Remediation of application-specific security vulnerabilities at runtime

Bowen, T.F.; Segal, M.E.

Sow Fun Yee (S9)

Abstract

The wide proliferation of security vulnerabilities nowadays is because of the widespread Internet connectivity. Therefore, an approach to application-specific security is really needed to let computer users remediate vulnerabilities without relying on application vendors. The solution discussed in this paper monitors and changes an application's behavior by intercepting the system calls, which are requested.

Introduction

The computer security issue that involves hackers is now still very hot. We can read from newspapers that intrusions into presumably secure computers occur almost every day. This is not only a social but also a technical issue. Most of the hackers are doing the intrusion because of wanting to reveal secrets of others. Some of them are hoping to defeat those “anti-virus professional”. Their social approach involves inducing trusted individual to reveal secrets through bribery, blackmail or trickery. Technical means include exploiting vulnerabilities stemming from misconfiguration and latent application and operating-system bugs.

Application security vulnerabilities pose a very serious technical problem. There exist malicious developers who add security vulnerabilities for future exploitation. Therefore, this gives the malicious hackers an opportunity. Besides, the little attention in security issues also makes the problem more serious. Therefore, four defensive lines are introduced. The first line eliminates vulnerabilities through better development practices. The second is to monitor an application’s input. The third, also the main topic in the article, is to detect and prevent exploitations by monitoring an application’s runtime behavior. The fourth is to look for the residue of successful attacks by periodically examining file systems.

The approach is based on the system-call monitoring system (SMS). By intercepting system calls, SMS augments the kernel’s general-purpose security with application-specific functionality and thus allowing exploitation detection and damage prevention. Besides, SMS also does not require access to application source code. This empowers administrators to correct security vulnerabilities in existing applications even if they cannot modify source code.

Elaboration on the Techniques

As the third defensive line for preventing exploitation of application vulnerabilities, SMS (the System-call Monitoring System) is an intercepting system that used to detect and prevent exploitations by monitoring an application’s runtime behavior. An important nonfunctional characteristic of SMS is that it does not require access to application source code. This empowers administrators to correct security vulnerabilities in existing applications even if they modify source code. Therefore, this eliminates reliance on software vendors to produce and distribute.

Detecting Exploits

SMS is experimented with behavioral specifications, a general form of misuse detection that implementing anomaly detection. Anomaly detectors report both known and unknown exploits by comparing the actual system-call signature with the normal signature when the application executes in the field. With misuse detectors, a programmer specifies the precise signatures of unknown intrusions, and when the application executes, it compares the actual system to the misuse signatures and reports matches as intrusions. They report exploits for which they are programmed. Thus, behavioral specifications of SMS achieve high accuracy in detecting both known and unknown attacks with low false-positive rates.

Preventing Damage

In contrast, SMS intercepts system calls as they are requested, so detection and remediation can occur before damage occurs. Real-time system-call interception must efficiently check signatures to prevent unacceptable overhead. SMS includes an event-specification language, called ASL (Abstract Specification Language), for specifying signatures in terms of system calls and their arguments. The defense refinement is aided as the system discovers new exploits and prevents damage by isolating the compromised application. Isolation places compromised applications in environments that appear legitimate butt hat actually contain no sensitive data. It also includes techniques such as inserting delays in system-call execution to reduce CPU use and denying some system calls with plausible, but false, return values.

Detection Accuracy

Real-time detectors have a fundamental accuracy advantage than after-the-fact detection as they can examine all aspects of instantaneous system state to improve detection accuracy whilst after-the-fact detectors can only look at the logged system state subset. As a real-time detector, SMS concepts apply in general to any operating system.

Prototype Design

To experiment with the concept of system-call interception for security enhancement, they made design choices that support rapid prototyping over other characteristics. They use C++ ass the surface between the specification environment and the runtime environment, decoupling the two major components of the prototype and supporting concurrent development by the Telcordia and SUNY teams. Programs written in ASL compile into C++ programs that are then compiled and link-edited to produce a runtime system-call interceptor. Two mechanisms are implemented for intercepting system calls at runtime. The earlier method modified the source code of libc, which is the library most applications use to access system calls. The latter method uses kernel-level interception by placing hooks into the kernel.

Effectiveness

SMS enables the easy construction of effective defenses for standard servers such ass ftpd and telnetd. It can remediate legitimate design decisions that went against what most end users wanted and also can change an application’s security policy, bringing it in line with the end user requirements.

