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Lecture 1.The Derivative Algorithm
The derivative algorithm is a  formulation that answers the question, what is the instantaneous rate of change of a dependent variable –y- with respect to the independent variable x . 
The derivative is denoted by  dy/dx is an analytic function say g(x) ,equal to the limit of the slope ,(∆y/∆x) as ∆x tends to zero. A number of steps in a certain order have to be taken to obtain the derivative as an analytic expression. 

This assumes that y is known analytically , y = f(x).  
For example , a straight line  has the equation

                                        y = mx  + b                                       .         (1)

where m is the slope ( a constant for the straight line) and b the intercept on the Y axis.

It should be noticed that almost all equations and derivatives have dimensions. Suppose 

 y~meters (m)  , x  ~seconds (s) then the slope m has dimensions of speed ~(meters/second)  and  b~meters.

Fig 1. shows a body whose position in meters changes linearly with time.We take the independent variable , x=t  (time)  in this example.

The equation is  y=2t +3   
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Start with the question ,  what is       ∆y/ ∆t, for this straight line ?
By  ∆y we mean   the difference , y(t+∆t )  - y(t)  = {2(t+∆t) +3 }- {2t+3}

We are left with  ∆y = 2∆t   and therefore 

∆y/ ∆t  = 2 (meters/s)  =g(t)                                    .    (2)

At any instant t,the straight line,of this example, has the constant rate of change g(t)=2m/s. 

A positive derivative means that at the point in question y is increasing.
A negative  derivative means that at the point in question y is decreasing.
Matlab code for differentiation (taking the derivative)

syms t ;
y=2*t+3 ;
diff(y)
ans =

2

*************

This  an example  of the fact,that  a straight line has a constant rate of change . No matter the size of ∆x ,  or at what at  value of x is the rate calculated, always 
                                     ∆y/ ∆x   = m =g(x)                (3)

for all  points in the line. 

For all other functions ∆y/ ∆x   will in general  be dependent on the size of ∆x   as well as on the point x where the changes  ∆y and  ∆x   are calculated. It is necessary to refine the procedure and this leads to the derivative of a function.
Definition of the derivative,

     (dy/dx)  = lim∆x→0 (∆y/ ∆x )          ,               (4)

or what is the same 

(dy/dx)  = lim∆x→0 [ y(x+ ∆x ) – y(x) ]  / ∆x    .  (5)     
There are four  steps in this definition of the derivative of y with respect to x. They will be detailed in the next example.
Suppose   y(x) = 5x2  or  more general , y(x) = A xn  (A=5 , n=2)
i) first step: obtain an expression for  y(x+∆x).

y(x+∆x) = 5 (x + ∆x)2 =   5 { x2 + 2 x (∆x) + (∆x)2 }         (6) 

Using the binomial theorem it is shown that any power (n) of x wil have an expansion of the form  

  (x+∆x)n = xn + n xn-1 (∆x) + ((n)(n-1)/2) xn-1 (∆x)2  +…..(∆x)n   (7)

ii) second step: subtract y(x) from (6)

y(x+∆x)- y(x) = 5 x2 + (5) 2 x (∆x) + 5 (∆x)2 - 5 x2               

                       =  (5) 2 x (∆x) + 5 (∆x)2       .                              (8)
Notice that the result is a series in  powers of   ∆x.           

iii) third step: divide the expression  y(x+∆x)- y(x)  by ∆x .
Dividing (8) by ∆x   gives ,

 {y(x+∆x)- y(x) } /∆x   = (5) 2 x  + 5 (∆x) .                           (9)  

Notice that the first  term in (9) is now independent of  ∆x .

iv)fourth step: take the limit as  ∆x→ 0 .   

limit ∆x →0 {   (5) 2 x  + 5 (∆x) } = 5(2)x   = 10x         .    (10)

The conclusion is that if y is of the form  y = A xn   the derivative is 

                          dy/dx = d (A xn ) /dx

                                     = n A xn-1                             (11)

The notation dy/dx is a shorthand for the steps outlined above.

As to the units    ,  suppose  y ~ meters   and x ~ seconds

then A ~ meters/second n  and dy/dx ~ meters/second.

