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3. Derivative  the sine function and cosine functions

Let   y= A sin (x)   where y ~ length , x ~ radians  , A ~ length 

dy/dx~ length/radians  

y(x+∆x) = A sin(x+∆x)= A [ sin(x) cos(∆x) + cos(x) sin(∆x) ]

The trick here is to know the behaviour of the sine and cosine functions for small angles, that is for ∆x~ 0. One may look at a table use the calculator or see a plot and convince himself that when ∆x~ 0 , cos(∆x) =1  , and 

sin(∆x) ≈ ∆x . 

So                     y(x+∆x) ≈ A [ sin(x) +   ∆x cos(x)]   

and        ∆y = y(x+∆x) – y(x) = A ∆x cos(x)                    

Dividing by ∆x    one gets 

            dy/dx  = d( Asin(x) ) /dx =A cos(x)                                          (14)

In this derivation the fourth step was already taken before dividing by ∆x .

This was a special circumstance due to the nature of trigonometric functions.

b) derivative of the cosine function

Let   y= A cos (x)   where y ~ length , x ~ radians  , A ~ length 

dy/dx~ length/radians  

y(x+∆x) = A cos(x+∆x)= A [ cos(x) cos(∆x) - sin(x) sin(∆x) ]

∆y= y(x+∆x) – y(x) = A [ cos(x) cos(∆x) - sin(x) sin(∆x) ] – A cos(x).

Making the approximations cos(∆x) ≈ 1   and  sin(∆x) ≈ ∆x , gives 

∆y= y(x+∆x) – y(x) = A [ - sin(x) (∆x) ] . Now  divide by  ∆x and obtain

                                        ∆y/∆x = -A sin(x)   or 

                             dy/dx = d (Acos(x) )/dx = - A sin(x)  
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