Performance

System-call interception imposes a burden on all processes. It is because all system calls are intercepted regardless of whether or not each process has an explicit defense. The performance penalty of system-call interception depends on two major factors. They are the interception cost and the cost of executing defensive and reaction programs. What they consider about only covers the interception cost, which is constant per system call.

Comments on Article

1. Notations/ Diagrams Used

Diagrams used in the article are mainly based on the examples elaborated. The authors used a lot of examples in order to let the readers to have clearer idea on this SMS. Besides, they also elaborate the issue level by level (root to leaves). They firstly give the rough idea on vulnerabilities of application security. Then bring out the issue of the current practices for preventing of exploitation of application vulnerabilities. After that, as a main topic, SMS is elaborated in the aspects of detecting exploits, preventing damage and detecting accuracy. After the “tree” is drawn, they start to go further. In order to aid this, they give illustration through giving simple and clear examples.

2. Aspects in Software Engineering
SMS includes an event-specification language, called ASL (Abstract Specification Language). It also uses C++ as the interface between the specification environment and the runtime environment, decoupling the two major components of the prototype.

3. Results & Relevance to the immediate Future

Security products incorporating system-call interception technology could be marketed as either development environments or runtime environments. The runtime environments would include the basic system-call interception mechanism and a growing set of predefined behavioral specifications for standard applications. The development plus tools are necessary to allow end-user development of behavioral specifications. Most end-users would purchase only the runtime environment and use the supplied defenses. End users with custom security requirements would purchase the development environment and employ skilled programmers to develop their own defenses. Therefore, at the same time to solve the problems of labor-intensive and expensive application reverse engineering, the SMS approach does empower end users to take security matters into their own hands by securing themselves.
Related Articles

Title: Managed Security: Build It Right the First Time

Abstract: Secure Web services require not only building a secure environment but also maintaining a strong security posture. Managed security solutions provide assistance in the aspects of maintenance that even the most diligent engineers miss.
Author: Arjuna Shunn

Source: http://security.devx.com

Relation with the Course

Coupling

As SMS is an intercepting detection system, it is therefore very high in Coupling. This imposes a burden on all processes.

Cohesion

SMS is low in cohesion.

Relation with the Lab Project

Lab Group: Azone Software Syndicate

Lab Project: Intelligent Vehicle Parking System

Type: Object Orientated Analysis

This SMS is basically a function-oriented system. It is based on system-call interception because malicious hackers inflict damage primarily by tricking the operating system or an application into inappropriate system-call execution. It is a current practice for preventing exploitation of application vulnerabilities.

Though it has no much relation with my lab project, there still are some points that I can take note with:

1) Security: As an INTELLIGENT vehicle parking system, no error should exist. Therefore, we should not neglect the security issue of the system as well as the parking lot security.

2) Effectiveness: We should enable the easy construction of system for a few standard servers but not one. This increases the flexibility of the using of the vehicle parking system.

Conclusion

This research confirms the possibility of using system-call interception as the basis for application-specific behavioral specifications that enhance application security in the absence of source code.

Besides, developing application-specific behavioral specifications is a complex task requiring a skilled, security-aware programmer. Their specification language simplifies the implementation aspects of this task by proceeding abstractions tailored for event-based programming. However, given the ever-increasing number of vulnerable applications, the scalability of application-specific defenses is questionable.

References

Aleph One, “Smashing the Stack for Fun and profit.”

Phrack Online, Vol. 7, No. 49, 9 Nov 1996 : www.phrack.com

E. Spafford, “The Internet Worm Program: Analysis,”

Computer Comm. Review, Vol 19, No. 1, Jan 1989

CERT/CC Advisories 1988-2000, Carnegie Mellon Software Eng. Inst. ;

Sept 2000: www.crt.org /advisories

About the Authors

Thomas F. Bowen is a research scientist at Telcordia Technologies. He holds two patents related to database concurrency control. Most recently, he has focused on the issue of computer security as it relates to programming errors, and he has primary technical responsibility for two DARPA-funded computer security research projects.

Bowen@research.telcordia.com
Mark E. Segal is the executive director of Software Technology Research at Telcordia Technologies. He is responsible for the research and technology transfer activities of approximately 40 research scientists investigating better ways of designing, implementing, integrating, testing and managing large, complex, mission critical software systems. Segal’s own research interests focus on techniques for constructing dependable distributed systems, where hardware and software faults, as well as malicious attacks on the software, must be addressed.

ms@research.telcordia.com

