
STRICTLY CONFIDENTIAL

CS214 - August 2003 - Mark Scheme

Do not award half marks.

In all cases give credit for appropriate alternative answers.

Question 1 compulsory

(a) Draw a diagram to illustrate an array –based implementation of a binary tree. [3]

1m for root and free
1m for array [can be any size]

(b) Discuss one difference between a reference-based and an array-based

implementation when accessing an item. [2]

An array-based implementation uses random access to retrieve data [1]
while a referenced-based implementation must transverse the dynamic
links [1].

(c) How does an interface differ from a class? [2]

An Interfaces can only can have static final member variables [1], and all
declared methods are without any body [1].

(d) Briefly explain why the Java language is platform independent. [2]

Java compiles a source program into bytecode [1] that any computer
running a Java Virtual Machine (i.e. a Java bytecode interpreter) can
execute[1].

data left right

Root 0
1

free 2

3

6

0

1

+ 1 2

mopyx.com
Note
《精冰论坛》
http://bbs.mopyx.com

STRICTLY CONFIDENTIAL

CS214 - August 2003 - Mark Scheme

(e) Identify the two conditions in which automatic conversion between types will

take place. If not then a programmer must use the Java keyword cast to obtain a

conversion between incompatible types. [2]

the two types are compatible [1]
the destination type is larger than the source type [1]

(f) Given the fragment of an employee class as below.

class employee {

protected String name;

protected int salary;}

(i) Create a subclass class called manager that inherits the employee class,

and which has a private member variable dept of type String. [2]

class manager extends employee [1 mark]{
private String dept; [1 mark; no mark is awarded if missing
private] }

(ii) Can a method, say PrintDetails(), in manger class directly access the

member variables name and salary? Briefly explain your solution. [2]

Yes [1 mark]

Member variables name and salary are “protected access” which
allows subclasses to access them. [1 mark]

(iii) Create a class named LinkedEmp that has two member variables:

� EmpNode of type manager

� next for connecting to next employee on the list.

Both member variables are private access. [2]

class LinkedEmp {
private manager EmpNode; [1 mark]
private LinkedEmp next; [1 mark] }

STRICTLY CONFIDENTIAL

CS214 - August 2003 - Mark Scheme

(iv) Write a Java instruction that creates an instance of LinkedEmp called

abcemp. [1]

LinkedEmp abcemp = new LinkedEmp();

(v) Implement a method PrintEmp() in LinkedEmp class that displays the

linked list starting from the first node through to the last node. Assume

the existence of a method PrintDetails() in manager class. The signature

of the method is as follows: [4]

private void PrintEmp(LinkedEmp adcemp)

private void PrintEmp(LinkedEmp adcemp)
{ LinkedEmp tempPtr; [1 mark]
 for(tempPtr = adcemp; tempPtr != null; tempPtr = tempPtr.GetNext())

[2 marks]
 tempPtr.PrintDetail(); [1 mark] }

(vi) Write a Java instruction to link a new employee newemp to adcemp at

the beginning of the linked list [1]

newemp.SetNext(adcemp); [1 mark]

adcemp

STRICTLY CONFIDENTIAL

CS214 - August 2003 - Mark Scheme

(g) Given the fragment of JavaStudent class as follows:

class JavaStudent {

private String Name;

private int test_mark;

public JavaStudent(String Sname) { Name = new String(Sname);

 test_mark =0; }

public void SetMark(int m) { test_mark = m; }

}

(i) Create a class called JavaTest that contains an array of 20 instances of

JavaStudent class and an integer StudNum for the number of

students. [3]

class JavaTest {
JavaStudent StudJava = new JavaStudent[20];

[2 marks; deduct 1m for each error up to a max 2m]
int StudNum; [1 mark] }

(ii) Implement a method AdjustMark for the JavaTest class that takes in

two arguments markadj and muchadj of type integer. The method adds

muchadj to students’ marks that are equal to or less than markadj.

Assume the existence of a method int GetTestMark() in JavaStudent

class. [4]

public void AdjustMark(int markadj, int muchadj)
{ for (int x =0; x< StudNum ; x++) [1 mark]

if (StudJava[x].GetTestMark() <= markadj) [2 marks]
 StudJava[x].SetMark(muchadj); [1 mark]}

STRICTLY CONFIDENTIAL

CS214 - August 2003 - Mark Scheme

Do not award half marks.

