  - csc2(θ) =0             ,   (37)
R33= R22 sin2( θ )                                         .            (38)
 In what follows we take   θ= π/2.
Adding the two parenthesis in (35), (37) leads to

λ’ +  γ’ = 0 , or  λ +  γ = constant  . But at infinty both λ and  γ tend to zero , thus the constant is zero. Therefore λ = -  γ  .

Then from (37) 

       ( 2r γ’ + 1) exp(2γ ) =1                                        (39)

d ( r exp(2γ ) ) /dr    =1 

and integrating   

r exp(2γ) = r +A                                        (40)

hence     

g00 = exp(2γ) = 1 + A/r                          .   (41) 

From arguments very much like those in the introduction ( see above)  the constant a is identified as rS = 2 GM/c2 .                                  

 4. Advance of the perihelion
Our metric is 

    ds2 =  (1-rs/r) cdt   - dr/(1-rs/r)  - r2 dθ2 – r2 sin 2(θ) dφ2  (4.1   )
Let  θ = constant= π/2   , d θ =0 and the metric simplifies to 

ds2 =  (1-rs/r) cdt   - dr/(1-rs/r)   – r2 dφ2  
g00 = (1-rs/r) ,      g11= -1/ g00= -1/(1-rs/r) ,   g33 = -r2 .   

   The geodesic for coordinate r  with the length (s) as independent variable is  
              d 2 r /ds2  = -  Γ 1μγ uμ uγ . 

Let M be the mass of the attractor ,G the gravitational constant, m the mass the planet and I the angular momentum.

 The road to obtain an equation comparable to the classic equation 

d2 u/dφ2  =  -u +  G M m2/I2                                                     ,    (4.2  )

where u (φ) = 1/r(φ) , is not through the geodesic.     
We will first derive eq (4.2 ) from the classical Lagrangian, then use a modified Lagrangian from special relativity to add an addtional term   proportional to u  to equation (4.2  ) .This term is responsible for the precession.An estimate can be made of such a precession.

With this guidance the full general relativity procedure will be outlined.  
The classical Lagrangian is   
L = (m/2) ( (dr/dt)2 + r2 (dφ/dt)2 )  + GMm/r    .  ( 4.3   )

Since L is independent of  φ , angular momentum is conserved.
Or  d ( ∂L/ ∂ φ’ ) dt =    ∂L/∂ φ = 0   . Thus 

∂L/ ∂ φ’ =   m r2 (dφ/dt) = I ( angular momentum) .

Now dr/dt = (dr/du) (du/ dφ) (dφ/dt) = -(I/m) (du/ dφ)

The Lagrangian is now in terms of u and φ’

L = (I2/(2m)) (du/ dφ)2 + (m/2) u-2 φ’2 + GMmu

   = I2/(2m)) (u φ)2 + (m/2) u-2 φ’2 + GMmu

The derivatives are 
∂L/ ∂ u = -mu-3 φ’2 + GMm = -I2 u/m + GMm         (4.4)
and  
d (∂L/ ∂ u φ )/d d { (I2/m) (u φ)}/ d φ )   =  
          =d { (I2/m) (u φ)}/ d φ=
          =  (I2/m)  d2u /d dφ2     .         (4.5)
Equating (4.4) and (4.5) and solving for the second derivative

gives    

                   d2u /d dφ2  =  -u +  GM m2/I2              (4.6)

It would be convenient to rewrite (4.6) as

d2u /d dφ2  =  - λ2 u +  GM m2/I2   where in the classical case λ=1.              

The solution is 

u = (1/r) =  A cos(λ φ + ε)  + GM m2/I2                   (4.7)

where A and  ε are integration constants depending on the two initial conditions.        
The relativistic treatment adds a correction term to (4.6) , proportional to u2.
The term is equal to (3/2) rs u2 and equation (4.6) becomes 
  d2u /d dφ2  =  -u +  GM m2/I2  + (3/2) rs u2   ~ 1/length       

 Lets define the last term as
       ∆rel =     (rs/r) (1/r)  ~ 1/length                              . (4.8)

An estimate of ∆rel can be made  taking dimensional considerations.
An extra attraction is provided bu the term  
∆rel ≈ rs u2 ~(2GM/c2)( 1/raverage) u                                       (4.9)

where we took one power , u ~ (1/rave).
Now (1/raverage) ~ 2GMm2/I2     and 

∆rel ≈ (2GM/c2)( 1/raverage) u  = 4 [ GMm/(cI) ]2 u       (4.10)

                                               ≡ k u                               (4.11)

where k=4 [ GMm/(cI) ]2  and  k << 1.