One can take another derivative over expression (11) , is called the second derivative and written as 

        d2 y /dx2 =  d  ( n A xn-1 ) /dx  = n(n-1)A xn-2   .     (12)
From eq (10) one has d (10x)/dx = 10 (1) x1-1 =10 x0 =10.

A third derivative in this case will give zero 

d3 y /dx3 = d (10 x0) /dx  = 10(0) =0                      (13)

So a positive power  xn  has only n derivatives.If n is not positive the number 
of derivatives is endless. Obviously the derivative of a constant function say 
y(x) = A is zero.  
Lecture 2. Derivative of a polynomial and derivative of a product
We apply the definition (4) ,(5) to some important functions to obtain analytical expression of the derivative of such functions.
Let y(x) =   A xn  + B xs + C xp + ….
The first derivative is 

dy/dx= n A xn-1   + s B xs-1  + p C xp-1 +….       (1)

Example (using MATLAB) finding the first and second derivative
% derivatives
syms x A B C n s p;
n=4 ; s=3 ;p=1 ;
y =   A*x^n  + B*x^s + C*x^p 
dydx= diff(y,x)
d2ydx2= diff(y,x,2)
y =

A*x^4+B*x^3+C*x

dydx =

4*A*x^3+3*B*x^2+C

d2ydx2 =

12*A*x^2+6*B*x

     -end of example-
Remark on dimensions A , B , C  etc have different dimensions. If y~ length

and x ~ time     dy/dx ~ length/time  , A ~ length/timen  , B~ length/times ,

C~ length/timep ….

We may justify the rule for the derivative of a product

 dy/dx =d  { f(x) g(x)}

           =  (df/dx) g(x)  + f(x) dg/dx                              (2)
 using the derivative of a power (n+s). Let
   y = c x n+s  = (cxn ) (xs ) ≡ f(x) g(x).

  Then   dy/dx  = (n+s)c x n+s-1 =( n c x n-1) (xs ) +cxn (s xs-1)

                                   ≡  (df/dx ) g(x) + f(x) (dg/dx)  
3. Derivative  the sine function and cosine functions
Let   y= A sin (x)   where y ~ length , x ~ radians  , A ~ length 
dy/dx~ length/radians  

y(x+∆x) = A sin(x+∆x)= A [ sin(x) cos(∆x) + cos(x) sin(∆x) ]
The trick here is to know the behaviour of the sine and cosine functions for small angles, that is for ∆x~ 0. One may look at a table use the calculator or see a plot and convince himself that when ∆x~ 0 , cos(∆x) =1  , and 
sin(∆x) ≈ ∆x . 

So                     y(x+∆x) ≈ A [ sin(x) +   ∆x cos(x)]   

and        ∆y = y(x+∆x) – y(x) = A ∆x cos(x)                    

Dividing by ∆x    one gets 

            dy/dx  = d( Asin(x) ) /dx =A cos(x)                                          (14)

In this derivation the fourth step was already taken before dividing by ∆x .
This was a special circumstance due to the nature of trigonometric functions.

b) derivative of the cosine function

Let   y= A cos (x)   where y ~ length , x ~ radians  , A ~ length 

dy/dx~ length/radians  

y(x+∆x) = A cos(x+∆x)= A [ cos(x) cos(∆x) - sin(x) sin(∆x) ]

∆y= y(x+∆x) – y(x) = A [ cos(x) cos(∆x) - sin(x) sin(∆x) ] – A cos(x).
Making the approximations cos(∆x) ≈ 1   and  sin(∆x) ≈ ∆x , gives 
∆y= y(x+∆x) – y(x) = A [ - sin(x) (∆x) ] . Now  divide by  ∆x and obtain

                                        ∆y/∆x = -A sin(x)   or 

                             dy/dx = d (Acos(x) )/dx = - A sin(x)  

Lecture 4. Newton’s roots method

  We seek a root  -r- of the function f(x). At that  point f(x=r)=0 . Suppose (df/dx)x=r ≠ 0.    

The derivative definition allows an iteration method for findimg a root.

Let  x1 be a first approximation to root r.