In all cases give credit for appropriate alternative answers.

Question 2

The abstract data type Stack is a last in first out data structure. Data elements are added to

and removed from the top of the stack.

Given the following definition of a StackElement:

public class StackElement{

// data members

private int data;

private StackElement next;

public StackElement (int x){

data = x;

next = null;

}

public int getData(){ return data; }

public StackElement getNext(){ return next; }

public void setNext(Node e){ next = e; }

}// end class

(a) Define a class called DynamicStack that has one data member called top,

which is of StackElement type. Also, include a constructor that takes in no

arguments and assigns the top to null. Ensure that the data members are only

accessible by members of that class. [2]

public class DynamicStack{
private StackElement top; [1]
public DynamicStack(){ [1]

top = null;
}

STRICTLY CONFIDENTIAL

CS214 - August 2003 - Mark Scheme

(b) Write a member function called IsEmpty that returns true when the dynamic

stack is empty and false otherwise. [2]

public boolean IsEmpty(){ [1]
return (top == null); [1]
}

(c) Write a member function called Push that takes in an integer argument and adds

it to the top of the Dynamic Stack. [4]

public void Push(int x){
StackElement newNode = new StackElement(x); [1]
if IsEmpty()

top = newNode; [1]
else{

newNode.setNext(top); [1]
top = newNode; [1]

 }
}

(d) Write a function called Pop that takes in no arguments but removes and returns

the data at the top of the dynamic stack. However, if the stack is empty then the

return value should be –1; [4]

public int Pop(){
int temp=-1; [1]
if (!IsEmpty()){ [1]

 temp = top.getData(); [1]
 top = top.getNext(); [1]
}

return temp;
}

(e) Write the main routine that instantiates a DynamicStack object, adds two

elements to the stack and then removes and displays the top element from the

stack. [3]

public static void main(String args[]){
DynamicStack stk = new DynamicStack(); [1]
stk.push(5);
stk.push(6); [1]
System.out.println(“The removed element is “ + stk.pop()); [1]
}

STRICTLY CONFIDENTIAL

CS214 - August 2003 - Mark Scheme

Do not award half marks.

In all cases give credit for appropriate alternative answers.

Question 3

(a) Briefly explain what is a two dimensional array. [2]

A two dimensional array stores information using rows and columns
format. [1]
It requires the use of two indexes to access elements inside the array, [1]

(b) Write a class called Teaching which contains two members. The first member

consists of the lecturer’s name. The second member is a two dimensional array

of integer type describing a teaching schedule. [3]

public class Teaching [1 mark]
{

String lecturer_name; [1 mark]
int[][] Schedule ; [1 mark]

}

(c) Implement a constructor which receives a parameter lecturer_name. The

purpose of this constructor is to initializes both members of the above class.

Thus, it must initialize the lecturer_name and the schedule array. The schedule

must be able to support 7 weeks with 3 teaching slots per week. [3]

Teaching (String lecturer_name) [1 mark]
{

this.lecturer_name = lecture_name; [1 mark for correct use of this]
Schedule = new int[7][3]; [1 mark]

}

(d) Implement an iterative method called Find_Average which returns the average

number of hours spent by the lecturer. Each slot of the two-dimensional array

will contain the number of hours needed to prepare for the lecture. [3]

double Find_Average ()
{ int sum=0;

for(int row=0; row < 7 ;row++)
for(int col =0; col< 3; col++) [1 mark for both loops]

sum += Schedule[row][col] [1 mark]
return sum /21 ; [1 mark]

}

STRICTLY CONFIDENTIAL

CS214 - August 2003 - Mark Scheme

(e) Implement a method CountHighProfile which returns the number of teaching

slots that have hours above the calculated average preparation. You have to use

the method in part (d) as part of the solution. [4]

int CountHighProfile ()
{ int count=0;

for(int row=0; row < 7 ;row++)
for(int col =0; col< 3; col++) [1 mark]

if(Schedule[row][col] > FindAverage()) [1 mark]
count ++; [1 mark]

return count; [1 mark]
}

STRICTLY CONFIDENTIAL

CS214 - August 2003 - Mark Scheme

Do not award half marks.