Equation (4.6)   is modified to 

d2u /d dφ2  =  - (1-k)u +  GM m2/I2  with 

λ2 ≈ (1-k)    , λ ≈ (1-k/2)                                                (4.12)

Let ε = 0 in  (4.7)  , the cosine part returns now to the maximum (1) ,( minimum of r), when

(1-k/2) φ = 2π , Hence  φ has to advance to  2π ( 1-k/2)-1     ≈   2π + πk .
In this estimate the advance of the perihelion is of the order of   πk= 4π [ GMm/(cI) ]2 , while the exact general relativity value  is  6π [ GMm/(cI) ]2   . 
** Precession from Special Relativity       **

Let the Lagrangian be 

L = - mc2 ( 1- (v/c)2 ) 1/2 + GMm/r  + mc2  .

    ≈  (1/2) m v2 +  m (1/8) v4/c2      +  GMm/r   
   Replace   v4 with (GM/r)2. The equation of motion will be

   d2 u/d φ2 = - u + (GMm/(2hc))2 u + GMm/h2       .

Now λ = ( 1- (1/2) (GMm/(2hc))2 ) and the perihelion shift would be,
∆φ =  π (GMm/(2hc))2  which is one sixth of the prediction by the general theory of relativity. ( see reference 3 , page 218) .The result was obtained originally by Sommerfeld in a relativistic treatment of the hydrogen atom.
**Full GTR procedure**
We now proceed to sketch the exact procedure as in pp. 213 -214 of reference (3) .

Let   

L= g00 c2 t’2 – r’2/g 00 –r2 φ’2     = 1                               (4.12)

where t’ = dt/ds    , r= dr/ds   and φ’= d φ /ds.

There two constanst of motion .First 

r2 φ’ = h ≈ I/(mc)                                                       (4.13)

 where I is the classical angular momentum of particle m. 

Also  g00 c2 t’ = k .                                                    (4.14)

Substitute eq (4.14)  in (4.12) and obtain  (recall g 00 = 1-rs /r ) ,
 r’2 + r2 φ’2     = k2/c2  -  1 + rs /r + rs r  φ’2              .  (4.15)  
Multiplying by (ds/dφ)2 or equivalently ~ r4/h2  and arranging  results in,

(du/dφ )2  + u2  =  -(1- k2/c2 )(1/h2) + (rs/h2) u + rs u3     .
Taking one more derivative with respect to φ  , and introducing the definitions of rs and h  gives  

d 2u/dφ2  = - u + G M (m/I )2  + 3(GM/c2) u 2   . (4.16)
Just like was done before rewrite
3(GM/c2) u 2   ≈  3(GM/c2) (1/ravergae) u  ≈ 3(GM/c2) (2GMm2/I2) u

                         ≈ 6( GMm/(Ic) )2 u .
Equation (4.16) is approximately
d 2u/dφ2  = - (1 -  6( GMm/(Ic) )2 )u + G M (m/I )2 
               ≡ - λ2 u  + G M (m/I )2         ,                       (4.17)

where λ = {1 -  6(GMm/(Ic))2 }1/2 ≈  1 - 3(GMm/(Ic))2.

The solution is 

u  = A cos(λφ) + G M (m/I )2     .

Equating    

  λφ= 2π   gives  

  φ= 2π [1 - 3(GMm/(Ic))2 ]-1 = 2π + 6π(GMm/(Ic))2   .
The extra term ,  6π(GMm/(Ic))2   , is the shift of the perihelion in one revolution.
5.Deflection of light

What to expect?

In a gravitational field g , a particle falls a distance y = (1/2) g t2 . Let t~ R sun /c and g~ GM/R2 sun , thus the 

tan ( θ ) ~ (y/ R sun) ~ (1/2) GM/(R c2). the total angle tracing the ray path from –infinity to + infinity is twice this quantity i.e.   GM/(R c2).  The actual relativistic value is 

 4GM/(R c2 )
A numerical integration using double precsion FORTRAN is carried out to calclate the deflection angle for a light ray grazing the sun’s border.

As shown before, the equation of motion –in general relativity-for a particle of mass m in the presence of an attractor M   is

d 2u/dφ2  = - u + G M (m/I )2  + 3(GM/c2) u 2       (1)
 If we let m=0 ,we obtain the equation of a particle with zero rest mass like for example a photon  ,

d 2u/dφ2  = - u   + b u 2                                     .     (2) 

With  G =6.67E-11 Nm^2/kg^2      M= 1.99E30  kg  ,c =3.00e8

the constant  b= 3(GM/c2)= 4.40E3 meters.

Equation (2) will be solved using the finite difference method.