Then x2 = x1 + ∆x  is a second approximation to the mentioned root r

We have from the definition

{f(x1 + ∆x ) – f(x1) }/ (x2 – x1) ≈  (df/dx)x1                          (4.1)
The right hand side in(4.1) is known exactly because the function f(x) is given analytically and the derivative is known exacty.It si on the left hand side that we make the following approximation. 

Take f(x1 + ∆x) = f(x2) = 0 in (4.1) Then  

       -f(x1) / (x2 – x1) ≈  (df/dx)x1        

and solving for  x2      gives 

x2 = x1 - f(x1)/ [ (df/dx)x1  ]                                                 (4.2)

The procedure has to be repeated   and the iteration rule is 

xn = xn-1 - f(xn-1)/ [ (df/dx)n-1 ]                                       (4.3)
The n-th approximation to the root  -r- is obtained from the (n-1)th estimate.  

Esxample : find the roots of        f(x) = x**2 -4.*x+3.

for the first root we star at x1=0.

FORTAN code  
c Newton's roots methods

      f(x) = x**2 -4.*x+3.

      dfdx(x)=2.*x-4.

c the roots are easily obatined from the quadaratic formula r1=1.,r2=3.

      data x1,niter /0. , 10/

      do  10 i=1,niter

      x2=x1-f(x1)/dfdx(x1)

      print*,'iter,x2,f(x2)=',i,x2,f(x2)

      x1=x2

10    continue

      stop

      end  
In five iterations we achieve f(r)=0.  , the root is x=1.              
iter,x2,f(x2)= 1  0.75  0.5625

 iter,x2,f(x2)= 2  0.975000024  0.0506249517

 iter,x2,f(x2)= 3  0.999695122  0.000609848474

 iter,x2,f(x2)= 4  0.99999994  1.1920929E-007

 iter,x2,f(x2)= 5  1.  0.
For the second root we started at x1=5.

iter,x2,f(x2)= 1  3.66666675  1.77777803

 iter,x2,f(x2)= 2  3.13333344  0.28444469

 iter,x2,f(x2)= 3  3.00784326  0.0157480296

 iter,x2,f(x2)= 4  3.00003052  6.10360876E-005

 iter,x2,f(x2)= 5  3.  0.

End of lecture 4
Lecture 5. The Chain Rule 

Before proceeding any further we present the chain rule. It is necessary for most applications of differentiation.
Let let y =y(x)   and  x=x(t) . Then y can be viewed also as a function ot t. Suppose we want to find dy/dt . 

We know the procedure by which limit( ∆y/∆x)   leads to (dy/dx). Also 

limit (∆x/∆t) → (dx/dt)  . It is reasonable to suppose that the product of two limits limit (∆y/∆x) limit (∆x/∆t) is the limit of ∆y/∆x , thus 
dy/dt  =   limit (∆y/∆x) limit (∆x/∆t) = (dy/dx) (dx/dt)           ,

that is 

                             dy/dt = (dy/dx) (dx/dt)     ( 15)

Example -4.1 : Let    y(θ) = A sin(θ)   , y ~ meters , A~ meters,  θ ~ radians
But  θ  is a function of time (t)   , for   example  dy/dθ θ = ωt  where 
ω ~ radians/second

We want the instantaneous velocity (dy/dt), which equals the product 

(dy/dθ )(d θ/dt).

From (14) we have 

                              dy/dθ = A cos(θ)                       (16)

and                     (  d θ/dt) =   d (ωt  ) /dt  = ω         (17)
Multiplying the last two expression gives the velocity

                      (dy/dt) = A ω cos(θ)   ~ meters/second             ( 18)

or                        v     =   A ω cos( ωt )   

In general given a  function   y = f (u)    and u = u(x)  one writes 

                           dy/dx  = ( df/du) (du/dx)       or 

                                       =  (dy/du) (du/dx)                          (19)
Example (4.2) : Let   y = ( a + x2 )1/2   where y ~ Length , a~ length2 and x ~ length  .     To calculate dy/dx  we define first  ,u = (a + x2).

du/dx = 2x   and    y = u1/2   with dy/du = (1/2) u1/2-1 = (1/2)u-1/2 .

applying the chain rule 

      dy/dx = (dy/du)(du/dx) = (1/2)u-1/2  2x= x u-1/2  

                = x / (a + x2)1/2 .