In all cases give credit for appropriate alternative answers.

Question 4

(a) Briefly explain the properties of a queue and explain one of the error conditions

that can occur when manipulating a queue. [3]

A Queue makes use of a First In First Out Protocol.
It requires the use of front and rear pointers.
To prevent an overflow condition – check the queue is full before adding
an element to the stack.
To prevent an underflow condition – check the queue is empty before
deleting is carried out.

Award one mark for each point. Maximum of 3 marks

(b) Declare a data structure called QueueNode which supports the dynamic

implementation of a stack. Each node in the queue contains integer values. [3]

public class QueueNode {
int data;
QueueNode next; }

Award one mark for each correct definition.

(c) State any three methods which can be found as routines to interface to the queue

(of integers) abstract data type. You can assume that the front and rear pointers

are stored in the QueueList class definition shown below. You are only asked

to provide a signature specification for each queue method. [3]

public class QueueList {

QueueNode Front, Rear;
}

QueueList CreateQueue(QueueList Queue);

void Enqueue(QueueList Queue , int element);

int Pop(QueueNode Queue) ;

boolean IsEmpty(QueueNode Queue);

Award one mark for each correct method, Maximum up to 3 marks.

STRICTLY CONFIDENTIAL

CS214 - August 2003 - Mark Scheme

(d) Implement a method tripleItem that receives a stack of QueueList as its

argument. The purpose of this method is to triple the value of any element in the

queue that has a value of less than 5 points. [6]

void tripleItem(QueueList Queue) [1 mark]
QueueList temp;
int item;

{
temp := Queue.Front; [1 mark]
while (temp != null) [1 mark]
{

if (temp.get_data() < 5) [1 mark]
temp.get_data = temp.get_data() * 3; [1 mark]

temp = temp.get_next(); [1 mark]
}

}

Award marks for a correct algorithm and attempt at following the
recursive structure of the datatype.

STRICTLY CONFIDENTIAL

CS214 - August 2003 - Mark Scheme

Do not award half marks.

In all cases give credit for appropriate alternative answers.

Question 5

(a) Describe a binary search tree. [2]

A binary search tree is a sorted tree such that:
1) Left children of a parent node precede the parent node in

sequence;
2) Right children of a parent node succeed the parent node in

sequence;
The purpose of a binary search tree is to ensure efficient retrieval by
enabling the search space to be halved at each comparison.

Award one mark for each correct point.

(b) Given the following formulas below, convert each formula into infix, post, and

prefix notation.

(i) A * B / T – K [3]

Award 1 mark for each correct notation.

A * B / T - K (INFIX)
- / * A B T K (PRE FIX)
A B * T / K – (POSTFIX)

(ii) G * H + J / K + D * H [3]

G * H + J / K + D * H (INFIX)
+ + * G H / J K * D H (PRE FIX)
G H * J K / + D H * + (POSTFIX)

STRICTLY CONFIDENTIAL

CS214 - August 2003 - Mark Scheme

(c) (i) Define a class BinaryTreeNode which describes a dynamic data type

for the branches and nodes in a binary tree. Each node in the binary tree

contains data of integer type. [3]

public class BinaryTreeNode {

BinaryTreeNode Left; [1 mark]
BinaryTreeNode Right; [1 mark]
Int Data; [1 mark]
}

(ii) Write an iterative method, called SearchItem, the signature of which is

given below, that takes in a binary search tree named Root, and an item

of type integer. The method should perform a binary search on the tree.

It will return true if the item is found and false otherwise. You can

assume that the relevant selector methods, such as get_item, getLeft,

getRight, are provided. [4]

boolean SearchIteml(BinaryTreeNode Root, int item)

A sample recursive definition of the method PreFixTraversal is as
follows:

boolean SearchItem (BinaryTreeNode Root, int item)

{ if (Root=null)
return false; [1 mark]

else
{

if ((Root.get_item() == item) [1 mark]
return true;

else
if (Root.get_item() < item) [1 mark]

SearchItem (Root.getLeft(), item);
else

SearchItem (Root.getRight(), item); [1 mark]
};

}

An iterative solution is equally valid.

- END OF PAPER -