The initial conditions are ( see drawing)
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u0 = 1/R sun = (6.95E8 m) -1 = 1.44E-9 m-1             (3)

( d u/dφ )0 =0.                                            .     (4)

The order of magnitude of the deflection angle α ( in radians) is 

≈  RSchwarzschild / Rsun = 2GM/(c2 Rsun )

                              = 4.24E-6 radians        (5)
but  1 rad=(180.d0/pi)*(3.6D3)= 2.06E5 seconds of arc ,

hence the deflection is of the order of 0.873 seconds or twice this 

1.75 seconds of arc.
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theta(deg),x,y,alpha(sec)=    0.886E+02    0.695E+09    0.277E+11    0.864E+00
When θ reaches approximately 89 degrees , α = 0.864 sec of arc.

The total apparent deflection is twice that   1.728 sec of arc.

The two Taylor series employed are

      u1=u0+dtheta*d1u0+.5d0*dtheta**2*d2(u0)+(1.d0/6.d0)*dtheta**3*

     $d3(u0)

      d1u=d1u0+dtheta*d2(u0)+.5d0*dtheta**2*d3(u0)
and the equtaion of motion is 
d2(u)= -u +  b*u**2.

Initial conditions are 

u0 = 1/R sun = (6.95E8 m) -1 = 1.44E-9 m-1             
( d u/dφ )0 =0.                                            
FORTRAN CODE

c Einstein equation d^2u/dtheta^2 = -u + b u ^2      - 10 april 2006

c G =6.67E-11 Nm^2/kg^2      M= 1.99E30  kg  ,rsun=6.95E8 m

c  u = 1/r , c= 3.E8* sqrt(rsun/(G*m))

c    r (sun)= 6.95D8 meters // the lightray travels along +Y axis,

c    initial position is (x0,y0)=(rsun, 0.d0)

      implicit real*8(a-h,o-z)

      double precision m

      data m, c, G, rsun/1.99D30, 3.D8, 6.67D-11, 6.95d8 /

      d2(u)= -u +  b*u**2

      d3(u)=-d1u0 + 2.d0*b*u*d1u0

c initial conditions u0=1./r0  , du/dtheta =0.

      pi=2.d0*dasin(1.d0)

      conv=(180.d0/pi)*3.6D3

      b=(3.d0*G*M)/(c**2)

      r0=rsun

      u0=1.d0/r0

c  final angle thetaf ...almost pi/2.

      thetaf= .99d0*(pi/2.d0)

      nstep=10000

      kp=int(dfloat(nstep)/70.d0)

      kount=kp

      dtheta=thetaf/dfloat(nstep)

      rx=(1.d0/u0)*dcos(0.d0)

      ry=(1.d0/u0)*dsin(0.d0)

      d1u0=0.d0

      print 100,0.d0,rx, ry,0.d0

c a third Order Taylor series is employed to obtain u( theta)

      do 10 i=1,nstep

      theta=dtheta*dfloat(i)

      u1=u0+dtheta*d1u0+.5d0*dtheta**2*d2(u0)+(1.d0/6.d0)*dtheta**3*

     $d3(u0)

      d1u=d1u0+dtheta*d2(u0)+.5d0*dtheta**2*d3(u0)

      if(i.eq.kount)then

      rx=(1.d0/u1)*dcos(theta)

      ry=(1.d0/u1)*dsin(theta)

      alpha=(rsun-rx)/ry

      kount= kount + kp

c      print*,'rs,rx,ry=',rsun,rx,ry

      print 100,theta*180.d0/pi, rx, ry, alpha*conv

      endif

      u0=u1

      d1u0=d1u

10    continue

100   format('theta(deg),x,y,alpha(sec)=',4(3x,d10.3))

      stop

      end

6. The gravitational red shift   

What to expect?      E = h f   ,  m’ = E/c2   , ∆E = m’ (-∆Ф) = -(hf/c2) ∆Ф
                                                          h ∆f = -(hf/c2) ∆Ф  ,  ∆f = -(f/c2) ∆Ф  

or   ∆λ =   λ (Фfinal – Фinitial) /c2)  , so a red shift occurs when  ∆Ф >0. 

At the surface of a star the gravitational potential has a large negative value. The metric element at that point is  

      ds2 = g00 ( r1) c2 t12. At a point where space is flat the same atom emits with a period  t0 , 
    Equate g00 ( r1) c2 t12 = c2 t2 0 . Since the period is proportional to λ one has
                       λ1 =  { g00 ( r1)}-1/2 λ0 = ( 1- 2GM/(c2 r) )-1/2 λ0 
                            = (1 + GM/(c2 r) ) λ0     .                                  (6.1)

Thus light appears shifted to the red when traveling from a large negative gravitational well to regions where where the potential is less negative. 

          THE  END      