MATLAB EXAMPLES

The first and second derivatives of y(t) =a*sin (ωt +c) are found.

We have analytically y =a sin(u) where   u = ωt +c  , du/dt = ω  , then

dy/du = a *cos(u). Suibstitute in 

   (dy/dt) = ((dy/du) (du/dt)  = a [sin(ωt +c)] * ω 

               = aω sin(ωt +c)  . 

% derivatives
syms a w  c  t;
y = a*sin(w*t +c ); 
dydt=diff(y,t)
d2ydt2=diff(y,t,2)
dydt =

a*cos(w*t+c)*w

d2ydt2 =

-a*sin(w*t+c)*w^2

>>

Lecure 6. Implicit differentiation
Sometimes it can be very hard or impossible to solve  explicitly  for y as a function of x  ,or vice versa   x as a function of y  i.e. x =x(y). Probably the derivative (dy/dx) will contain both x and y. 
Example 1:  The equation for the  circle of radius r ,is 
 x2 + y2 = r2 .                                       (1)

If the dy/dx is sought one can solve it in two ways.
   y = ( r2 – x2 )1/2.   Applying the previous rules let u =( r2 – x2 ) and 
du/dx= -2x . So y= u1/2  and 

dy/dx= (dy/du)(du/dx) = (1/2) u1/2-1(-2x) =x u-1/2
         = -x/( r2 – x2)1/2 = -   x/y  .

But by implicit differentiation ,start with eq(1)

d (x2 + y2 ) /dx    = d r2 /dx = 0

2x + 2y (dy/dx) =0     , or    dy/dx = -x/y .

Example 2:
The acceleration of a falling body of mass m is 
a = d2y/dt2 = dv/dt = -g – (b/m) v           where g=9.8m/s2  , m~mass in kg , 

b ~ kg/s  . Suppose you need the third derivative d3y/dt3 . Using implicit differentiation one would write 

d3y/dt3 = d { -g – (b/m) v } /dt = -(b/m) dv/dt 
           =-(b/m) (-g – (b/m) v )         . In this case all derivatives are functions of v. Take now d4y/dt4 ,

d4y/dt4  =   [– (b/m) ]2 (dv/dt) =[– (b/m) ]2 (-g – (b/m) v )   .          
Example 3:
 y3  = - x sin(2y)   + x2                                          . (2)

Taking ( d/dx ) across eq (5.1) we write 
3 y2 (dy/dx) = d [- x sin(2y) ] /dx + 2 x

3 y2 (dy/dx) = -(1) sin(2y) –x d(sin(2y))/dx + 2x .
Apply the chain rule now

3 y2 (dy/dx) = - sin(2y) –x d ( sin(2y)/d(2y) (d(2y)/dx) + 2x,

letting now   u = 2y       , du/dx = 2 dy/dx

3 y2 (dy/dx) = - sin(2y) –x d ( sin(u)/du) (du/dx) + 2x

3 y2 (dy/dx) = - sin(2y) –x cos(u) (du/dx) + 2x

3 y2 (dy/dx) = - sin(2y) –x cos(2y) (2 )dy/dx) + 2x.

Finally

(dy/dx) = (- sin(2y)  + 2x) {3 y2 + 2x cos(2y) }-1   (3)
In general one can write  eq.(5.1) as 
 f(x,y) = y3  + x sin(2y)   -x2 =0   .                     ( 4)

Differentiation with respect to x    produces two terms

     ∂f /∂x    + (∂f/∂y )(dy/dx)   = 0          .             (5)
Eq(5.3) can also be written as (multiplying by dx)

    ( ∂f /∂x)dx    + (∂f/∂y )dy   = 0   .                     (6)
The notation ∂f /∂x  ,  is read, partial derivative of f with respect to x and 

(∂f/∂y) is the partial derivative of f with respect to y. While taking ∂f /∂x  ,  the y variable is treated as a constant. While taking ∂f /∂y the variable x is treated as a constant.  
From ( 2 )  

∂f /∂x  = sin(2y) -2x    ~ y is treated as a constant

(∂f/∂y) =3y2 +2x cos(2y)      ~ x is treated as a constant   (7)

From (5.4) 

(dy/dx) =   - ∂f /∂x / ((∂f/∂y ) = -( sin(2y) -2x ) {3y2 +2x cos(2y)}-1 (8)

which is the same result as (5.2). Notice the  (dy/dx) is still not an explicit function of x   , it also contains y.   
We have the recourse of numerical methods to solve y in terms of x and to find the derivative (dy/dx)  pertaining to eq.(5.1)

Suppose we want y(x) for    ,  1  ≤  x ≤ 10

Assign a fixed value of x , say x=1  

guess a value of y , for example  y≈ 1 for small x while for large x ,

y≈ x2/3  as the equation itself suggests. Now use Newton method to find y for a fixed x value 

      yn=yn-1 - f(x,yn)/dfdy(x,yn)   .

Remember x is temporally fixed. For df/dy   use the numerical approximation 

dfdy(x,y)=(f(x,y+dy)-f(x,y))/dy     where dy is “small”  say dy = 1.e-4  , see the code below.
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Plot of the derivative (dy/dx) 
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FORTRAN code

      dimension  yn(0:100)

      data nstep,niter,dy/35,20,1.e-4/

      f(x,y)= y**3 + x*sin(2.*y)   - x**2

      dfdy(x,y)=(f(x,y+dy)-f(x,y))/dy

      xi=1.

      xf=10.

      nstep=40

      dx=(xf-xi)/float(nstep)

      do 10 i=0,nstep

      x= xi+dx*float(i)

      if(x.gt.1.)y1=x**(2./3.)

      if(x.le.1.)y1=1.

c   newton's method

      do 20 j=1,niter

      y2=y1-f(x,y1)/dfdy(x,y1)

      dydx=(y2-y1)/dx

      y1=y2

20    continue

      yn(i)=y2

      if(i.gt.0)dydx=(yn(i)-yn(i-1))/dx

      print 100 ,x,y2,f(x,y2),dydx

10    continue

100   format('x,y,f(x,y),dy/dx=',4(3x,e10.3))

      stop

      end
x,y,f(x,y),dy/dx=    0.100E+01    0.518E+00    0.000E+00    0.000E+00

x,y,f(x,y),dy/dx=    0.123E+01    0.674E+00   -0.441E-07    0.691E+00

x,y,f(x,y),dy/dx=    0.145E+01    0.878E+00    0.620E-07    0.908E+00

x,y,f(x,y),dy/dx=    0.167E+01    0.117E+01   -0.117E-06    0.130E+01

x,y,f(x,y),dy/dx=    0.190E+01    0.149E+01    0.224E-06    0.142E+01

x,y,f(x,y),dy/dx=    0.213E+01    0.173E+01    0.000E+00    0.108E+01

x,y,f(x,y),dy/dx=    0.235E+01    0.191E+01    0.954E-08    0.815E+00

x,y,f(x,y),dy/dx=    0.258E+01    0.206E+01    0.238E-08    0.660E+00

x,y,f(x,y),dy/dx=    0.280E+01    0.219E+01   -0.572E-07    0.561E+00

x,y,f(x,y),dy/dx=    0.302E+01    0.230E+01   -0.813E-06    0.492E+00

x,y,f(x,y),dy/dx=    0.325E+01    0.240E+01   -0.954E-06    0.442E+00

x,y,f(x,y),dy/dx=    0.347E+01    0.249E+01    0.108E-05    0.404E+00

x,y,f(x,y),dy/dx=    0.370E+01    0.257E+01   -0.378E-05    0.374E+00

x,y,f(x,y),dy/dx=    0.392E+01    0.265E+01    0.262E-05    0.351E+00

x,y,f(x,y),dy/dx=    0.415E+01    0.273E+01    0.963E-06    0.332E+00

x,y,f(x,y),dy/dx=    0.438E+01    0.280E+01    0.000E+00    0.317E+00

x,y,f(x,y),dy/dx=    0.460E+01    0.287E+01   -0.118E-05    0.304E+00

x,y,f(x,y),dy/dx=    0.482E+01    0.293E+01    0.123E-05    0.295E+00

x,y,f(x,y),dy/dx=    0.505E+01    0.300E+01   -0.230E-05    0.287E+00

x,y,f(x,y),dy/dx=    0.528E+01    0.306E+01    0.609E-05    0.281E+00

x,y,f(x,y),dy/dx=    0.550E+01    0.312E+01   -0.191E-05    0.276E+00

x,y,f(x,y),dy/dx=    0.572E+01    0.318E+01   -0.587E-06    0.273E+00

x,y,f(x,y),dy/dx=    0.595E+01    0.325E+01   -0.521E-05    0.271E+00

x,y,f(x,y),dy/dx=    0.617E+01    0.331E+01   -0.242E-05    0.270E+00

x,y,f(x,y),dy/dx=    0.640E+01    0.337E+01    0.397E-05    0.271E+00

x,y,f(x,y),dy/dx=    0.663E+01    0.343E+01    0.381E-05    0.273E+00

x,y,f(x,y),dy/dx=    0.685E+01    0.349E+01   -0.190E-05    0.276E+00

x,y,f(x,y),dy/dx=    0.707E+01    0.355E+01   -0.401E-05    0.280E+00

x,y,f(x,y),dy/dx=    0.730E+01    0.362E+01    0.509E-05    0.286E+00

x,y,f(x,y),dy/dx=    0.752E+01    0.368E+01   -0.128E-05    0.293E+00

x,y,f(x,y),dy/dx=    0.775E+01    0.375E+01    0.381E-05    0.301E+00

x,y,f(x,y),dy/dx=    0.797E+01    0.382E+01   -0.321E-05    0.312E+00

x,y,f(x,y),dy/dx=    0.820E+01    0.389E+01   -0.664E-05    0.324E+00

x,y,f(x,y),dy/dx=    0.843E+01    0.397E+01    0.838E-05    0.338E+00

x,y,f(x,y),dy/dx=    0.865E+01    0.405E+01   -0.652E-05    0.354E+00

x,y,f(x,y),dy/dx=    0.888E+01    0.413E+01    0.000E+00    0.372E+00

x,y,f(x,y),dy/dx=    0.910E+01    0.422E+01   -0.729E-05    0.391E+00

x,y,f(x,y),dy/dx=    0.932E+01    0.431E+01   -0.163E-05    0.410E+00

x,y,f(x,y),dy/dx=    0.955E+01    0.441E+01    0.338E-05    0.427E+00

x,y,f(x,y),dy/dx=    0.977E+01    0.451E+01    0.349E-05    0.440E+00

x,y,f(x,y),dy/dx=    0.100E+02    0.461E+01    0.000E+00    0.447E+00

END OF LECTURE 6  
Lecture 7. Derivative of the exponential and logarithmic functions
The exponential function is an infinite  power series

exp(x) = 1 + x + x2 / 2   + x3 /(2 ∙3) +   …. xn / n!        (1 )
 where n! is factorial of n.  
We invite you to download FORTRAN Force 2.0.8 from  the following site

http://www.download.com/Force/3000-2069_4-10067832.html?tag=lst-0-1
The following code in FORTRAN

calculates exp(1.).

c calculation of exponential function

      x=1.

      sum=1.

      factor=1.

      do 10 i=1,20

      factor=factor*float(i)

      sum=sum + x**i/factor

10    continue

      print*,'exp(1.), sum= ',exp(1.) , sum

      stop

      end

exp(1.), sum=   2.71828175  2.71828198

The derivative of exp(x) , is the exponential itself ,as we can verify 

d (exp(x) )/ dx = 0 + 1 + x + x2 / 2   + x3 /(2 ∙3) +   …. xn / n!   .

So     the rule is         

                               d {exp(x) } /dx = exp(x)     

Example: Let   y = A exp( - βx2 ) = exp( u (x) ) , (β is a constant).Suppose  x~ (m/s)2 , i.e. speed  in meters/second,squared,  then β ~ 1/(m/s)2 . Suppose also that  A~ adimensional   then y ~ A ~ adimensional . 

Apply the chain rule to obtain
dy/dx .

  dy/dx= (dy/du) (du/dx)   .

We have  ,dy/du =A exp(u)      and  du/dx = d( -βx2 ) /dx = -2 βx . 

Substituting in the chain rule

        dy/dx=A exp(-βx2) (-2 βx) , 

i.e.           = (-2 βx)A exp(-βx2)  .

  Part II .Derivative of the logarithmic function

      The natural logarithm of  x is expressed here as a function of y ,       

                                  x = exp(y)           (2)

or what is the same   ln (x) = y             (3)  
Take the derivative of (1) with respecto to x and employ the chain rule 

d (x) /dx   = d exp(y) /dx = exp(y) dy/dx 

         1=                             x (dy/dx)

or    dy/dx  = d (ln(x) )/ dx  =  1/x         .

That is     

                      d ln(x) /dx = 1/x            .      (4)   

In general     if u =u(x)   the derivative  and y= ln (u)
   dy/dx   =   d ln(u) /dx = [ 1/u(x) ] du/dx            (5).

Example : Let   u = 3x 2 +1   
du/dx = 6 x      and d ln(3x 2 +1) /dx = [1/( 3x 2 +1)] (6x)   
Example worked with MATLAB  

% derivatives
syms x;
y = log(3*x^2+1); 
dydx=diff(y,x)
dydx =

6*x/(3*x^2+1)

End of Lecture
Lecture 8. Derivative of  y= tan(u)

Lets find first dy/du  .

y = f(u) g(u)-1  = sin(u) (cos(u) ) -1  .

We use the results of practically all sections ,derivatives of sine and cosine functions , chain rule and implicit differentiation.
dy/du = (df/du) g(u)-1  + f(u)  (dg-1/dg ) (dg/du) 

          = cos(u)/cos(u) +sin(u) (-1) cos(u)-2 (-sin(u))
          = 1  + sin(u)2 /cos(u)2
         = 1/ cos(u)2 = sec(u)2      .

Then applying the chain rule once more 

dy/dx= (dy/du)(du/dx) =  sec(u)2  (du/dx)
END OF LECTURE
LECTURE 9. Table of derivatives

We summarize the derivatives treated so far and at the same time,  generalize the results applying the other pertinent rules, like chain rule and implicit differentiation.

y(x)  and/or y(u) ,u=u(x)                        dy/dx
1.A xn  + B xs + C xp                      n A xn-1   + s B xs-1  + p C xp-1 

2.A (u)n                                         n A un-1 (du/dx) 
example y=A(1+x2)5                    5 A (1+x2)4 (2x)

3. A f(u)n                                    n A f(u)n-1 (df/du)(du/dx)

example y=(1+ x2)5 , now let  u=x , f = (1+u2) ,df/du =2u , du/dx=1 

                            and    dy = 5 A(1+x2)4 (2x) (1)

4. f(u) g(v)                            (df/du)*(du/dx) *g(v) +f *(dg/dv)* (dv/dx)   

5. A sin(x)                                       A cos(x) 
5. A sin(u)                                       A cos(u) (du/dx)

7.A cos(x)                                            -A sin(x)

8. A cos(u)                                          -A sin(u) (du/dx)  
9. A exp(x)                                           A exp(x)

10. A exp(u)                                         A exp(u) (du/dx)

11. A ln(x)                                            A/x

12. A ln(u)                                            (A/u ) (du/dx)

13. A tan(x)                                          A sec2(x)

14.A tan(u)                                           A sec2(u) (du/dx)                                          
Lecture 10. Applications

Example 1. Periodic motion in one dimension  .   Let a particle’s position be given by

x(t) = A cos(ωt)   (x and A ~meters) ,    ω ~radians/s   , t~s  .
data: A = 0.15 m   ω =2 /s .

Find the velocity and acceleration of the particle as functions of time.

Apply the chain rule with   u= ωt = 2t    ,  du/dt= 2 rad/s .

v ≡ dx/dt = A (d (cos u)/du) du /dt  = A (-sin(u) ) (2)

         v(t)      = -.30 sin(ωt)     ~m/s

acceleration  ≡ dv/dt = d 2x/dt2 = -.30 (d sin(u)/du)(du/dt)
          a(t)= -.60 cos(u)  ~m/s2    
Differentiation and plots using Matlab
A=.15 ; w=2;
  tau=2*pi/w ;
   t= [0:tau/200:tau];
   x=A*sin(w*t);
   plot(t,x),xlabel('t~s'),ylabel('x ~ m')
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position x over one period tau

syms A  w   t; 
 x=A*sin(w*t);
 v=diff(x,t) 
 accel=diff(x,t,2)
v =

A*cos(w*t)*w

accel =

-A*sin(w*t)*w^2
***plot code for the velocity
A=.15 ; w=2;
  tau=2*pi/w ;
   t= [0:tau/200:tau];
 v =A*cos(w*t)*w ;
plot(t,v),xlabel('t~s'),ylabel('v~m/s')
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Velocity over one period tau 
acceleration code 

A=.15 ; w=2;
  tau=2*pi/w ;
   t= [0:tau/200:tau];
accel = -A*sin(w*t)*w^2;
 plot(t,accel),xlabel('t~s'),ylabel('accel~m/s^2')
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acceleration over one period tau
b) damped motion  let x=A exp(-bt) sin ( ω’ t + π/4)        

x and A ~meters) ,    ω ~radians/s   , b ~1/s
Example 2. A particle is falling and the velocity is given

by      v (t) = - A ( 1- exp(-bt) )   , v~ meters/sec  ,A= 28m/s  t~ seconds , b=.2/sec . Find the acceleration, plot v and a.

a= dv/dt  =-28 d(1- exp(-bt))/dt= -28 d( -exp(-bt) ) /dt 

    = 28 exp(-bt) d(-bt)/dt = -b(28) exp(-bt)

     =-5.6 exp(-.2t)     ~ m/s2  
Using MATLAB
syms t  b;

v=-28*(1-exp(-b*t));

a=diff(v,t)
a = -28*b*exp(-b*t)

Plot using Matlab

A=28 ; b=.2 ;tf=3*(1/b);

v=-A*(1-exp(-b*t));

accel = -28*b*exp(-b*t)   ;

t=(0:tf/100:tf);

plot(t,v,t,accel) ,xlabel('t(sec)'),ylabel('v(m/s) and accel(m/s^2)')
[image: image8.png]



Example 3 : Maxima and minima

Let the trajectory of a particle thrown up vertically be given by 

 y = -4.9t2 + 10t +2   ( y~ m  , t ~s )  

Find the maximum value of y .The first derivative is the speed
dy/dt= v = -9.8t +10   ~m/s ,this corresponds to the speed . At t=0 , v=+10 m/s. See plots.

Matlab code

tf=2; t= [0:tf/200:tf];
   y=-4.9*t.^2+10*t+2 ; 
    v=-9.8*t+10; a= -9.8;
   plot(t,y,t,v),xlabel('t~s'),ylabel('y(m),v(m/s)');
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A plot of y vs t easily reveals the maximum value and the approximate instant t when it occurs.

The speed  that starts at +10 m/s,decreases  for an instant becomes zero at about t≈0 is zero . The particle starts to fall and  v<0. The maximum value of y is about 7 meters.
In the language of calculus; to find the maxima or minima of  y(t) we take the first derivative , equate it to zero and solve for the independent variable , t  in this case.

From the above results

dy/dt = -9.8t +10 equated to zero  , gives   0=-9.8t +10   and

t m = 10/9.8 = 1.02 seconds .
Evaluate  y(t= t m) = -4.9 (1.02)2 -10(1.02) +2 = 7.10m
We can see that the second derivative is(negative/positive) at a (maximum/minimum). Consider the next figure. y1 is a maximum and 
y0<y1    , also  y2<y1 .
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The first derivatives on the left hand and right hand side are  approximately
(dy/dx)0 ≈ ( y1-y0)/dx > 0   and   (dy/dx)1 = (y2-y1)/dx <0 .

The approximation to the second derivative is  
          d2 y/dx2 ={ (dy/dx)1 –(dy/dx)0 } /dx ={y2-2y1+y0}/dx2 
      or             = { (y2-y1) + (y0-y1) }/ dx2 < 0 since both quantities in the inner parenteheses are negative.  
A similar argument would show that at a minima

                                  d2 y/dx2 > 0.
Lecture 11. The Taylor series

Lecture 12. Differential equations
Lecture 13. Indefinite integrals
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